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A. DISCRETE ANALYSIS OF HOMOMORPHIC DECONVOLUTION

A method for separating convolved signals based on the canonic system of Fig. XVII-1

has been previously discussed. Some preliminary analytical results for continuous sig-

nals and a brief discussion of the problems involved in implementing such a system have

A L A
x W x (t) (t) y(t)

Fig. XVII-1. Canonic form for deconvolution filter.

also been given. Since such a system must be implemented by using a digital computer,

it is of importance to consider the characterization of the system of Fig. XVII-1 when

all of the signals are discrete time functions.

In this report we shall discuss the discrete characterization of the system AO. This

is a nonlinear system that is characterized by the property that if x = x l 0 x 2 , then

S= 1 + ~' with & denoting discrete convolution. If X(z) and X(z) denote the two-sided

z-transforms of 4xn) and x(n), respectively, this property can be realized through the

requirement that

X(z) = log X(z),

provided that when z = e j o , arg[X(z)] is continuous in the interval -rT < w < Tr. Since the

z-transform is periodic in w, arg[X(z)] must also be periodic in w. It is not necessary

to associate the region of convergence of X(z) with X(z).

We shall make use of just two choices for the region of convergence of X(z). One
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choice is the region outside all poles and zeros of X(z). This results in a sequence, x(n),

which is zero for n < 0. The other choice is an annular region that includes the unit

circle. This choice results in a sequence, x(n), which always approaches 0 as n

approaches oo00.

It will be assumed that X(z) is of the form

11 (1 -a z-1

X(z) = Azr k=l(1)
pP (i)
S(1-biz - l)

i=l

which can be rewritten in the form

m m
r-mo +p m -p o o m ( -1)

z A(-i) IE ak l-ak-1z I -akz
k=l k=1 k=m +1

X(z) = o
Po Po P

11 b i . ( 1-bi) 1 ( 1-biz
i= 1 i=l i=po+ 1

where the first m0 zeros and po poles are assumed to be outside the closed contour that

is used for determining x(n), and the rest inside. For X(z) of the form of Eq. 1 and for

which the angle is computed as discussed above, it can be shown by integrating by parts

that

m o
A r akk=1

(O) = log n + c(r-mo+po) (Za)

i=1

and

crn cos r nx (n) = Ke + c(n) n = ±1, 2, .... (2b)n

The function c(n) is defined by

1 C X' (z) n-l
c (n) = r z- z dz, (3)

C X(z)

where C is a circular contour defined by z = e , which lies in the region of conver-

gence of X(z). The constant K in Eq. 2b is given by

K= r+Po -m .
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It can also be shown that

K = r + m i - p. + p -m,

where m i and p.i are the number of nonzero zeros and poles inside the contour C.

By applying the properties of z-transforms, it can be shown that c(n) also satisfies

the equation

1 x(n-k)
c (n) = L kc(k) n 0.

e n, - x(0)
k=-oo

In the special case for which x(n) = 0 for n < 0, x(0) # 0, and the contour C in Eq. 3

encloses all of the poles and zeros of X(z), so that x(n)= 0, n <0, the constant K in Eq.2

is zero and therefore ^(n) = c(n). Under these conditions, x(n) satisfies the recursion

formula

n-1
x (n) 1 (n-k)

(n) = -- 1 kx(k) n > 0 (4a)
x(O) n x(O)

k=O

'(0) = log A = log x(0). (4b)

It should also be noted that the inverse operation, corresponding to the charac-

terization of the system A-, can easily be obtained simply by solving Eqs. 4

for x(n).

If x(n) = 0, n < 0 and x(0) * 0, Eq. 4 can be used to compute x^(n). The computation

is practical only in the case in which X(z) has no poles or zeros outside the unit circle
n

because if this is not true, x(n) will grow at least as fast as-, where a is some num-

ber greater than 1. It should be mentioned, however, that multiplication of x(n) by

pn (<1) will sometimes result in a new function whose transform has no poles or zeros

outside the unit circle. It can also be shown that if X(z) is a rational function, the effect

of multiplying x(n) by 3n is simply to multiply the output x(n) by 3n.

In many cases of interest it may not be possible or desirable to use Eq. 4 in the

calculation of ^(n). In such cases, the inverse discrete Fourier transform of the loga-

rithm of the discrete Fourier transform of x(n) must be computed. If N denotes the

number of points in the discrete Fourier transform, then the resulting sequence, x(n),

is related to x(n) by the equation

(n) X (n+aN) n = 0, i,..., N- 1,

a=-oo

corresponding to aliasing of the sequence X^(n). This aliasing can be made less
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noticeable by exponentially weighting x(n) or by augmenting the sequence x(n) by

terminating in zeros.

R. W. Schafer, A. V. Oppenheim
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B. UNITY FEEDBACK TWO-STATE MODULATOR CONFIGURATIONS

1. Introduction

The transfer function for the two-state modulation configuration described by Bose 1

has been derived in detail. 2 It has been shown that the dynamic ramp response, within

an error term, is of the form

T(t) = -x(t) - *rx (t). (1)

The frequency response of the modulator, then, as inferred from the ramp response,
goes as

Y(s)
X(s) - -(I+Ts) (2)

which, as in the case of a continuous amplifier with feedback, is the inverse of the feed-

back network response.

The system frequency response can be made flat by placing an RC filter identical to
the feedback network in front of the modulator loop. The same effect is achieved in the

circuit of Fig. XVII-2, in which the RC

feedback filter has been located in the place

where it also acts to filter the input
THRESHOLD

x e(t) R g(t DEVICE () waveform.
INPUT C WITHINPUT__

C  
HYSTERESIS OUTPUT

In Fig. XVII-2 the hysteresis switch

with delay, previously used as the forward
Fig. XVII-Z. Unity feedback two-state element of the modulator loop, has been

modulation system. replaced by an arbitrary threshold device

with hysteresis. This has been done to

permit application of the analysis to more general effects that are present in a physical

realization, such as switching transients and variations in the switching levels. The

QPR No. 85 234



(XVII. STATISTICAL COMMUNICATION THEORY)

threshold device has two states or modes of operation: the charge state, entered when

its input g(t) drops below wc, during which the output will be designated yc(t); and the

discharge state, entered when g(t) rises above wd, during which the output will be des-

ignated yd(t). The only contraints on the device behavior to insure recurrent alternation

of states or cyclic operation of the modulator are that x(t) plus yc (t)be sufficiently posi-

tive that g(t) tends to increase or "charge," eventually reaching wd, and that x(t) plus

Yd(t) be sufficiently negative that g(t) tends to decrease or "discharge," eventually

reaching w c . A switch with hysteresis and delay, for example, meets this requirement,

provided the input is bounded by hd - wc < x < hc - wd.
A general transfer expression for this system configuration will be derived. For

2
static input, the system is shown to be identical to the RC feedback configuration if

ideal hysteresis with delay is assumed. For dynamic inputs - again, under the assump-

tion of ideal hysteresis with delay - it can be shown that a flat frequency response is

obtained with error equivalent to the static error. Finally, an improved system will be

introduced for which the transfer function predicts zero error, even for the arbitrary

threshold device described above.

2. Analysis

The transfer function for the circuit of Fig. XVII-2 will now be derived. For the

RC circuit,

e(t) = g(t) + Tg'(t). (3)

The input to the nonlinear element has the form sketched in Fig. XVII-3. As long as

this waveform is cyclic, the desired modulation will obtain.

g(t)

CHARGE _ DISCHARGE
STATE STATE

Wd Fig. XVII-3. Typical input to the thresh-
old device.

WTC 
-w

c / ---------- ' ------ T --...

Define a cycle of operation to be from one w state transition to the next. Then,

choosing t = 0 at the start of a cycle, we have

g(T) = g(0). (4)

From (3), since e(t) = x(t) + y(t),
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[x(t)+y(t)] dt = g (t) dt + g(t) T (5)

Rearranging terms, using (4), and dividing by the period T yields

T T T
- . y(t) dt = x(t) dt + g(t) dt. (6)

The output mean over the cycle is equal to the negative of the input mean over the cycle

to an error term in g(t), independently of the form of x(t) and y(t), as long as cyclic

behavior is maintained. For efficiency, y(t) should be a switching waveform, and, to

enable accurate reconstruction of the input waveform, the modulator parameters should

be such that the cycle time is short compared with the rate of change of x(t); however,

neither of these considerations is involved in the derivation of Eq. 6.

As indicated by Eq. 6, the modulator output in the unity feedback configuration is

referenced to the mean of the input during a cycle, rather than depending only on the

input values at the switching instants as was the case with the RC feedback configura-

tion. The RC network continuously looks at the input waveform and effectively stores

its behavior over the entire cycle in g(t).

3. Investigation of the Error Term

In the preceding development arbitrary parameters that were appropriate for cyclic

operation were assumed. It is intuitively clear that a narrow hysteresis window, bounded

input and output, and small delays will limit the excursion of g(t) to a restricted range

and permit a bound on the error term. For typical operation this bound is exceedingly

loose because the approximate symmetry of g(t) reduces the value of its integral over a

cycle. Expressions for the modulator error term have been developed for the case in

which the forward path is an ideal switch with hysteresis and delay, and the input is

static or characterized by its midpoint and slope over the cycle.

A typical errror waveform g(t) over a cycle with static input is sketched in

Fig. XVII-4. Notice that g(t) is pre-

cisely the static error waveform eval-

'g , (uated in a previous report, 2 in which
Tdc the RC feedback modulator configura-

,to hc

Wd- tion was discussed. The average of
o / g(t) was shown to be equal to its mid-

M -- to point, which can be evaluated in terms

Tdd of the modulator parameters, plus a

term expressing the discrepancy

Fig. XVII-4. Error waveform, static input. between mean and midpoint. This
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result, for the symmetric case, is reproduced in Eq. 7.

Td

Ty = -x e 1 + (7)

x e

1-

The error function for ramp input can be derived by characterizing the ramp as

altering the effective midpoint and half-width of the exponential window function g(t),

which is the same procedure previously used to discuss the ramp response of the RC

modulator configuration.2 The detailed mathematics will be omitted here; the result

supports our intuitive claim that the device should exhibit flat frequency response by

predicting the same transfer expression as for the static case. The "static" input value

of Eq. 7 is simply replaced by the mean of the ramp during the modulator cycle.

4. Integral Modulator

In the derivation presented in this report, the error term was found to be the integral

of g(t) over a cycle. If the RC network is replaced by an integrator, as drawn in

Fig. XVII-5,

e(t) = Tg'(t), (8)

and the error term in the derivation vanishes! Equation 6 becomes simply

S y(t) dt = - I x(t) dt. (9)

Independent of the form of y(t) -as long as it is appropriate to produce cyclic

operation - and independent of the parameters of the hysteresis element and the nature

Fig. XVII-5. Integral two-state modu-
+ e (t) THRESHOLD lation system.

x(t): INTEGRATOR - WITHCE 
y (t)

INPUT HYSTERESIS OUTPUT

of the input, the average of the output over a cycle is precisely the negative of the mean

of the input over the cycle.

A qualitative explanation of this type of modulator operation is easy to provide. The

output of the integrator represents the input mean plus the output mean, and the hyster-

esis element guarantees that this output is cyclic. Then, over a cycle, the sum of the
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means, the output error, is brought to zero.

In practice, the realization of the integrator may not be ideal. The transfer function

of the integrator may then be represented in the form.

e(t) = Ag(t) + Tg'(t), (10)

where A is zero ideally, approximately .001 for a typical operational amplifier real-

ization of an integrator, and equal to one for the simple RC approximation to an integra-

tor. We have shown that the modulator error resulted from the integral of g(t) over a

cycle. In the analysis of this error, A was taken as unity (an RC approximation) and

error expressions were derived. These same error expressions can be applied to the

case of incomplete realization of the integrator in an integral modulation scheme simply

by multiplying the error expressions by the factor A. Of course, for an ideal integrator

A is zero and there will be no error, and for most practical realizations A is sufficiently

small that the error may be neglected.

J. E. Schindall
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