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A. ELECTRODYNAMICS OF QUADRUPOLAR MEDIA

The author has undertaken a study of quadrupolar media for two reasons. First, the
availability of high-intensity electromagnetic radiation at optical frequencies makes it
possible to observe quadrupolar effects in situations in which they are not swamped by
dipolar effects1 (e.g., frequency-doubling in media with inversion symmetry). Second,
the quadrupolar medium provides an interesting example of the application of Chu's
postulates to formulations of electrodynamics in the presence of moving media.” The
question arises as to whether it is necessary to modify Maxwell's equations of the Chu
formulation for polarizable and magnetizable media when dealing with a quadrupolar
medium, or whether it is sufficient to replace the polarization density P by the diver-
gence of the quadrupolar tensor, leaving the equations otherwise unchanged.

In this report we summarize the steps taken to obtain a self-consistent formulation
of Maxwell's equations in the presence of a moving quadrupolar medium. These results
are used to develop a simple nonrelativistic model of a fluid consisting of noninteracting
quadrupolar particles (the particles interact solely through the macroscopic fields that
they produce). We generalize the expressions for the quadrupolar fluid to a solid, taking
interactions among the quadrupolar particles into account. The force density acting
toward acceleration of the volume elements of the solid is obtained.

We start with Maxwell's equations as formulated by Chu,2 which he has called "the
Amperian formulation.” The presence of the material medium is taken into account by
means of source terms introduced into Maxwell's equations for free space. The reason
for using the Amperian formulation, rather than the formulation based on the concept
of magnetic-charge dipoles, is that a quadrupolar medium produces circulating currents
analogous to the Amperian model of magnetizing currents.

8B

VX'T=0 (1)
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B dE _ —
VXTL-(;-- 60—5-{-—— JQ (2)
Ve E =0 (3)
vV-B=o. (4)

We start with a model of a planar quadrupole shown in Fig. IX-1. The four charges
form a parallelogram, so that they do not possess a dipole moment. The charge chosen

-q +q

Fig. IX-1. Model of planar quadrupole.

as the origin for the measurement of the vector distances of the remaining three charges
is assumed to carry the mass of the quadrupole. This assumption implies that there is
no time dispersion in the constitutive law. Suppose that the mass-bearing charge is dis-
tributed with a density n(r) and moves with a velocity v(r). In order to find the source
current density -J-Q and source charge density pQ, we find the charge density and velocity
of each of the four charges constituting the quadrupole and add over these. All of the
evaluations have to be made to second order in the displacements, d, of the charges from
the mass-bearing charge. The number density at point T of a particle displaced a dis-
tance d from its partner, the latter of which possesses a density distribution n(_f), is

given4' > to second order in d by

n- V- (nd) +3 VV: (ndd). (5)

The currents of the four charge configurations add at any particular point T to pro-

duce the net current density JQ When the velocities of the four charge distributions are
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evaluated, their respective current densities obtained, and then superimposed, one finds

for the current density

3 _ dd _ dd o
JQ ==V - \gn le-l- gn dz'—at—- + VV:(gn dleV). (6)

Similarly, one finds for the charge density

pQ = VV: (gqn d—laz). (7

The planar quadrupole model is not sufficient to describe the most general distribu-
tion of charge with a quadrupole moment. It is easy to obtain more general expressions
than those of Eqs. 6 and 7, by considering each quadrupolar particle to be made up of a
superposition of planar quadrupoles. Supposing that each quadrupolar particle is made

up of N planar quadrupoles, one obtains a quadrupole tensor density by superposition:
"1). (8)

Equations 6 and 7 can be written in terms of C=Q if one introduces the additional definition

of the magnetization density
I ad, _; dd
M=an dIX T +d2XW‘ (9)

i=1

One then has for the charge density and current density, as produced by moving quadru-

polar particles,

PQ = VV:Q (10)

— Q = —
JQ=—V- nad?<7> + VV: (QV) + VX M. (11)

With these equations the formulation of Maxwell's equations for a system of quadrupolar
particles is completed. In order to complete the formulation of the system, it is neces-
sary to find the force density that acts toward acceleration of volume elements of the
quadrupolar medium. If one starts with the model of a fluid of noninteracting quadrupolar
particles, it is not difficult to find the amount of energy supplied by the electric and mag-
netic field to the fluid per unit volume, WQ‘ This is accomplished by a simple application

of the Lorentz law. One finds

w =
Q —— Q — —
ns\— ] =nVE% 6| —)-M - 6B (12)
n
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[The superscript o on E and B indicates that E and B are evaluated in the rest frame of
the volume element under consideration.]

From the same model one may develop an energy conservation theorem that includes
the rate of energy supplied to the particles per unit volume both as internal energy and as
kinetic energy, the time rate of change of the energy of the electromagnetic field, and
the divergence of the power flow of the electromagnetic field. Also, one finds in such
a theorem the divergence of a vector that can be interpreted as the power flow associated

with the quadrupolar medium.

6> © -

So_ _(d (X L RO T . uS. 50_ w0 77

SQ = n‘:dt <n E"+Q-W:- E E~ X M. (13)
Equations 12 and 13 can be used as a starting point for the application of the principle

3,4 For this pur-

of virtual work, or its generalization, the principle of virtual power.
pose one wants to generalize the expression for the energy density supplied to the fluid
per unit volume to describe a solid, rather than a fluid of noninteracting particles. A

generalization that suggests itself is

w Q 50 =
m —o d _= . dB o=
nd (T\ = nVE *: py <_n ) M ot Vv. (14)

Here we have introduced an electromechanical stress tensor T, in order to take the
microscopic interactions among the particles of the medium into account. It should be
emphasized that the introduction of this tensor is not simply an addition of a mechanical
stress tensor because t may depend upon the magnetic flux density B and the quadrupole
tensor per particle 3/:1 Furthermore, we assume that the power flow density associated
with the quadrupolar medium is still properly represented by Eq. 13, which was obtained
from the model of the quadrupolar fluid. With this information and with the additional
statement that the power-conversion density in the rest frame of the material medium

is given by (E+VX B) * T(S, where 3(3 is the current density in the rest frame, one can

apply the principle of virtual power to obtain the force density that accelerates the vol-

ume elements of the quadrupolar fluid. The force density is found to be

Q

T:E:WEWX@:W)EM%(—H—)-xv§+<V§)°TvT. (15)

Two facts should be noted in the preceding results. First of all, Maxwell's equations
for a quadrupolar medium are not simple applications of Maxwell's equations for dipolar
media, in the sense that it is not possible to replace the polarization density ?, as it
appears in equations of motion for the dipolar medium, by the divergence of 5 In

Maxwell's equations for a dipolar medium only first-order derivatives of the
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velocity field v appear. We find that the current density 'J_Q of Eq. 11 contains second-
order derivatives of the velocity field. It should also be noted that the quadrupolar
medium under consideration has the relatively complicated power-flow density vector
of Eq. 13. Hence the quadrupolar medium leads to a novel application of the principle
of virtual work. The author's study of the quadrupolar medium was motivated partly by
the fact that a quadrupolar medium provided an interesting new application and test of
the principle of virtual power.

H. A. Haus
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B. PULSE DISTORTION IN NONLINEAR OPTICS

A study of the interaction of intense optical radiation with materials that respond
nonlinearly has led to recent investigations of the possibility into obtaining electromag-
netic shock waves in non-polar liquids such as carbon di-sulfide.l"?’ These would result
from a dependence of the phase velocity of light upon the local internal energy density
of the closed system containing the pulse and the liquid.

In this report an energy equation is derived, and the Debye approach adapted to a
non-polar liquid, reviewed qualitatively. The results are then used to deduce thermo-
dynamic quantities that describe the physical mechanisms of the nonlinear interaction.
Computational results are presented, illustrating the interplay between the nonlinear

response, and the relaxation of the medium.
1. Energy Equation

It is assumed that the field of the optical pulse can be described in terms of a cen-
tral frequency, o, a propagation vector, k, pointing in the z-direction, and complex
amplitudes, all of which are slowly varying functions of space and time. Assuming a

plane wave, we write

—(i fozkdz—iwt).

— N
H = Re Hit,2) e Ht, z) = H(t, 2) iy

—(i JZ kdz- im)

D=ReD{t,z) e : Dt z) = Dit, z) ix
_ —i(ijoz k dz - iwt) ~
E = Re E(t,z) e H E(t,z) = E(t, z) ix

— e —_— N N\ ~
for the H, D, and E fields, respectively. ix, iy, and iz refer to unit vectors pointing

in the %, y, and z directions of a right-handed system.
Maxwell's equations can be employed to obtain a "Poynting theorem" relating the
amplitudes and the propagation vector. The real part involving only the amplitudes is

k&
V - (EXH +E"XH 2 -t E.a_g E*‘a—g—o 1
(EXH+E XH) +poqp EH)+E- T +E - 5p=0. (1)
The theory of polar molecules can be shown to be consistent with the constitutive
relationship3
* *

D=¢({E'D +E 'D},H) E (2)

= e E.

Furthermore, if the envelope of the pulse is slowly varying with respect to the inverse
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of the optical frequency, we can write

- zZ
K X H - gg—}:dz—w>13=o (3)
BE-{ ), D

S\—dz—w H=0 (4)

which shows that the phase velocity of the pulse is given by

(“’ 0Z %lz dz ) 1
= V. (5)

k ,—Ho€

Moreover, (3) shows that

HZ v D. (6)

Together with (2), (6) allows the energy propagation equation (1) to be written

9p 9dpv p
(T8 _
at ¥ oz +2<e>at‘°' (7)

where

E-D
P 2

N>

(8)

The explicit formula for the dielectric constant can be deduced from the Debye theory,
under the assumption of an anisotropic molecular polarizability. For axially symmetric

molecules that polarize instantaneously, this gives to lowest order

€-€, Pr
%<€’€o)='<T —:>. B=ip (9)

where €, is the linear dielectric constant. K is a constant depending upon the polariza-

bilities and the density, k is Boltzmann's constant, T 1is the temperature in degrees

Kelvin, and v is the relaxation time associated with viscous damping.

Because v = ! , if we let v, © 1 , (7) and (9) can also be written
G G
o 0 o
ap ap 9p 3 P\ av
FRA LY TR U PR PRV A ) T (10)
9 (v—vo) ap VOB
W(V—Vo)_—< e e A ()
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2 op
For v =0, (V—VO) = 8v = —ap, so that the energy equation (7), with the term &v 'E
neglected, becomes

ap ap
ot + (v H38v) 55 = 0. (12)

at
In this particular case, the propagation of the quantity p is three times as sensitive to
the nonlinearity as is the phase.
Equation 12, according to the theory of characteristics, implies that p is a constant

along the lines
zZ = (VO—3apo)t

where p = N and z = Z fort=0. If p'0 is infinitesimally greater than Po and corre-
sponds to zl), its corresponding characteristic crosses that corresponding to Po at the

point z, for a value of t equal to

dp -1
t=aed—
3a az}
9p

This equation for ey having its maximum value in space along the initial p curve,

gives the time of shock formation.
2. Thermodynamics of Pulse Evolution

Even though the system exhibits changes at the optical frequency, the particular form
of the dielectric constant, as well as that of the energy flow equation, indicates that with
respect to the interaction of the field with the medium such rapid changes are absent.
This is true as long as the envelope changes are slow compared with the inverse of the
optical frequency. If these changes are much slower than the relaxation time of the
medium, too, the latter does achieve a thermodynamic equilibrium with the field.
Reversible thermodynamics can then be applied.

The electromagnetic work done on the medium, dL, as obtained from (1), noting
from (7) that the spatial flow of energy as given by the Koynting vector is simplyaaﬂ; is

z
given by

* * * p
dr.'= p_a ) +EdzD + 28D gp 41 (—) de (13)

Choosing p and T as independent variables, the differential heat change for the

thermodynamic system is given by
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_ 1 [P\ e 1 [P\ o€
d@ = dU - L = d(U-p) - 2 <€>—a—pdp—-§~<‘€‘>ﬁ-dT. (14)
For a reversible process dQ = TdS, and thus we may write

9 1 9 aS
a—p'(U—P)='EP'a—p (1n€)+T—a-E. (15)

The appropriate Maxwell relationship can be obtained from the differential of the

free energy, which for the reversible process is

dF =~SdT + dL

P P
- 17 % 1%
= <s+2€ T><:1T+ 1+5= p>dp. (16)
The differentiability condition then implies that
-1 ( (In €)> (17)
2

The total internal energy from (15) is then equal to

p dp' 0
U:p+§0 7 (Praor e+ T3z (1ne)+c (T-T ), (18)

where CO is the heat capacity at constant B and D, for B and D equal to zero, and TO is
a reference temperature.5
The entropy is given by (17):

——g dp' ;= (Ine) + C_ In (TT:) (19)
P
In the Debye approach, € is a function of (1- 0) so that the integral in (18) is zero,
which implies that the internal energy 1ncrease in the interacting system is equal to p
plus the internal energy increase attributable to a temperature increase.

From (18) and (19), other thermodynamic functions can be obtained. TFor instance,

the free energy, which is equal to U - TS, is

P 9ln € T
F =p - SO dp' <p'—5f—)'— - + CO (T—TO)—Tln <Tr—(;‘> . (20)

To lowest order in p, S and F are

T 1 K 2
S=C_1n (=) -= o (21)
o] (T ) 4 szeo

[¢]
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1 €~ & T
F = 2 +T p+ Co (T—To)—Tln <T_> . (22)
(o}

(@)

These can be expressed in terms of the variables H, B, D, and E by employing the con-
stitutive relationship for (e—eo) in terms of p, and by attributing half of the linear p
terms that arise to the magnetic stored energy. Noting that the electromagnetic variables
have at most a constant phase (€ is real), which can be assumed to be zero, thereby

making these variables real, we get

_OF_ _(E 9l -
a D _<E> 8T |, D

NZ |B, T

OF _[H
il

N2 |p T

In the light of these results, the optical interaction can be described as follows. As
the pulse begins to penetrate the medium, it polarizes the molecules and tends to align
them along the field direction. This alignment under isothermal conditions (T=TO),
according to (20), is equivalent to a decrease in the entropy of the system, and thus
represents a heat flow out of the system. The resultant loss in internal energy, T [ ds,
is compensated for by a portion of the electromagnetic work done on the system. The
remainder of the work, which just turns out to be p, contributes to an increase in the
internal energy.

Positions located on the lagging wing of the pulse are behaving oppositely. Because
of a decreasing torque, molecular alignment is decreasing. Heat is being absorbed,
which, in turn, contributes to an increase in the internal energy. The electromagnetic
work done on the system is also decreasing, however, and the internal energy increase
resulting from a decreasing alignment compensates for a portion of this decreasing elec-
tromagnetic work; once again, p is left as the internal energy.

Thus, while the pulse is within the medium, a portion of the electromagnetic
energy contributes to an increase in the internal energy, while the remainder is
stored in molecular alignment. As the pulse leaves the medium, the electromag-
netic field has once again retrieved the energy stored in alignment; consequently,
in this case no loss can occur. Only a change in shape of the pulse profile is pos-
sible.

This implies that at any point the total energy available for electromagnetic work
is given by U- T [ ds under isothermal conditions. This is precisely the free
energy when T equals To'
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Now when relaxation is present, the basic relationship

AU = AQ + AW

must still apply, since it expresses a conservation of energy, even for an irreversible
process. Moreover, the internal energy of the system must still be a function of state
of the system. Thus, as before, u must be equal to p. Q and W need not be functions
of the state, however, although the entropy is. Thus it is reasonable to assume that
the entropy is still given by (21), and that the energy available for electromagnetic work
is given by the free energy, in the case of an isothermal process.

In order to justify these claims, consider the electromagnetic work done on the
medium, [dL. Upon substitution of (p/€) from (9) in (13) and integrating where possible,

keeping only lowest order terms in p, we obtain

(€/€)
B 1 2t o 8 € ¢
Wt e fee Y 455 1 = (1n <€O> d(?->. (24)

(0]

The second term is just the reversible heat of alignment considered previously. The

last term is the electromagnetic work done to overcome viscous forces. § is positive
for a passive material. In this case there must also be a term in AQ representing the
generation of heat arising from viscous damping, which compensates for the work done

against viscous forces. Consequently,

(e/€)
AQ = TAS - 55 1 0 a%(ln (-%)) d<-€€;>. (25)

As postulated, then, we have

U =p. (26)
Returning to the energy flow equation (7); it can be written, by using (24},

dp Opv

Op Oov 1 l&€dae x o1 [P (27)
9t ' o9z 2 PBe t' 2B € at e

o

Consider a small control volume of the system. Equation 27 implies that the flow
of the electromagnetic contribution to the internal energy is equal to its rate of increase
within the small-volume element, minus the rate of heat extraction attributable to elec-
tromagnetic alignment of the molecules, plus the rate of dissipation within the volume.

If the process is isothermal, this can be written

%V op
% +-5;£-+ (Rate of Loss) = 0. (28)

Furthermore, if the loss is zero, the rate of heat extraction resulting from alignment
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can be written in terms of the internal energy term that results in (12). This shows that
the internal energy decrease resulting from the alignment causes an effective decrease
in the speed of propagation of the internal energy, changing it to (Vo+ 36v). In this case
the effective flow velocity of the internal energy through the boundary of a control ele-

ment obeys the continuity equation

dp 3 3
it 3x <V0+7 6v)p} = 0. (29)

3. Computational Results

Figures IX-2, IX-3, and IX-4 show numerical solutions for the two equations (10)
and (11). These bear out the theoretical results obtained above. Figure IX-2 shows
that as a Gaussian pulse penetrates the nonlinear medium, a portion of the electromag-
netic work goes into alignment and the remaining increases the internal energy. The
decrease in phase velocity causes the internal energy pulse to steepen on the lagging
wing and a shock is eventually formed. Even though relaxation is present, steepening
occurs indefinitely, although at a slower rate than when + is zero. The total electro-
magnetic contribution to the internal energy is also seen to decrease as the pulse tra-
verses the medium, and electromagnetic energy is dissipated as heat.

Figures IX-3 and IX-4 illustrate pulse deformation for the case of an initial modu-
lating amplitude formed by the beating of two frequencies, thereby obtaining a periodic
pulse profile. They indicate that the behavior is highly dependent upon the ratio of the
relaxation time to the period of the initial amplitude. For a small ratio, a sequence of
sawteeth which gradually merge is obtained. For a larger ratio, however, in which case
the relaxing velocity from one cycle can dominate the initial portion of the succeeding
cycle, pulse steepening occurs both at the beginning and at the end of each cycle, pulse
steepening occurs both at the beginning and at the end of each cycle. In the latter, the
velocity profile tends to a constant and therefore a state of zero dissipation.

Kelly has calculated that in the case of Cs2 in the self-trappeds’ 6 region of a mode-

locked laser pulse, the steepening should occur in the order of a centimeter or two.
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Fig. IX-2. (a) Propagation of a pulse in the stationary frame. The initial pulse just
before entering the medium is Gaussian, with the height and width nor-
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{b) Integrated energy density, u = fjooo p dz, as a function of time (nor-
malized to the shock time).
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Fig. IX-3. (a) Propagation of a pulse in the stationary frame. The initial pulse is sinu-
soidal, of the form (1 + sin 2wz). Distance is normalized to modulation
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(b) Integrated energy density as a function of time (normalized to the shock
time).
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INTENSITY

WAVE VECTOR
(c)

Fig. IX-3. (c) Absolute value of the Fourier transform of the pulse at various times.
The wave vectoris in units of the initial modulation wave vector. Ampli-
tudes are normalized to the initial amplitude of the fundamental. Tl =

3

3.65 2t T,=1.79t, T;=2.55t, T, =3.39t,
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energy as a function of time (normalized to the shock time).
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INTENSITY

WAVE VECTOR

(c)

Fig. IX-4. (c) Absolute value of the Fourier transform of the pulse at various times.
The wave vector is in units of the initial modulation wave vector.
Amplitudes are normalized to the initial amplitude of the fundamental,

T, =.367t, T,=1.10t, T,=1.85t, T, =3.13t_
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