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A. CESIUM BEAM ATOMIC CLOCK

A new beam tube, which was last mentioned in Quarterly Progress Report No. 80

(page 2), that differs in design from previous clocks, primarily in possessing a recir-

culating oven, and in detail in magnet and cavity design, has been completed. The con-

struction of the associated low-frequency electronics system is nearly complete.

The proposed system for the new clock is shown in Fig. I-1. The theoretical clock
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Fig. I-i. Atomic clock diagram and frequency-control loop response.
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stability for beam shot noise only is

T[ t, T] -135X10 6
T-< 10 sec,

"o 1/2

where cr[< >t, ] is the variance of the average frequency departure from the undis-

turbed cesium resonance frequency wo for an averaging time T. We hope that this shot-

noise limitation can be reached by utilizing the high beam current provided by a

recirculating oven and by making use of the cavity phase-error correction capabilities

of frequency impulse modulation. 2 It has been found that the noise of a cesium beam

detected by a niobium hot wire is approximately the theoretical shot noise attributable

to pressure fluctuations in the region of the modulation frequency.

1. Theoretical Work

Following the lines developed by Cutler, 3 work has been carried out on calculating

the effects of various types of noise on clock stability. Explicit expressions for noise

sensitivity have been obtained for a simplified (linearly additive noise) loop equation,

and work on a more complete power spectral density (vectorially additive noise)theory

is now in progress. The effects of distortion of the modulation signal and imperfect

synchronous detection are also of extreme importance to clock stability; these prob-

lems are being investigated at the present time. A system analysis, which has resulted

in clarification of how frequency and phase errors are generated and transmitted

through the loop, has been carried out.

2. Recirculating Oven

It is a fundamental theorem of cesium beam resonance apparatus that larger beam

currents lead to larger signal-to-noise ratios, and consequently to better stability.

Unfortunately, in most devices the amount of cesium which forms a collimated beam is

small compared with the total cesium lost from the oven, because of the cos2 0 intensity

distribution of atoms emerging from a slit. Thus impractically large amounts of cesium

would be needed to provide an intense beam during a long running period. It was

proposed that a recirculating oven be built on the plan sketched in Fig. I-2.
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Fig. 1-3. Low-frequency electronics system.
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The oven was constructed, but it was found subsequently that large amounts of

background gas emerging from the hot oven walls and failing to exit through the small

slits 1 and 2 caused the recirculating cone to act as a long scattering chamber, thereby

reducing beam intensity. A suitable pumpout device for the cone was made, and the

beam intensity was restored to expected values. In a different earlier experiment 4 it

was shown that vigorous outgassing of the oven, before filling with cesium, without the

flow-restricting slits also cured the problem. Examination of the distribution of

cesium in an oven frozen by application of dry ice indicated that recirculation may have

been taking place. Not enough running time at high intensities has been accumulated yet

to prove in the direct manner that recirculation must be taking place.

3. Low- Frequency Electronics

The proposed low-frequency electronics system is shown in Fig. 1-3. Digital tech-

niques have been used to produce a symmetrical (small even harmonic content) mod-

ulator signal, and to produce synchronous detector gate waveforms of variable delay

that have a 900 phase difference when the variable delays are zero. Integrated circuits

were found useful in both digital and linear circuitry, and were used to make active

notch filters of high rejection and narrow stopband [the 80-Hz and 160-Hz notch filters

are used to prevent saturation by even harmonics of the amplifier following them, since

the even harmonics of the beam tube output are not zero when the phase and frequency

errors of the loop are zero]. Use has also been made of recently available comple-

mentary insulated gate field-effect transistors to make extremely low-error synchro-

nous detectors that are now undergoing testing.
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