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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Basic Theory

Research on the functional organization of the reticular core of the central nervous
system continues, in collaboration with Dr. William L. Kilmer of Michigan State Uni-
versity.

Our problem is to construct a theory for the reticular system which is compatible
with known neuroanatomy and neurophysiology, and which will lead to testable hypotheses

concerning its operation.1, 2

Our first and second approaches to this problem 3 were outlined in Quarterly Prog-
ress Report No. 76 (page 313).

We can report that we are embarked on a kind of iterative net statistical decision

theory 4 that is comprehensive, versatile, and penetrating enough to stand a rea-
sonable chance of success.

The computer modeling is being done at the Instrumentation Laboratory, M. I. T.,
by members of Louis L. Sutro's group.

W. S. McCulloch
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2. Project Plans

a. Sensory Processes and Multiplexing

The past year's work has suggested to us that the firing pattern of a single neuron
which, in the histogram, shows a bimodal or trimodal distribution, conveys information
of different sorts with each of the modes. We have spent some time searching for the
kind of stimulation needed to separate effects on the different modes, but are not yet
able to give a completely satisfactory account of what is happening. There is enough
evidence, however, that we have had to consider the characteristics of a system capable
of handling information that is distributed or partitioned in the pulse-interval domain.
This has led to the making of a new theory of nervous action, an account of which will
soon appear.

Color Vision in Amphibia and Reptiles. We have undertaken to study the coding of
color in the retinas of frog and turtle, extending the work of Dr. Muntz in this labora-
tory (4 years ago).

Taste. We shall attempt a study of taste similar to the one that we did on smell.

b. Learning Process

In consequence of the theory of nervous action which we have recently developed, we
are studying the notion of the change of probability of invasion into a branch of a single
fiber. The work will be done initially on dorsal root-dorsal column system in the cat.
We shall try to see if the probability of invasion into the branches at a bifurcation of an
axon can be altered permanently in one direction or another by the application of a cur-
rent across the bifurcation favoring the invasion of one branch more than the other. This
is a far-shot experiment, but we feel obliged to do it.

c. Instrumentation

1. We are applying our real-time analyzer of pulse intervals to the study of speech,
and for this purpose are devising some new analogue equipment such as a peak picker-
outer to take envelopes and a wave-shape detector that works in real time.

2. For the medical profession we are devising an oscillator whose frequency is an
exponential function of an applied voltage. This device transforms secular voltage
swings such as EKG into a sliding tone that has the same melodic line independent of
pitch, i. e. , the tune one hears is independent of the DC bias low-applied signal. We
have already tried something like this, and it turns out to be very quickly learned for
making fine diagnostic distinctions on EKG. We envision a stethoscopelike instrument
to replace the ordinary pen recordings of EKG so that screening of patients can be done
without accumulation of paper.

3. We are attempting to build an inexpensive low-voltage oscilloscope using crossed
galvanometers with 5-kc bandwidth, and a fluorescing paper on which the light spot is
cast. One galvanometer gives vertical deflection, the other horizontal deflection.

d. Computer Approach to Diagnosis

Gordon Nelson, a graduate student, during the past two years, has devised a method
for handling the diagnostic groupings of a population of rats by similarities of trajectories
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in time of the course of a combination of 17 independent measures made on the animals.
The program was elegantly simple, and in the end the results were discriminations far
higher and more reliable than could be made by any of the people - pediatricians, biol-
ogists, students - who handled the animals daily. He is now going to use the same
scheme to build an automatic neurological diagnosis machine working in the realm of
those diseases that are accompanied by disorders in motion of the body.

J. Y. Lettvin
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3. Proposed Research

The work for the coming year will continue an analysis of the organization of the
somesthetic system. In the past, we have concentrated on the methods by which cells
in the spinal cord handle information that has come in over the dorsal roots. We have
unravelled the way in which six stages of abstraction and analysis are organized with
respect to each other and to some descending control systems. As a by-product of this
research, information has been obtained about synaptic transmission and about sensory
processes, particularly those leading to pain reactions. This analysis will continue.

In addition to the system in the spinal cord which receives impulses from the periph-
ery, there is a second more recently evolved system that also receives similar infor-
mation. The method of handling information in the recent system, the dorsal
column-medial lemniscus system, contrasts in many important respects from the
method. The relative roles of these two systems in sensory analysis and behavior will
be studied.

P. D. Wall

A. ON A CALCULUS FOR TRIADAS

1. Introduction

De Morgan, obstructed by his terminology, thought the construction of a logic of

relations impossible. A quarter of a century later, C. S. Peirce initiated it. Repeated

attempts to understand him failed because in every paper he changed his terminology.

It was not until we attempted to formulate family relations in Gilstrap's matricial cal-

culus that he and we were able to understand Peirce, who had actually invented such a

calculus and extended it to three-dimensional arrays which we call "mints." It is now

clear what he had done and what stopped him. He also used a symbolism in molecular

diagrams which is transparent. Finally, he interpreted these in terms of sentences con-

taining n blanks to be filled by the names of things in the universe of discourse. Whether

these be real or imaginary is immaterial to this calculus, which therefore can cope with
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intension, not merely extension, and hence is of value in psychophysiological contexts.

Many theorems not involving negation can now be proved, but negation is not simple and

we are struggling to discover its multifarious consequences. At the moment, we want

to present the following useful results.

2. Triadas

A triada is a structure of any kind involving three elements or members of a given

set at a time. For example, "a gives b to c" is a triada, G, involving the objects a,

b, and c. Peirce suggested different ways to develop a calculus for triadas, i. e. , "an

art of drawing inferences." For cases in which triadas are of the nature of the previously

mentioned example, i. e. , of the nature of a sentence or phrase with three blanks that

are to be filled by particular members of a given set, a calculus may be developed that

is similar to the calculus of functional propositions of three arguments - or you have

Boolian tensors of rank 3 - but that is richer in possibilities and consequences. One of

the ways to develop such a calculus is to consider two kinds of variables or symbols, one

for the elements of the set where the triadas apply (here lower-case letters are used),

and the other for the triadas themselves (represented here by upper-case letters). A

calculus involving only upper-case letters will be called a "proper calculus for triadas."

In the process of constructing the calculus, operations on or among triadas are

defined which have a definite meaning. The object of the calculus is then to combine the

operations and to obtain conclusions or theorems about the combined operations of

triadas. We concern ourselves here only with closed operations, i. e. , operations on or

among triadas, which again generate triadas.

3. Definitions and Operations

A triada is a sentence or phrase with three blanks that are to be filled with specific

names of objects, or members of a given set, in order for the sentence to have

meaning. For example, if in the sentence "a gives b to c," we delete the names a, b,

and c, we end with the triada " gives __ to ." We denote by i, j, and k the

first, second, and third blanks, respectively. Furthermore, we represent the triada

by Gijk' i. e. , Gij k means " gives to ." If we want to express the fact that

the particular member a gives the particular member b to the particular one c, we

shall write G abc . Therefore, the subscripts are regarded as variables, as are the blanks,

Somewhere in the calculus we shall be able to delete subscripts without confusion, to

obtain the calculus proper.

Two triadas are said to be equal if they have the same meaning, i. e. , they originate

equivalent sentences, when applied to any three objects in the same order. We represent

the equality of two triadas by separating them with the sign =. In any expression in which

triadas appear, any of them can be replaced by an equivalent one. For example, the
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triadas " gives to " and " is given to by " are not equal because

when applied to objects a, b, and c in this order the resulting sentences do not have

the same meaning; however, the triadas " gives to " and " is identical

to the one who gives to " are equal.

We now distinguish three kinds of closed operations. These are unary operations,

involving one triada; binary, or nonrelative, involving two triadas; and triadic, or

relative, involving three triadas.

a. Unary Operations

Rotation is the clockwise rotation of the order of the blanks in the triada one step.

For example, let Gij k be "_ gives to ." Its rotation, represented by Gijk, is

the triada " is given by the gift ." According to the definition of equality, we

may write

Gijk Gkij

which indicates that if G applies to objects a, b, and c in this order, then G applies to

them in the order c, a, b.

Reflection, where the first and third blanks interchange positions, for example, the

reflection of Gijk is the triada " is given by_ ," that we represent by Gijk, that

is, we may write

ijk = Gkji.

By iteratively applying each unary operation to a triada, it is easy to see that

Gijk = Gijk and Gijk = Gijk.

Since, in these expressions, subscripts are the same on both sides of the equality sign

and they appear in the same order, we may delete them without confusion, to obtain

G = G and G = G.

b. Binary Operations (or Nonrelative Operations)

Nonrelative Product: The nonrelative product of two triadas is a triada obtained after

joining the two original triadas with the logical connective "and," and making the sub-

scripts in both triadas the same. For example, let Gijk mean "_ gives to "

and let Lijk mean " lies in between_ and ." The nonrelative product, repre-

sented by Gijk - Lijk, is the triada "_ gives to and the first lies between the

second and the third." It follows that Gijk • Lijk = Lijk - Gijk.
Nonrelative Sum: The nonrelative sum of two triadas is the triada obtained

after joining the two original triadas with the logical connective "or" (inclusive
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or), and making the subscripts in both triadas the same. For example, the nonrelative

sum of Gij k and Lijk is the triada "_ gives _ to or the first lies in between the

second and the third." We represent it by Gij k + Lij k. It is clear that Gij k + Lij k

Lijk + Gijk.

c. Triadic Operations (or Relative Operations)

Now we introduce the existential quantifier Z (read "there is some ... ") and the uni-

versal quantifier II (read "all," or "everybody" or "everything"). Application of a

quantifier to a triada gives a lower structure (a structure with a lower number of blanks).

For example, Z Gijk reads "there is some who gives to ," that is, a diadic structure.
i

In order to obtain a closed operation, we could define an "open" or "external" product

or sum to obtain a higher structure, and then reduce it to a triada, by applying one or

the two quantifiers one or more times. For example, let "and" be the open operation

between Lijk and Gemn such that Lijk Gemn means " lies in between and

and gives to ," that is, a hexada. If we now "contract" by application

of the Z quantifier, we obtain the triada

SLijk Gem n
iem

This reads "there is some individual who lies in between and , and someone gives

something to ."

More interesting are the combinations of triadas with some elements, or blanks, in

common, that is, having colligative terms. Such is the case of the so-called relative

products and sum for binary, or diadic, relations. For triadas, let us write the product

with one colligative term

Lijk Gkem

that reads " lies in between and who gives to ," that is, a pentadic

structure. If we now contract upon the repeated index, by means of the I quantifier,

we obtain

LkLij k  Gkem'
k

that is, the tetrada " lies in between and someone who gives to ." If the

operation between Lij k and Gke m were a sum, we would obtain first the pentada

ij k k kekem

ijk kern
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that reads " lies in between and or this gives_ to ." By contracting

now on the repeated index by means of the II quantifier, we obtain

k Lijk + Gkem'

that is, "take any individual; then, either lies in between and this individual or

this gives to _ ." This is similar to the relative sum of diadas.

The combination of triadas with colligative terms is amenable (Peirce) to clear

graphical representation. For example, Diagram XXXII-1 represents the two triadas

Gijk and Lkem .

e

I G k and k m

Diagram XXXII-1.

The two operations

gram XXXII-2, in which

the number of blanks left

described above could be graphically represented by Dia-

the colligative term appears as a "common bound," and

is the number of "free bounds."

i k m

Diagram XXXII-2.

For convenience, we shall define closed relative products and sums among triadas

in which the contraction or generalization by the quantifiers is realized upon repeated

indexes, and in which each repeated index repeats only once. This permits the use of

the above-mentioned type of graph as a means for visualizing the relative operations,

and, at the same time, provides us with another tool to prove theorems. It turns out

that many of the combinations of open operations which finally result in triadas are par-

ticular cases of closed products and sums defined with those rules. Briefly, the rules

for forming relative operations of triadas, which permit the use of the above-mentioned

graphs, may be stated as follows.

(i) Each repeated index repeats only once.
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(ii) Quantifiers act on repeated indexes.

It follows from the graphs that at least three triadas are necessary to verify a closed

operation. There are three different ways in which the triadas could be connected (see

Diagram XXXII-3):

J

eo9 qm Sm m

k ik 
, i

n n k

Diagram XXXII-3.

These lead to the relative products and sums that are defined below.

Relative Products

A Product of three triadas A, B, and C is the triada

nem

A. *Bjm Cme ejm mkn

which we represent by A (ABC).

>- Product of the triadas A, B, and C is the triada

Aij e  B

emn

emn Cemn nmk

which we represent by >- (ABC).

- Product of the triadas A, B,

emn

and C is the triada

A B Cjkiem men njk

which we represent by .-<(ABC).

For example, let G be the triada " gives to "; let L be "_ lies in

between and "; and let T be " thinks is ." Then, A(GLT) reads

"someone gives to somebody who lies in between and some other who thinks

is the first," or "there are three individuals such that the first gives to the
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second, this lies in between and the third, and this thinks is the first."

Relative Sums

A Sum of three triadas A, B, and C is the triada

ETA nienem
+Bej m +B

ejm mkn

which we represent by (ABC)

>- Sum of three triadas A, B, and C is the triada

H A.
nem ije

emn +Cemn nmk

which we represent by >7 (ABC).

-< Sum of three triadas A, B, and C is the triada

fA + B +Cf iem men njkemn

which we represent by -< (ABC).

For example, (GLT) reads "take any three individuals; then, either the first gives
to the second, or the second lies in between

is the first."

Resume of Closed Operations for Triadas

Rotation, A
Unary , A

Reflection, A

Nonrelative

Nonrelative

and the third, or the third thinks

Product A • B

Sum A + B

Relative Products

Triadic

Relative Sums

QPR No. 84

A (ABC)

> (ABC)

-< (ABC)

S(ABC)

-(ABC)

-(ABC)
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4. Immediate Theorems

By combining the closed operations among triadas, we can prove the set of equalities,

or theorems, that follow.

First, let Pijk be the

That is,

ijk = Aijk Bijk

Rotation of Pijk gives

Pijk = P kij = A kij

triada that results from the nonrelative product of Aijk and Bijk.

SBkij = A ijk Bijk

that is,

Pijk ijk B ijk

Since subscripts now appear in the same order, we may delete them to obtain

A - B = A B.

Similarly, we can prove that

A + B = A + B.

By the same method, we can prove that

A'B= A- B

A + B =A + B.

Let Qijk be the triada that results from the operation . (ABC), that is,

Qijk =
emn

A . *B
nim mj e

Cek nekn'

Rotation of Qijk gives

Qijk = Qkij

From the definition of A product, we have

Qkij =

emn

B . - C .mie ejn

Since the "and" operation is commutative, we have
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B *Cej n  Ankmmie ejn nkm

mie ejn nkm

The subscripts that are not affected by the quantifier appear in the same order in both

sides of the last equation. Therefore, we may write

Q = A(BCA).

That is,

A(ABC) = A(BCA).

The reflection of Qijk gives

Qijk Qkji

From the definition of A product, we have

Qkji =  Ankm
emn

B . * C .
mje em

That is,

Qkji n
emn

C .
ein Bmje Ankm "

From the definition of reflection,

ijk kji Cni e  Bejm
emn

By deleting subscripts, we obtain

A mk n .
mkn'

Q = A(C BA).

That is,

A(ABC) = A(C BA).

By similar procedures, it is possible to show that

>- (ABC) = -< (C BA)

QPR No. 84
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-<(ABC) = >-(C BA). (8)

Similarly, we can prove that

(ABC) = (BCA) (9)

(ABC) = (CBA) (10)

>- (ABC) = -<(C BA) (11)
+ +

-< (ABC) = >-(C BA). (12)
4 +

5. Constant Triadas

We define five particular triadas that we shall use in the calculus.

a. Universal triada, Iijk , or simply I, is the triada " , __ and are individ-

uals." It has the following properties: Let A be any triada; then A + I = I and A • I = A.

It is clear that I = I and I = I.

b. Null triada, 0, or 0 ijk is the triada "neither nor _nor are individ-

uals." Let A be any triada; then A + 0 = A and A -. = 0. Also, 0 = 0 and 0 = 0.

c. Left and Right Identities, denoted by Ik and Ip, respectively, are the following:

Ik is the triada " is an individual and is identical to "; I is the triada "

is identical to , and is an individual." It follows that

I = I ; I = IX and I = I . (13)

Let A be any triada; then

A(IkAI) = A. (14)

For example, let A be " gives to ". A(IAI ) reads "there are three individ-

uals such that, the first is an individual and is identical to the second, this gives

to the third, the third is identical to , and the first is an individual." That is the

same as " gives to "

d. Central Identity, I c , is, by definition, Ic = Ip. It follows that

I = I and I = Ic. (15)

THEOREM. Let R by any triada. Then

(16)
R = A(RI I).

Proof. According to Eq. 14, R = A(I RIp). By rotating both members, we obtain

R = A(IXRI).
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And, by applying Eq. 5, z(I RI ) = A(RIpI).

THEOREM. Let A, B, and C be any three triadas. Then

.[.(B A Ic)I C ] = - (ABC). (17)

This theorem could be proved by operating on subscripts, in a form similar to the

proofs of Eqs. 5 and 6. It can also be proved by means of a graph. The proof by means

of a graph is illustrated in the following diagrams.

The graph for A[.(BA Ic)I C] is shown in Diagram XXXII-4.

n I

IC IX

Diagram XXXII-4.

The graph for >. (ABC) is shown in Diagram XXXII-5.

k
m e n

Diagram XXXII-5.

Because of the nature of the identities I c and I, both graphs are the same. The intro-

duction of the subscript s in the first does not affect this, since it is equivalent to saying

that "someone is an individual."

THEOREM. Let A, B, and C be any three triadas. Then

A[A I A(I C B)] = >-(ABC).
. p c

Proof. Let R, S, and T be any three triadas.

According to Eq. (17), we have

(18)
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-((RST) = A[(S RI )IT].

By reflecting both sides, and iteratively applying Eqs. 8 and 6, we obtain

-- (RST)= >(TS R) = A[TI A(Ic RS)].

But IX = I and I = I. Therefore

-. (TS R) = A[T I A(IR S)].

Let A = T, B = S, and C = R. Then

T = A, S = B, and R = C.

By substitution, we finally prove the theorem.

From theorems (16), (17), and (18), it follows that rotation (") and the triadic prod-

ucts >- and -< are reducible to A products.

W. S. McCulloch, R. Moreno-Diaz
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