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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

The work of this group may be divided into four major areas.

1. Sonar

The central problem of interest is the development of effective processing techniques
for the output of an array with a large number of sensors. Some specific topics of

interest in this connection are the following.

(i) A state-variable formulation for the waveform estimation problem when the signal
is a sample function from a possibly nonstationary random process that has passed
through a dispersive medium before arriving at the array. Some preliminary results

have been obtained. 1

(ii) The effects of array velocity on the system performance when operating in a

reverberation-limited environment. 2

(iii) Iterative techniques to measure the interfering noise field and modify the pro-
cessor to reduce its effect.

(iv) A hardware-efficient analog transversal equalizer has been designed, and the
basic components built and tested. With some additional work, a completed transversal
filter will enable us to apply actual channel measurements to its time-variable tap gains,
thus making possible laboratory simulations of dispersive channels. Such simulations
are expected to provide a convenient means of evaluating channel parameter estimation
techniques, and to prove useful in the development of better models of the sonar channel.

2. Communications

a. Digital Systems

Decision-feedback systems offer an effective method for improving digital commun-
ications over dispersive channels. A new structure has been derived whose performance
should be appreciably better than previous systems. Theoretical work on this decision-
feedback scheme will continue; it will be viewed as an integral part of an adaptive
receiver whose acquisition and tracking behavior are of interest in equalization of dis-
persive channels. The analog transversal filter that is being constructed as a channel-
measuring and channel-simulation device (see (iv) above) will also prove useful in
evaluating the performance of algorithms that have been developed for adjusting the
parameters of these adaptive receivers.

*This work was supported by the Joint Services Electronics Programs (U. S. Army,
U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E)).
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The optimum receiver for the detection of Gaussian signals in Gaussian noise is well
known. Except for limiting cases it is difficult to evaluate the error behavior. Work con-
tinues on developing performance measures for evaluating the performance, emphasizing
techniques that are computationally tractable and, at the same time, give a good meas-
ure of the system performance. Both tight upper bounds and computational algorithms
have been developed for the probability of error which emphasize the fundamental role
of optimum linear systems in detection problems. Future work includes the application
of these techniques to the analysis and design of radar, sonar, and communication sys-
tems.

The availability of a noiseless feedback channel from receiver-to-transmitter enables
a significant increase in performance. By utilizing the continuous feedback signal at the
modulator, the behavior system performance at the end of the transmission interval is
greatly improved. The feedback link could be used to obtain the same performance over
a shorter transmission interval. The actual structure of the system is very flexible and
simple.

Noise in the feedback channel degrades the achievable system performance with the
simple feedback system. Improvement over the no-feedback system is obtained, but it
is not as dramatic as when noiseless feedback is available.

b. Analog Systems

(i) Investigations of the performance of analog modulation systems operating in addi-

tive noise channels are essentially completed. 3

(ii) When a noiseless feedback link is available from receiver-to-transmitter simple
modulation schemes can be developed which achieve the rate-distortion bound. Realizible
feedback systems perform very close to the rate-distortion bound.

The effects of additive noise in the feedback link depend on the relative noise levels
in the two channels. For relatively small feedback channel noise, the system performance
is close to the rate-distortion bound. For large feedback noise the availability of a feed-
back link does not significantly improve the system performance.

(iii) A new approach has been developed for estimating continuous waveforms in real
time. The approach is formulated with continuous Markov processes and use is made of
state-variable concepts. The approach has been applied successfully to the problem of
estimating continuous stochastic messages transmitted by various linear and nonlinear
modulation techniques over continuous random channels; particular emphasis has been
given to phase and frequency modulation. An advantage of this approach over alternative
schemes is that it leads automatically to physically realizable demodulators that can be

readily implemented. 4

3. Seismic

A substantial portion of our effort in this area is devoted to acquiring an adequate
understanding of geophysics in order to formulate meaningful problems. An area of
concentration is exploration seismology in land and ocean environments. Some specific
problems of interest include array design and effective quantization techniques.

4. Random Process Theory and Application

a. State-Variable and Continuous Markov Process Techniques

(i) In the theory of signal detection and estimation, it is frequently of interest to
determine the solutions to a Fredholm integral equation. A state-variable approach to
the problem of determining the eigenfunctions and eigenvalues associated with the prob-
lem has been formulated.

QPR No. 84 226



(XXVII. DETECTION AND ESTIMATION THEORY)

The random process(es) is represented as the output of a linear dynamic system that
is described by a state equation. The Fredholm integral equation is reduced to a vector
differential equation that is directly related to the state equation of the dynamic system.
From this equation, a determinant is found which must vanish in order that an eigenvalue
exist. Once the eigenvalue is found, the eigenfunction follows from the transition matrix
of the vector differential equation.

The technique is general enough to handle a large class of problems. Constant-
parameter (possibly nonstationary) dynamic systems for both scalar and vector processes
can be handled in a straightforward and analytic manner. Time-varying systems can

also be treated by computational techniques. 5

(ii) The problem of formulating a state-variable model for random channels encoun-
tered in practice is being investigated. A particular class of channels of interest are
those exhibiting frequency-selective fading.

(iii) The system identification problem is being studied. Applications include meas-
urement of noise fields, random process statistics, and linear system functions.

b. Detection Techniques

Various extensions of the conventional detection problem to include nonparametric
techniques, sequential tests, and adaptive systems are being studied.

H. L. Van Trees
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A. EQUALIZATION OF DISPERSIVE CHANNELS USING DECISION FEEDBACK

1. Introduction

Several authors have recently considered decision feedback as a means of improving

digital communication over dispersive channels. Lucky1 applied decision feedback to

the equalization of telephone lines, effectively enabling him to achieve dispersion meas-

urements via the message sequence, rather than having to send additional signals to

"sound" the channel before information transmission. Aein and Hancock 2 have analyzed

the performance of a nonlinear decision-feedback receiver, applicable to channels in

which the dispersion is restricted to less than two baud durations. Drouilhet and
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Neissen 3 have studied and are constructing a decision-feedback equalizer, differing

from that of Lucky in that they use a matched-filter ahead of their equalization filter, and

use decision feedback to "subtract out" the effects of the message in order to improve

their continuous, "sounding-signal" channel measurement.

The equalizer structure considered by Lucky is the conventional tapped delay line

(TDL), which has long been used in correcting telephone lines, while Drouilhet and

Niessen are using the MF-TDL structure, arrived at through different approaches and

criteria by several persons (for example, Tufts, 4 George, 5 and Austin6). Both efforts

are examples of how decision feedback has been used to facilitate channel measurement

and the adjustment of parameters of what we shall refer to henceforth as "conventional"

equalizers. We shall show in this report that decision feedback can be used to addi-

tional advantage in channel equalization, if one adopts the new equalizer structure

developed in the sequel, hereafter referred to as the "decision-feedback" equalizer to

distinguish it from the conventional equalizers mentioned above.

We want to consider the problem of determining the structure of a receiver for

digital communication over a linear dispersive channel whose equivalent impulse

response, h(t), is known. The receiver input is

00

r(t) = kh(t-kTb) + n(t), (1)

k=-oo

where Tb is the baud duration, and k contains the information transmitted on the
th

k baud. Our problem is to decide between the hypothesis H that to = +1 and hypothesis

H 1 that to = -1. We make the following assumptions.

(i) The ek are independent.

(ii) Ho and H1 are equally likely.

(iii) n(t) is white Gaussian noise, Rn(T) = ().

At this point we would like to derive the optimal receiver structure, assuming only

that k = +1 or -1 on each baud. This, however, proves analytically intractable, and

therefore we shall adopt an approach leading to a suboptimal receiver structure, which

nonetheless exhibits definite advantages over existing conventional equalizer structures.

This requires us to make additional assumptions.

(iv) The k are N(O, o) for k > 0.

(v) The k are known for k < 0.

We note that assumption (iv) renders our model inaccurate for binary AM or PSK

systems in which k = +1 or -1 for all k, while assumption (v) is only valid for decision-

feedback equalizers in the absence of decision errors.

Using these assumptions, we shall be led to the desired suboptimal receiver structure
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(Fig. XXVII-4); then we shall optimize its parameters for the binary communication

problem of interest (Eqs. 5 and 6). Finally, we shall work a simple example demon-

strating that our new decision-feedback equalizer is capable of rendering far better per-

formance than the conventional MF-TDL receiver.

2. Structure of the Decision-Feedback Equalizer

We want to determine the optimum receiver structure for the problem and

assumptions that have been introduced, but first we introduce some notation and

definitions that will prove useful in the derivation that is to follow.

Definitions: 1. -_ = {( kk<0}

2. + = k jk>0}

3. ak 1 r(t) h(t-kTb) dt r(t+kTb) h(t) dt
O o

4. bk = h(t) h(t-kTb) dt.
o

Under our assumptions, - is known correctly via decision feedback, and with this

taken into account, the optimum receiver calculates the likelihood ratio

p[r(t) Ho p[ r(t) o, H, +i(P ) di

p [r(t) , H1 p[r(t), ;1, p(6 ) d

We shall first consider the numerator. Under assumption (v) we have

prr(t) (, H ,A =

1 exp r(b oh kh(t-Tb- h(t)- h(t- T b t

k<O f>0 o1

and since

K 1 exp r(t) - kO h(t-kTbb dt
L 0k<0
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is independent of + and o , it will factor out of the integral and cancel with the same
0

term arising in the denominator of A. Thus the terms of importance remaining in the

integrand of the numerator are

exp r (t)
- k< kh(t-kTb) O h(t) +

k<0
S h(t- Tb) dt

j>0

dt+ C > h(t- fTb)
j>0 0 =1o

By applying definitions 3 and 4, this may be written

exp 20oao + 2 5 a
a>0

2
oo

- 2 a kbIk-f Il
k<O f>0

j>0 j>0

Now under assumption (iv) we may write

p() = K 2 exp 2-22 2 = K 2 exp rj

f>0 j>0 £>o

where we have defined Qj= 2 6j. Thus, by factoring out of the integral those terms
S 2o e

that are independent of , the numerator of A becomes proportional to

exp 2oao - 2t 0
k< 0

+2> 0

bkk 2bo exp

j>

-z
k<O

k j(b Ij-
0 f>0

b Ik-flk - d o

0

By completing the square in the exponent of the integrand, it is straightforward to show

that this numerator of A is
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exp 2 oa - 2 bk -  
2bo +

k<0 j>0o

- b Im I -  ob

m< 0 ) o = 10

-1

where the Pj are elements of the matrix P defined byP = (B+Q) (for j, f >0), and

Qj, are as defined above. This same expression evaluated at o = -1 gives the denom-

inator of A. It thus follows that the optimum receiver computes

A = exp 4a - 4 bk k -4 bf a j bIkjk j

k<0 j>0 fj>0 k<O

and decides H if A > 1, and decides H 1 if A < 1. Equivalently, if one defines

gj - Pjfb

fk bk + gblj-k'

j>

then the optimum decision rule may be written

The receiver structure may now be found from this decision rule. From definition 3,

it is seen that the sufficient statistics a. may be generated by using a TDL having taps

spaced at the baud duration Tb, as shown in Fig. XXVII-1. Moreover, since the

weightings on the a. may be placed before the integration and multiplication operations,

and the multipliers and integrators are common to all taps of Fig. XXVII-1, then

clearly we can generate

jaj

j> 0

as shown in Fig. XXVII-2, in which we define go = 1.
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Generation of sufficient statistics.

Generating the first term of the decision rule.
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Fig. XXVII-3.

k k0
k<O

Generating the second term of the decision rule.
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Similarly, the decision-feedback term may be generated as indicated in Fig. XXVII-3.

Noting that the integration need last only over the interval where h(t) is significantly non-

zero in Fig. XXVII-2, then we would sample the output at some time, say T, to obtain

the desired weighted sum of the a.. The multiplication-integration procedure is clearly

equivalent to a matched filter. Since the MF and TDL are both linear, we may put the

MF ahead of the TDL. Also, sampling the TDL output means that one may instead

sample the MF output at the baud rate. Thus we have arrived at the final structure of

the decision-feedback equalizer shown in Fig. XXVII-4.

We note that this decision-feedback equalizer structure is similar to the conventional

MF-TDL equalizer, except that the TDL now only accounts for future bauds, while the

feedback TDL accounts for past bauds upon which decisions have been made. Further

differences will become apparent in the discussion.

3. Minimum-Output -Sample -Variance Decision-Feedback Equalizer

We now want to adopt the equalizer structure derived above (Fig. XXVII-4) and deter-

mine the forward and feedback TDL tap gains that minimize the sum of the signal side-

lobes and noise power at the receiver output in the absence of decision errors. We first

introduce some additional notation and definitions that will prove useful in the following

discussion.

SAMPLE AT
BAUD RATE

INPUT MATCHED "FORWARD" TDL
FILTER FORWARD TDL

aj I a o
gj .... 91 go

SUMMING BUS

+ 
H0

H
1

SUMMING BUS

k$-
-k -1 DECISION

" FEEDBACK" TDL FEEDBACK

Fig. XXVII-4. Structure of the decision-feedback equalizer.
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Definitions : 5. q = signal component of the forward-TDL output at the fth sample

time, when a single g° = +1 baud is transmitted

6. k = f h(t) h(t+kTb) dt = sampled channel autocorrelation function

at T = kT b .

7. Y = matrix with elements Yjk = j-k for j, k > 0

8. X = matrix with elements Xjk =Z J+k+j

9. _ = column vector with elements i for i > 0
10. g = column vector with elements gi for i > 0

11. f = column vector with elements f .

for j, k> 0

for i > 1.

A typical response of the decision-feedback equalizer to a single transmitted baud

of ° = +1 is shown in Fig. XXVII-5a. It is always an asymmetrical waveform, having

(a)

q_1 I q

9-3

(b)

Fig. XXVII-5. Typical responses to a single transmitted = +1 baud
o

in the absence of noise: (a) decision-feedback equalizer;
and (b) conventional MF-TDL equalizer.
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N more samples occurring before the main sample (which is denoted sample number 0)

than after it, where the MF output has 2N + 1 nonzero samples. This is in contrast with

the typical output from the conventional MF-TDL equalizer, which is seen in

Fig. XXVII-5b to always exhibit symmetry about the main sample.

Before we can proceed to determine the optimum choices of g and f under our

minimum-output-sample-variance criterion, we must first understand the effect of the

decision feedback on the output distortion. Consider the signal component out of the

forward TDL at the first sample time:

gj[aj+1 ] = k g[ { k kh(t-kTb{) h(t-(j+1)Tb)}dtj.

j 0 signal j > 0 0  k

The contribution to this component, which is due to the bauds for which decisions have

already been made (that is, on all the k up to and including o ), is then

1 gjb j+1-k, k'
j 0 k < 0

Next, consider the output of the feedback TDL at this same first sample time. With

the use of Eq. 3 for the fk, this becomes

Sfkk+lI = bk+ gjb j-k k+'
k<0 k<O j>0

and if we let k = k + 1,

Sbk* + g.b j+-k*

I I 1 +j+ 1-k* k "
k> O j>0

j20k <0

Here, we have used b * = b* and our earlier definition, g0  1. Thus we see that
k -1 l-k*

in the absence of decision errors the feedback-TDL output is exactly the same as the

contribution to the forward-TDL output at the first sample time, attributable to past bauds,

and hence there is no net contribution to the distortion from those bauds upon which

decisions have already been made. We now see the three important advantages that the

decision-feedback equalizer enjoys over the conventional equalizer.

QPR No. 84 235



(XXVII. DETECTION AND ESTIMATION THEORY)

(i) The conventional equalizer cannot completely eliminate interference due to past

bauds, due to noise-enhancement considerations, as well as the practical constraint of

a finite TDL length. The decision-feedback equalizer, in the absence of decision errors,

completely eliminates the intersymbol interference due to past bauds.

(ii) For the decision-feedback equalizer, the forward-TDL gain-vector g may be

optimized without consideration of the q, for I > 0, since these are eliminated by the

decision-feedback, while the conventional equalizer must be designed to simultaneously

suppress all of the q, for I * 0. This additional freedom enables the decision-feedback

equalizer to achieve much better suppression of the intersymbol interference due to

future bauds.

(iii) Since the intersymbol interference due to past bauds is suppressed through the

noiseless feedback-TDL rather than through using additional taps on the forward-TDL

as in the conventional equalizer, then clearly the output noise power is significantly

reduced.

Each of these advantages contributes to a much better performance for the decision-

feedback equalizer compared with that of its conventional counterpart, as we shall show

in the example. In view of the conclusions, stated above, it is clear that the output

sample variance is given by

q + Output noise variance.

f<0

Under the constraint that the main sample be unity, we may include qo in the summation

to find that

qf= gjXjkgk = g X g,
Q 0 j >0 k>0O

while the output noise variance can be shown 7 to be

o oT

2 gjjkk Yg.

j O k0O

Thus under the constraint that qgo = gT = 1, we want to minimize the quantity

J= gT + o Y g + k(1-gT

over the choice of the forward-TDL gain vector g. The unique solution is given by
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g -j (5)
g= -1

,TX+ oJ
2 - ]-

This result appears formally the same as that for the optimum tap-gain vector in the

conventional MF-TDL equalizer. 7 The difference is that for the conventional equalizer

the summation of definition 8 is taken over all 1, while the vector of definition 9 has ele-

ments for all i. Thus X matrix for the conventional equalizer becomes symmetrical and

Toeplitz, while the c vector becomes symmetrical, and these properties do not hold for

the decision-feedback equalizer.

The proper choice of the f vector now follows directly from Eq. 3, except that we

have dropped the 1/N 0 factor common to all terms of Eq. 4 (that is, the aj contained this

factor, while it is not included in the MF output in the present discussion) and thus

replace the bk there by k:

fk =  gjlj-kI

If we define a matrix Y with elements Y =j-k for j > 0 and k < 0 (note that it is the
jk j-k

range of k which distinguishes this matrix Y from the matrix Y of definition 7), then

the feedback-TDL tap-gain vector may be conveniently written as

f = Yg (6)

Thus, once the sampled channel autocorrelation function and additive noise level have

been specified, one can use Eqs. 5 and 6 to determine the parameters of the minimum-

variance decision-feedback equalizer. This is illustrated by the example that follows.

4. Conventional Equalizer versus Decision-Feedback Equalizer: An Example

We shall now work out an example, applying the derived decision-feedback structure

to the equalization of the channel whose sampled autocorrelation function is shown in

Fig. XXVII-6a. This particular example was chosen, not because it necessarily pro-

vides a realistic model of channels of practical importance, but because it illustrates

the important advantages that the decision-feedback equalizer has over the conventional

MF-TDL equalizer. More complex examples could have been chosen, for they pose no

additional difficulties.

We thus want to find the conventional equalizer and decision-feedback equalizer
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TDL

C1

d d

+ H0(a) ( 0
H
1

FROM MF
TDL

DECISION
STDL FEEDBACK

H0  (a)

SUMMING BUS < 0 1 + cd

(b)H1 c+d d

1+ 2 cd 
Icd (b)

1 + cd
c+d c+d

cd (cd cd

(C) d (c)

Fig. XXVII-6. Fig. XXVII-7.

(a) Sampled-channel autocorrelation func- (a) Decision-feedback equalizer. (b) For-
tion. (b) 3-tap conventional equalizer. ward-TDL output. (c) Effective output
(c) Output for a single ° = +1 transmitted with decision feedback.
baud.

structures as a function of the noise level, No/2, and the sidelobe level, d, of

Fig. XXVII-6a.

Using the 3-tap conventional equalizer shown in Fig. XXVII-6b, one can solve Eq. 5

(with appropriate X and _, and normalizing the result so that go = 1) to find that

32d 3 - dc d N 
(7)

1 - d 2  (1-2d
2)

2

minimizes the output-sample variance, which results in the response to a single trans-

mitted to = +1 baud shown in Fig. XXVII-6c. The noise present at the output has vari-

ance given by

N
2 2 (1+4dc+Zc 2). (8)

Given -2 and an arbitrary set of sidelobes, we can determine the probability of error

very efficiently, using an "error tree" algorithm developed by the author. 7 This
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algorithm was applied to the present problem for d = . 4, d = . 48, and d = . 50, with the

resulting performance curves for the conventional MF-TDL equalizer shown in

Figs. XXVII-8, XXVII-9, and XXVII-10. These curves are discussed further below,

when we compare them with the corresponding curves of the decision-feedback equalizer.

For the channel of Fig. XXVII-6a, the decision-feedback equalizer is as shown in

Fig. XXVII-7a, where we consider it to be the counterpart of Fig. XXVII-6b, since the

delay and tap-gain requirements are the same with both equalizers. We should note at

this point that although the forward TDL of the decision-feedback equalizer appears to be

half of the conventional-equalizer TDL, this is not the case, in general. In general, if

the sampled-channel autocorrelation has M sidelobes, then the feedback TDL requires

M taps, with the remaining in the forward TDL. Thus, for example, if one had a con-

ventional equalizer of 55 taps to equalize a channel having 10 autocorrelation sidelobes,

then the hardware-equivalent decision-feedback equalizer would have 45 forward-TDL

gains and 10 feedback-TDL gains.

Solving Eq. 5 and normalizing so that go = 1, one finds that

d -d
c= N (9)

1 + 2o (1-d 2 )

minimizes the output-sample variance, and results in the response to a single to = +1

transmitted baud shown in Fig. XXVII-7b. The effective output after decision feedback

is shown in Fig. XXVII-7c, where the samples occurring after the main sample have

been eliminated. The noise present at the output has variance

N
- - 2 (1+2dc+c ). (10)

As discussed further below, the output noise is smaller than that appearing at the output

of the conventional equalizer after appropriate normalizations have been made. Note that

the parameter c of Eqs. 9 and 10 is numerically different from that of Eqs. 7 and 8.

The performance of the decision-feedback equalizer was determined through digital

computer simulations, with the results shown in Figs. XXVII-8, XXVII-9 and XXVII-10.

The signal-to-noise ratio in these figures is given by

SNR = 10 log 1 0 ( 2

since we have assumed unit signal energy on each baud. Also, to place the performance

curves of the conventional and decision-feedback equalizers in better perspective,

Figs. XXVII-8, XXVII-9, and XXVII-10 show the performance curves of an unequalized

receiver (matched filter only) and of the ideal receiver (that obtained when transmitting
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Fig. XXVII-8. Performance for the channel indicated
in Fig. XXVII-6a, with d = . 40.
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only a single pulse, where intersymbol interference is no longer a problem).

When the sidelobe energy is approximately one-third that of the main sample (the

d = . 40 case), the decision-feedback equalizer is only approximately 2 db away from the

ideal at high SNR, while it is approximately 4 db better than the conventional equalizer.

100

m 10-2
O

-16 -10 -4 2 8 14 20 26

SNR (db)

Fig. XXVII-10. Performance for the channel indicated in
Fig. XXVII-6a, with d = . 50.

As the sidelobe energy is increased (Figs. XXVII-9 and XXVII-10), the decision-feedback

equalizer becomes 3-5 db off the ideal, and approximately 12 db better than the conven-

tional equalizer at d = . 48. For d =. 50, the conventional equalizer is seen in

Fig. XXVII-10 to approach a limiting performance with increasing SNR, while the

decision-feedback equalizer continues to improve rapidly beyond ~5 db. The behavior of

the conventional equalizer here is due to the fact that d = . 50 renders an input distortion
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32 -

28 -

24

U 20

CONVENTIONAL
EQUALIZER

Z
16 -

U
z

Z 12

O
Z

Fig. XXVII-11.

-16 -10 -4 2 8 14 20 26

SNR (db)

Noise enhancement for the channel indicated in
Fig. XXVII-6a, with d = . 40.

of unity (with a sum of the side-lobe magnitudes used as measure; thus the "eye" was

closed even in the absence of noise, for those familiar with "eye diagrams"), and a

(2M+1)-tap TDL conventional equalizer exhibits a limiting performance of 2- 2 M - 3 with

increasing SNR.

If one normalizes the main output samples to unity, and correspondingly normalizes

the output noise variances, the noise enhancement is considerably more with the conven-

tional equalizer than with the decision-feedback equalizer in this example, as shown in

Fig. XXVII-11 for d = .40. This illustrates advantage (iii), which we listed for the

decision-feedback equalizer.

Note that at low SNR the performance of the two equalizers coincides in

Figs. XXVII-8, XXVII-9, and XXVII-10. This is not perhaps what one might have

expected from heuristic arguments, which point out that when an error is made by the

decision-feedback equalizer the feedback-TDL contribution enhances rather than

eliminates the q 1 sample (see Fig. XXVII-7b and 7-c), thereby resulting in this example

in an additional equivalent interfering sample whose magnitude exceeds that of the main

sample by cd . This gives a large probability of error on the next decision (=1/3 for

intermediate SNR, calculated under the assumption of uncorrelated distortion), and thus

it appears quite possible that "one bad decision will lead to another," and cause the per-

formance at low SNR to become eventually worse than that of the conventional equalizer.
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Such behavior was not observed in this example, however, and the decision-feedback

equalizer appears at least as good as the conventional equalizer at all SNR.

For more complex channels that we have studied, in which the energy in the side

lobes is much greater than in the simple case considered here, the anticipated thresh-

olding effect has been noted, but only at high conventional equalizer error rates, and

the decision-feedback equalizer still exhibits far better performance at all SNR of prac-

tical importance.

M. E. Austin
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B. STATE-VARIABLE ESTIMATION IN THE PRESENCE OF PURE DELAY

1. Introduction

We shall present a state-variable approach for the processing of sonar or seismic

array data. In the processing of data from these arrays, one often encounters delayed

versions of the same signal, or signals that are correlated by means of a delay, in the

same waveform.

Because of the inherent nonrationality of the delay factors, the classical Weiner

approach, even for stationary processes, requires finding the impulse response of a

filter with an infinite number of poles. When one wishes to use existing state-variable

techniques, one requires an infinite dimensional state representation in order to develop

the estimation equations. Here, we shall develop a finite set of estimation equations

that specify the estimate maximizing the a posteriori probability density of the

process.
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2. Signal Model

Let us now discuss the equations which describe the system of interest (see

AMPLITUDE
MODULATION
OF THE N+ 1

DELAY 1 INPUTS

al I

DELAY x(t-a2

2

x(- N) u(t) w(t)

Co (t) x(t) +
N

x= Fx + G ( x(t-aN-1 I C (t) x (t-ai) r()
MESSAGE (t) DELAY +
SOURCEN-

OBSERVATION
INTERVAL

-a N < t <n Av x ( t - N O < t < Tf

Fig. XXVII-12. System model.

Fig. XXVII-12).

by a linear state

dx(t)
dt = F(t)

We assume that the dynamics of the message process are determined

equation

x(t) + G(t) v(t)

over the time interval -aN < t < Tf, where F(t), G(t) are matrices determining the

dynamics of the state equation, and v(t) is a white Gaussian source noise with

E[v(t)v T (T)] = Q6(t-T). (2)

In order to completely specify this random process, we need to make some assump-

tions about the conditions of the initial state. We assume that the initial state is a

Gaussian random vector with

E[x(-aN)] = (-aN)

EL (x(-aN)-(-aN)) ((-aN)-(-aN))T] = P(-a N)
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We shall now discuss the observation process. We assume that we observe N dif-

ferent delayed versions of an amplitude modulation of the state vector in the presence

of a white Gaussian observation noise. Our observation is, therefore,

N

r(t) = C (t) x(t) + C (t) x(t-a i) + w(t), (5)
i=l

where

0 <t <Tf

0 < a < a 2 <... < aN- 1 < aN  (6)

E[w(t)_wT 
(T)] = R6(t-T). (7)

Notice that our observation equation is defined over a different time interval from the

state equation. For convenience, let us define

Yi(t) = x(t- a). (8)

Aside from the delay terms that enter, our assumptions do not differ from the usual

ones made in state-variable estimation procedures.

3. Derivation of the MAP Estimation Equations

It can be shown that the problem of maximizing the a posteriori density is equivalent

to minimizing the following quadratic functional:

J(v(t),x(-aN)) = x(- aN)-(-aN) 1P-aN)

+ f Lx~t -1 dt (9)NT+ v(t) -1 dt (9)aN  Q

Subject to the constraint of the state equation (1) and the delay operations specified by

Eq. 6 (xA = xTAx).

Let us first consider the state-equation constraint. We can introduce this by using

a Lagrangian multiplier. This is done by adding to the quadratic functional the term
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T fT dx(t)
L = p (t) dt - F(t) x(t) -G(t) v(t)) dt. (10)

aN

It will be useful to integrate the first term of the integrand by parts. Doing this, we

have

Lo = p (Tf) x(Tf) - pT(-aN) x(-a N )

Tf d (t) x(t) + pT(t) F(t) x(t) + pT (t) G(t) v(t) dt. (11)
dt

N

When we incorporate the constraints imposed by the delays, we encounter much

more difficulty. In order to impose the constraints, we must find a differential equa-

tion that the delay operation satisfies. As we would expect from the infinite-state

requirement imposed by the delay operation, we cannot find a finite-dimensional ordi-

nary differential equation. It is easy to show, however that the delay operation satis-

fies the partial differential equation

_ i(t, T) a_ i(t, T)
+ =0, (12)at aT

where

_i(t, 0) = x(t).

We show this by noting that the general solution to Eq. 12 is

i (t, 7) = f (t-T). (13)

Imposing the boundary condition at T = 0 yields

.i(t, 0) =f.(t) = x(t). (14)
-1 -1

We see that we now have

4.(t, a.) = f.(t-a.) = x(t-a ) = y.(t). (15)

As a result, we are able to impose the constraint of each delay term by using a

Lagrangian multiplier that is a function of two variables, that is, we want to add to the

quadratic functional terms of the form

1 0 Tf F t
ai 

T (t 'T) (t'T)
L. = , + dtdT, (16)

in which we have
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(17)

We again want to perform some integrations by parts.

L. = f ( (t, a.).(t, a.) (t, 0) (t, 0) dt
- -i i 1

a i T T
+ _ (Tf, T) i(Tf, T)-.L (0, T) .(0 , T) dT

- 0Tf a i a (t,)
at

This yields

T+ .((t, T)

IT ---.) (t,T) dtdr.

When we add the Lagrangian multiplier constraints Lo, L1, ... L N imposed by the state

equation and the delay terms to the quadratic functional described by Eq. 9, we have

J(v(t),x(-aN)) = x(-aN)-P(-aN) 
-(-aN

T
r(t) - C (t) x(t)

T

aN

i=1

C.(t) y.(t)
1 -1

v(t) 1-1 dt +p Tf)(Tf) x(T) - p T(T ) x(To)

T fdp (tM T T

-dt x(t) + p (t) F(t) x(t) + p (t)
aN

G(t) v(t)I

+ i=l i T( t , ai )Yi(t)-T (t , 0)x(t)

(T , T)x(T -T)--4 (0, 7)x(-)

/ T

Tf aI (t T0 0 t

T
+ .T i(t , 7) dtd .

IT7

We now are in a position to minimize the quadratic functional by applying variational

techniques. We proceed by perturbing v(t) and x(-aN) from their optimal estimates,

that is,
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(19)
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x(-aN) = x(-aN) + E6 x(-aN)

v(t) = v(t) + E6(t).

The response of the state equation to the perturbed input is

x(t) = ^(t) + Ex(t),

where 6x(t) satisfies the differential equation

d62(t)

dt= F(t) 8x(t) + G(t) 6v(t).dt

(20)

(21)

(22)

(23)

The variation by the quadratic functional which results from these perturbations is given

by

J(v(t),x(-aN)) = J(v(t),x(-aN)) +
P- 1 (-a) 5x(-aN)

P (-aN) &x(-aNTE 

x( 
N)x(aN)T

[x(-aN)-x(-aN)]

r(t) - C (t) x(t)O

N

C- C( y.(t)
i= t

R- 1 Co(t) 8x(t)

N

+ C (t) 8y (t)

j= 1

Tf ^ T
+ v(t)

aN

T f

N
N

i=l

dp (t)

dt

Q-16(t) dt + p (T ) 6 x(Tf)
T (

- p (T 0 ) 6 x(-aN)

T x5x(t) + p (t) F(t) 6x(t) + p (t) G(t) 6v(t)f dt

STf
0

i=l [ dT]

T a.

00

T
a1 j (t, T)

at +

T A

T 6c.(t, 7)
87 1

dtdT} + 0(E ). (24)
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We now want to combine the various variations into common factors. We have

J(y(t),x(-aN)) = J(v(t),x(-aN)) +
x- N ) IT

E 1x( aN)-5(-aN)] P 1(-aN)-pT(-aN)) bx(-aN)

N

- C (t) x(t) - Cit)
j= 1

N

p T(t) F(t) -

i=1

t,S (t,0)

Tf (
0 - r(t) - Co(t) x(t)-

0

7T
yi(t)

6X(t)

dt
- -p~t p t) F(t)

dp T (t)

dt

N

j= 1

N

(t) F(t)- k
j=i+l

N

j=1
KTf

T

+ . (t t, 7)
+ OT /6c.(t T) dtdT . (25)

We shall now make a series of arguments to cause the E variation of the functional

to vanish. We shall require that the Lagrangian multiplier functions satisfy some equa-

tions so that the coefficients of some of the variations vanish.

First we require the delay constraints to have the functional form

_i(t, T) = . (t-T) (26)

1
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- rt) R- C (t)0
+Yff
+ ,~T

0

dp T(t)
dt

Tf

aN

i+
i= 1

+ (t, a (t) dt
1 i -

C (t) j(t -1 (t)R C.(t)1

0
+

N1

N- 1

i=l

N

j=1

6x(t) dt

T (0, -t)
-J3

a.

0

6x(t) d

Op.. (t, 7)
( at )

YO\ at

T -1 T ^
((V(t) Q p (t)G(t))5v(t)) dt

Lj(Tf, T) 6x(Tf-_)
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so that the last term in the equation vanishes identically ([ii is the adjoint function for the

delay equation). Furthermore, we require that

(t- ) = 0 (27)

a. < T < T (28)
1 f

and, for 0 <t <Tf,

(t-a) = CT(t) R r(t) - C (t) _(t)-
1 j=

Cj(t) (t . (29)

This completes our restrictions of the Lagrangian multipliers for the delay con-

straints. Notice that the restrictions may be made independently of all the other con-

straints, including the state-equation constraint.

Now we shall impose some restrictions on the Lagrangian multiplier for the state-

equation constraint. First we impose the restriction, 0 < t < Tf,

dt F (t) - Co(t ) (t) C (t) R(t)yj(t)

j=1

N

j=1 
3

(30)

Finally, we impose restrictions for the time before the observation interval.

region, for -al < t < 0, we require

N
dp(t) T

- - F  (t ) p(t) - 4o(t),
dt 1 0

j=1

and, for -ai+ < t < a., i = 12,... N- 1,

N
dp(t) N
dt -F T(t) p(t) - L (t)
dt 1 .

j=i+ 1

As a

have

Within this

(31)

(32)

result, we have defined p(t) over the entire interval of the process. Therefore we

J(v(t), x(-aN)) = J(V(t),~(-aN))

+ c (^(-aN))-_(-aN) TP1(-aN) T-aN) 5x(-aN)

+ f ((t) Q 1-p (t(t)G(t)) 6v(t) + 0(e2) . (33)
aN
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Because of the optimality of v(t) and x(-aN), we have

p(-aN) = P 1 (-aN)(((-aN))-_(-aN)) (34)

-1^ T
Q v(t) = G (t) p(t). (35)

Equation 34 imposes an initial boundary condition, and Eq. 35 relates the terms v(t) and

p(t). By using Eq. 35, our state equation becomes

dx(t)
dt = F(t) x(t) + G(t) QG(t) p(t). (36)

We shall now summarize our equations determining the MAP interval estimate of the

process x(t). For convenience, we shall define

a =0

y (t) = x(t).

For -aN <t <Tf, we have

d^(t)

dt
T

F(t) x(t) + G(t) QG (t) p(t).

By using the definitions stated above, we may write Eqs. 33 and 35 in the same manner.

for -ai+ < t <-a. these equations become

Ndp(t) T
dt -F (t) p(t)- o (t ),
dt 0

j=i+l

where i may assume the values

i = 0, 1, ... N-1.

For 0 < t < Tf, we have

dp(t) o1dt = -F(t) p(t) - Co(t) R- 1 (r(t) -

N

j=0

N

j= 1

The functions i. are defined to be, for 0 < T < ai,

Soi(T -T) = 0,
-o f

and for 0 < t < Tf,

(t-a) = CT(t) R -

~o- j 1 1 r(t) -

j=0
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The result of our derivation is a set of differential-difference equations with a two-

point boundary-value condition. In the absence of any delay terms, the equations are

identical to those for the interval estimator with no-memory modulation, that is, ampli-

tude modulation. At the present time, the equation may be solved only for the case of an

equally spaced delay, ai = iAa. We are now working on more general methods of solu-

tion, the performance of the estimator in a delay environment, and realizable filters

for such an environment.

A. B. Baggeroer
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