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RESEARCH OBJECTIVES

The general purpose of our research program is to investigate the interaction of
electrons, ions, atoms, molecules, and electromagnetic radiation with solid surfaces.
At present, we are concentrating on the following problems.

1. Adsorption of Gases and Vapors on Solid Surfaces

The work function of a thermionic cathode may be altered by allowing certain gases
or vapors to adsorb upon the surface. Our theoretical and experimental studies are con-
cerned primarily with the adsorption of oxygen and/or cesium on single-crystal refrac-
tory metal surfaces. We are attempting to relate the change in work function and
desorption energy to the coverage, crystallographic structure, and bare work function
of the substrate.

2. Catalysis and Oxidation

Using mass spectrometric techniques, we are investigating the catalytic formation
of ammonia on iron and the oxidation of tungsten. Our principal objective is to deter-
mine the dependence of these reactions on temperature, pressure, and material prop-
erties.

3. Scattering of Gas Atoms and Molecules from Solid Surfaces

Recently, we have developed a simple classical theory for the collisions of atoms
and molecules with solid surfaces. The results predict the scattering pattern and energy
and momentum transfer. A quantum-mechanical model has also been investigated.
In addition to continuing these theoretical approaches, we now are developing an exper-
imental apparatus for measuring the scattering patterns.

4. Photoinduced Surface Processes

Measurements of the photoelectric emission from solids provides us with an addi-
tional means of studying surfaces. We plan to determine the photoelectric properties of
single-crystal surfaces that are partially covered with adsorbed atoms. Along this
same line, we shall look for the existence of photoinduced ion emission from cesiated
surfaces.
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(XV. PHYSICAL ELECTRONICS AND SURFACE PHYSICS)

A. CONTACT POTENTIAL MEASUREMENTS OF THE ADSORPTION

OF 02 ON (110) Ta

1. Introduction

During the past two years, we have developed an experimental apparatus for meas-

uring the change in contact potential resulting from the adsorption of various chemical

elements on metallic surfaces.1 We shall report results recently obtained for the

adsorption of 02 on (110) Ta. These results are particularly interesting because they

are contrary to the majority of previous experimental results and existing theoretical

predictions.

2. Apparatus

Since the apparatus has been described in detail elsewhere, only the major features

will be mentioned here. To avoid contamination by background gases the apparatus was

mounted within a large Varian ultrahigh vacuum system. With a combination of ion

pumping, liquid-nitrogen cryopumping, and titanium sublimation pumping, the back-

ground pressure during these runs could be maintained in the mid 1011 Torr range

(~ 4-5 X 10-11 Torr).

The specimen studied was a tantalum ribbon, 0. 0025 X 0. 127 X 3. 0 cm, mounted

upon a rotatable shaft. The ribbon was cut from a larger specimen which, when

received, was reported to have a surface oriented in the (110) direction. Unfortunately,

the exact orientation of the specimen used in the present study has not yet been deter-

mined by x-ray diffraction. The surface was cleaned by direct resistive heating to

-2500 0 K, with occasional flashes to ~2750' K.

Changes of substrate work function, because of oxygen adsorption, have been

measured by the contact-potential method. For this measurement the target was

positioned before a simple electron gun. To insure the constant-emitter condi-

tions required by the contact-potential method, the gun filament was continually

run at ~2100' K. As well as measuring changes in the surface work function, it

was possible to measure the thermionic work function of the bare surface at a

thermionic measurement station.

A diffusion leak was used to flood the system to the desired oxygen pressure. The

maximum static pressure that could be obtained in the presence of all available pumping

was -10-7 Torr.

A series of auxiliary runs utilized a General Electric Company monopole partial

pressure analyzer. This made it possible to determine the composition of the back-

ground gas and, more important, to check the purity of the oxygen admitted by the dif-

fusion leak.
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3. Experimental Method and Procedure

The theory, advantages, and limitations of the contact-potential method have been

adequately discussed elsewhere -3 and will only be briefly mentioned here. Basically

we have two electrodes, the electron gun filament and the (110) tantalum target, which

form a diode. If we maintain constant conditions at the emitter (electron gun filament),

then any changes in the current-voltage characteristic of the diode are due to changes

in the properties of the collector (110 Tantalum). In particular, the simple theory of a

thermionic diode shows that a voltage shift of the Boltzmann portion of the current-

voltage plot will be equal to the change of the collector work function if the reflection

coefficient remains constant. The reference point, from which changes are measured,

is the current-voltage plot taken when both electrodes are clean.

In this study the experimental method was implemented by the following procedure.

After a clean current-voltage plot had been obtained, the diffusion leak was turned on

and the system allowed to reach a steady 02 pressure. Once this steady pressure had

been reached, the target was flash-cleaned and current-voltage plots were made as a

function of time.

Since these plots could only be taken at 300 0 K, it was desirable to consider also the

effect of target temperature upon the adsorption process. Unfortunately, it was not pos-

sible to make the work function-time measurements at elevated temperatures. Instead,

we could only study the effect of temperature during the time of adsorption. A few runs

were made in which the surface was exposed to the same total oxygen flux, but with the

surface maintained at different temperatures (always higher than 3000K) during the time

of adsorption. After the adsorption interval, the system was pumped back to the

10 - 11 Torr range and the surface cooled to 300 0 K. The current-voltage plots were then

taken at room temperature.

In addition to oxygen adsorption runs, a few oxygen desorption runs were made. In

these a certain oxygen coverage was established, and then the system was pumped back

to the 10 - 11 Torr range. The surface was then flashed to some temperature for 15 sec

and, upon cooling to 300 0 K, a current-voltage plot was taken. The 15-sec flashes were

continued by stepping the temperature to a higher value each time until the clean surface

plot was finally obtained. These runs enabled us to check the reversibility of the data

and to estimate the desorption energy of oxygen on (110) Ta.

4. Experimental Results

a. Thermionic Work Function

Measurements of thermionic emission from the target were used to calculate the

effective work function. 3 A value of 4 = 4. 73 ± 0. 01 eV was obtained for 5 measure-

ments in the temperature range ~1570'K to -2360 0 K.
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b. Mass Spectrometer Measurements

When the total pressure was in the mid 10- 11 Torr range, mass spectrometer anal-

ysis of the background gas showed the major components to be H20 (~18%), He (~16%),

CO (~13%), O (~13%), and CO 2 (~10%). Present in smaller amounts were OH, H, Ne,

O2, and H2 . We believe that O, H, and OH are produced in the spectrometer as a

result of dissociation and/or desorption induced by electron bombardment.

The oxygen diffusion leak was analyzed at two different steady-state oxygen pres-

sures. At an oxygen pressure of ~10 - 9 Torr, none of the background contaminant

peaks, such as CO and CO , showed any perceptible increase over the initial background

values. The temperature of the diffusion leak was increased until a steady-state pres-

sure of ~10 - 7 Torr was established. At this pressure the only significant components

were O2, 0, and CO. The combination of O and 02 formed approximately 97% of the

total pressure, and CO formed approximately 3%. These results indicate, particularly

at lower oxygen pressures, that contamination from such components as CO should not

be a major problem.

c. Oxygen Adsorption on (110) Ta

In Fig. XV-1,
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Fig. XV-1. Experimental data for oxygen adsorption
exposure region.

on (110) Ta at 300*K; low

defined simply as the product of oxygen pressure times the time. In terms of the actual

integrated particle flux, an exposure of 1 X 10- 9 Torr-minutes, for example, is equal

to 4. 27 X 1013 oxygen atoms/cm2
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Fig. XV-2. Experimental data for oxygen adsorption on (110) Ta at 300 0 K
compared with data for oxygen on (110) tungsten.

For clarity, only the extreme values of the data and the average curve are shown in

Fig. XV-1. The actual plot contains approximately 200 points from 8 separate runs.

Also, Fig. XV-2 does not represent the raw data, for there has been some attempt to

correlate the raw data and reduce initial scatter that occurred primarily because of

inaccuracies of pressure measurement. The correlation has been achieved by multi-

plying the curve for each run by a factor that would make the curve pass through z = 0

at an exposure of -~27 X 10 - 9 Torr-minutes. In the raw data the exposure at which

A4 went to zero ranged from 23 to 30 X 10 - 9 Torr-minutes, and the average value

was -27 X 10 - 9 Torr-minutes. As we shall see, an interesting comparison can

be made between this arbitrary correlation point and other recently published

data.

The most interesting feature of the data is that below exposures of 27 X 10- Torr-

minutes, oxygen adsorption produces a decrease in the work function of the surface. The

curve shows a minimum at an exposure of ~-Z x 10 - 9 Torr-minutes where the work func-

tion has decreased by ~0. 45 eV. Though most of the runs in Fig. XV-2 were made at

oxygen pressures in the low 10 - 9 Torr range, two runs were made in the middle to high

10 - 8 Torr range, and the points fell within the extremes shown in Fig. XV-Z. To

insure that the decrease in work function was not due to oxygen adsorption upon the

electron-gun filament, this filament was usually flashed to ~2500' K during the course

of a run. No effect was ever seen, thereby indicating that the filament remained uncon-

taminated. Beyond an exposure of -40 X 10 - 9 Torr-minutes there are data from only

3 runs. These data are fairly consistent, however, and their average is included in

Fig. XV-2, which covers the entire exposure range. Beyond ~27 X 10 - 9 Torr-minutes

the work function increases, at first rapidly and then more slowly, tending toward a

plateau where the work function has increased by ~0. 8 eV.
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d. Oxygen Desorption from (110) Ta

The results of one desorption run are shown in Fig. XV-3 where the change in work

function (always related to the clean surface) is plotted as a function of the temperature

of the consecutive 15-sec flashes. Although the quantitative reproducibility of the

desorption runs was rather poor in the plateau region of the curve, the qualitative
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Fig. XV-3. Experimental data for oxygen desorption from (110) Ta.

features were consistently reproduced. In particular, the flashing procedure always

reproduced the negative Ap region of the curve. Also, the negative A& always remained

up to -2600 0 K, where the clean surface was restored. This, then, may indicate a

reversibility for the adsorption process. Also, the high-temperature portion has been

used to estimate the desorption energy for oxygen on (110) Ta. An assumption of first-

order kinetics (i. e., that the oxygen desorbs as atoms 4 ) gives a desorption energy of

-6 eV or -138 kcal/mole.

e. Elevated-Temperature Runs

Wheras the desorption data were obtained in an attempt to determine the effect of

temperature on an existing adsorbed film, the data shown in Fig. XV-4 resulted from

attempts to investigate the effect of elevated temperature on the adsorption process. Runs

were made at ~1000 ° , 11750, and 1430'K. At each temperature, the surface was subjected

to an oxygen exposure of ~11 X 10 - 9 Torr-minutes. After exposure, and upon cooling to

300 0 K, the resulting work-function change was measured. In Fig. XV-4 the results show

the work-function change as a function of surface temperature during adsorption.
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Fig. XV-4. Contact potential change at 300 0 K as a function of surface
temperature during adsorption.

Although the data are insufficient to allow us to draw definite conclusions, two

points may be noted. First, for an exposure of 11 X 10-9 Torr-minutes, the work func-

tion is observed to decrease for all temperatures in the range 300 0 -1430'K. Second,

the absolute value of the change decreases with increasing temperature. With regard

to the first point, it was expected initially that the occurrence of the work-function

reduction was due to a metastable state which might disappear at higher temperatures.

The results shown in Figs. XV-3 and XV-4 indicate that this expectation may be incor-

rect. Concerning the second point, there are several possible explanations, and only

the simplest will be mentioned here. As may be seen in Fig. XV-1, an exposure of

11 X 10 Torr-minutes is near the minimum of the curve at 300 0 K. If fewer particles

remain on the surface at higher temperatures, we would expect from Fig. XV-1 that

the absolute value of A4 would decrease. There are two major possibilities for less
oxygen remaining at higher temperatures. First, the sticking probability 5 for oxygen

upon tantalum may decrease with temperature; and second, significant desorption

and/or migration of oxygen may occur at higher temperatures. Judging from the desorp-

tion data of Fig. XV-3, and owing to the lack of any theoretical or experimental data to

support the plausibility of the first hypothesis, the desorption and/or migration hypoth-

esis seems to be more reasonable.

f. Comparison with Existing Data

In Fig. XV-2, the data are compared with two recent sets of data for oxygen adsorp-

tion upon (110) tungsten. The data of Hopkins and Pender, 6 obtained at 300'K by the

Kelvin technique, show a work-function change that is always positive. On the other
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hand, the data of Zingerman and co-workers, 7 obtained at 1080 0 K by the same technique

used in our work, are qualitatively similar to our data. Initially, there is a slight

decrease in the work function, followed later by an increase. Since Zingerman et al.

did not know the intensity of their oxygen beam, it was not possible to assign a quantita-

tive exposure scale. For qualitative comparison only, a scale was assigned by making

their data pass through zero at an exposure of 27 X 10 9 Torr-minutes.

Germer and May 8 have recently published data from a low-energy electron-

diffraction (LEED) study of oxygen adsorption upon (110) tungsten. Several interesting

inferences may be drawn from their data:

1. It appeared that, even at 300 0 K, oxygen adsorption occurred by reconstruction

such that the oxygen occupied substitutional sites in the surface lattice.

2. Average oxygen sticking probabilities at 300 0 K were inferred for the ranges

0-1/2 monolayer, 1/2-3/4 monolayer, and 3/4-1 monolayer of oxygen. (A monolayer

is defined as 1.425 X 1015 atoms/cm2.) For 0-1/2 monolayer the average value was

-0.6; for 1/2-3/4 monolayer it fell sharply to -0. 003; and for 3/4-1 monolayer it fell

to less than 0. 003.

3. The half-monolayer structure occurred at an oxygen exposure of ~27 X 10 - 9 Torr-

minutes. As shown in Figs. XV-1 and XV-2, our present data for oxygen on (110) Ta

indicate that Ap passes through zero at this value of exposure. At present, it

is not clear whether this point is mere coincidence or a matter of physical

significance.

g. Comparison of Results with Theoretical Predictions

The data are unusual, in that oxygen adsorption on the (110) Ta initially produces a

decrease in. the work function. With the use of the concept of electronegativity,9 oxygen

adsorption should lead to a dipole moment that is directly proportional to XTa - X o , the

difference in the electronegativities of tantalum and oxygen. Since X is ~3 eV and XTa

is -1. 2-1.6 eV,10 the formation of a negative dipole leading to an increase in the work

function would be expected. The data obviously violate this simple electronegativity

model. A similar violation has also been observed in our recent study of nitrogen

adsorption upon (110) Ta. Also, studies of oxygen adsorption upon (110), (100), and

(111) nicke 11 and nitrogen adsorption upon (100) and (110) tungstenl0 violate this principle.

A possible reason for this violation can be seen most clearly in the work of

Farnsworth and Parkl 2 for oxygen adsorption upon(110), (100), and(111)nickel. On the

basis of LEED, contact potential, and photoelectric measurements, they concluded that,

with sufficient temperature activation, the work function decreased for lower coverage

structures. Up to the formation of a certain high-coverage structure, the photoelectric

data closely followed the Fowler plot for metals, thereby indicating that the oxygen-

nickel binding was not extremely ionic. Also, once the high-coverage structure was
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reached, and data failed to fit the Fowler plot, thereby indicating a change to

a more ionic type of binding.

D. L. Fehrs, R. E. Stickney
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B. DESORPTION AND MIGRATION KINETICS OF MOLECULES ADSORBED ON

NONUNIFORM SURFACES: STEADY-STATE ANALYSIS

1. Introduction

The rate of desorption of atoms and molecules from solid surfaces is a significant

factor in a variety of engineering problems. For example, this rate often limits the

performance of composite thermionic cathodes, the efficiency of catalytic processes,

and the speed of surface oxidation. The practical importance of these applications has

served to stimulate many experimental and theoretical investigations of desorption. 1-3

The majority of the existing analytical treatments of desorption are based on the

assumption that the surface properties are uniform over the entire specimen. For poly-

crystalline specimens, however, it is known that this assumption leads to unsatisfactory
4-6results in detailed analyses of similar processes, such as thermionic emission and
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6 ' 7surface ionization. ' 7 The results of our recent experimental investigation of oxygen

desorption from single-crystal tungsten 8 have led us to attempt to develop a more exact

desorption theory for patchy (for example, polycrystalline or nonuniform) surfaces. The

first case that we have considered is that of steady-state desorption, and the analysis

of a simple model is presented here. After refining this treatment, we plan to consider

next the more general problem of flash (that is, transient) desorption.1

2. Theoretical Model

To simplify this preliminary analysis we shall adopt a model that is based on a

great number of assumptions, many of which may easily be refined or omitted in the

final development. Here we shall concentrate on the inclusion of surface patches in the

model.

Consider a two-patch model of a cylindrical wire having a circumference ZW, where

W is the width of each patch. The distance from the center of patch 1 around the wire

is denoted by x. For a given atomic adsorbate, patches 1 and 2 have desorption ener-

gies V1 and V 2 , migration energies E l and E 2, adatom frequencies of vibration v1 and

v 2 , adsorbed atom densities n1 and n2 , and circumferential spacing between adsorption

sites a l and a 2 . (See Fig. XV-5.) The boundary between the two patches is assumed

E 21 V 
E22

VI E
E 12 a2

Fig. XV-5. Potential energy diagram for the two-patch model.

to have an energy barrier, with E 12 and E 2 1 being the barrier potentials for an atom

migrating from patch 1 to patch 2 and vice versa. The distance between adsorption

sites for an atom crossing the boundary is a 12 . The probability that an atom with suffi-

cient energy to migrate will actually do so is represented by A, where A is assumed

to be only a function of surface geometry.

The linear particle flux across the boundary from patch 1 to 2, il 2 , is given by

ilZ = A 1Zn( alv I e /kT (1)

-E 1Z/kT
where e is the probability of an adatom having energy E 12Z or greater, and
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n 1  ) al is the linear atom density on patch 1 at the boundary. Likewise, the flux

form patch 2 to 1 is

W -E1/kT
i21 = A21n2w2 a22 e (2)

The net linear flux then is il2 - i21'
If now the boundary is considered to lie in patch 1 and El is the migration potential,

the expression for the net flux across patch 1 at x is

-E 1 /kT
1 = Alnl(x) alv 1 e

i1 = - Aa v1

- A1 n l (x+a 1 ) a 1v e

-E 1 /kT

The desorbed flux ji is given by

-V 1/kT

jl = nl(x) V1l e , (5)

where the probability of an adatom having
-V 1 /kT

given by e

sufficient energy to escape the surface is

, the number of particles per unit area is nl(x), and tne number of

attempts made per second is v . From this equation we get

nl(x) V = J eV/kT

which may be substituted in (i 1 2 - i2 1 ) and il:

i12 - i21

V1-E12

= e (aA 1 2 j 1 -a 2A 21 j 2 )

V1-E 1
2  kT djl

i 1 = -A l a l e dx "

Here the relation V I - E12 = V2 - E21 has been used (see Fig. XV-5). The steady-state

continuity equation for a control area of width al at point x on patch 1 is

il(x) + aljo = i 1 (x+al) + al

where j is the incident flux. This becomes

i l (x+a) - i l (x) di 1
Jo + al = i +dx

(9)

(10)
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Defining X1 and X2 as

V 1-EI

2 2 kT
1 = alA 1 e

= a2A2
2 2

V2-E2
kTe

and substituting the derivative of Eq. 4 in Eq.

(12)

10 yields

d2j

S 2 d 
j 2dx

Jo = 2 - X2 dx2

Their solutions are

j = jo ( +

j2 = jo( 1

cosh X l '

+ az cosh '1
2

W W
2 2

W 3W
2 z2

Since patch 1 is symmetric about x = 0, and patch 2 is symmetric about x = W, the

fluxes are

(15)

(16)

j, = o + a1

= +j 1 a 2

cosh '

cosh x W)

w w
2 2

2 2

The constants a l and a 2 are determined by the boundary conditions

121=12(). (19)
21 = 2 /

The resulting expressions for the fluxes are

(AzlaZ - A 1 2 al) cosh x( a I X I

(V 1-EIz)
Aa - kT
12 1 kT+ +e

X tanh-
1 2XI
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(XV. PHYSICAL ELECTRONICS AND SURFACE PHYSICS)

x- - W(A a 2 - A 1 2 al) cosh
21~~ ~ 2 1 IX

1 a2

(V 1 -E 2 )
A12 a kT

+ + e

X tanh W1 Z

In the limit of small patches with W << l1, 2 the fluxes are given by

AZa2 - A12al

W
AZla 2 + A 12 a +- e

(V 1 -E 1 2 )

kT

A 2 1 a 2 - A2al

(V 1 -E 2 )

W kT
A21a 2 + A2al +- e21 2 12 1 2

Thus we see that different fluxes from different planes are predicted. At present,

we are considering the validity of applying the principle of detailed balance in problems

of surface migration.

F. W. Eberle, R. E. Stickney
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C. SINGLE-PHONON ENERGY TRANSFER BETWEEN MOLECULAR BEAMS

AND SOLID SURFACES

[This report summarizes a paper that will appear in The Physical Review.]

The quantum-mechanical lattice theory in thermal accommodation coefficient theory

is approached from the same point of view as the lattice theory of neutron scattering and

Mbssbauer effects. Treating the surface atoms from a displacement field theoretic

point of view, rather than from the customary single-particle point of view, is more con-

sistent with other solid-state theories. Virtual phonon processes occurring in the field

formulation give rise to a nontrivial modification in existing single-phonon accommoda-

tion coefficient theories. This modification takes the form of a pseudo Debye-Waller

factor.

When the existing theoretical accommodation coefficients are modified by the pseudo

Debye-Waller factor, it is found that the resulting accommodation coefficient, obtained

herein, displays trends similar to experimental data for helium scattering off of

tungsten.

J. W. Gadzuk

D. THEORY OF ATOM-METAL INTERACTIONS

[This report summarizes two papers that will appear in Surface Science.]

1. ALKALI ATOM ADSORPTION

The interaction of a metal with an alkali atom is considered from first principles.

It is shown that treating the interaction of the metal with the alkali atom through pertur-

bation theory is a meaningful approach. It is seen that the interaction causes a shift and

broadening of the valence level of the alkali atom. Furthermore, it is seen that electron

transitions between virtual atomic and metal states are formally equivalent to standard

rearrangement processes.

The first-order ns energy-level shift of the alkalis is calculated and the results

given in standard form. The shift is found to be ~ +0. 3 eV. The natural broadening of

the originally discrete ns level is calculated in closed form by using time-dependent

perturbation theory. The theoretical bandwidth for an alkali atom adsorbed on a metal

is found to be < 1 eV.

These results are discussed in relation to previously suggested values for the

shifted and broadened level.

It is found that the position of the shifted and broadened level relative to the conduc-

tion band of the metal is such that ionic bonds are formed between adsorbate and sub-

strate. The possibility and implications of localized electrons in the interior of the

metal near the surface and also around the alkali ion cores are discussed. It is found
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(XV. PHYSICAL ELECTRONICS AND SURFACE PHYSICS)

that electrons do tend to localize at

resulting surface dipoles are then

emission properties of the surface.

quantitative manner, and the origin

the surface in the presence of alkali ion cores. The

discussed in relation to their effects on electron

Temperature dependences are included in a semi-

of thermal depolarization effects is displayed.

J. W. Gadzuk

2. ONE-ELECTRON TRANSITION MATRIX ELEMENTS

The matrix element describing a process in which an electron makes a transition

from an atomic s state to a metal conduction band state is considered from the point of

view of a rearrangement process. Since the initial and final states are not solutions of

the same Hamiltonian, they are not orthogonal. It is shown that by orthogonalizing the

initial and final stages, it is possible to obtain a simple, compact matrix element that

describes electron transitions between the atom and metal states.

The matrix element is explicitly evaluated for a transition between a hydrogen-like

atom and a free electron metal. These closed form results have been previously used

to describe alkali-atom adsorption on metals. The present results could also be used

to describe resonance ionization of atoms or neutralization of ions by metals.

J. W. Gadzuk
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