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In this work a self-organizing map (SOM) is applied for electron/jet identification in the high-

level trigger of ATLAS detector, using calorimeter data mapped over Regions of Interest (RoI).

For feature extraction the SOM is unsupervised trained and the resulting map is slightly modi-

fied through Learning Vector Quantization (LVQ) algorithm for optimal signal identification. In

practice, calorimeter designs exhibit nonlinearities so a nonlinear feature extraction technique,

like SOM, is attractive. The hypothesis testing is performed by a neural classifier implemented

through a Multi-layer Perceptron (MLP) architecture. Using the proposed technique for an elec-

tron/jet discrimination in the second level trigger of ATLAS, 98% of electrons are correctly iden-

tified for a misclassification of jets below 3%, which outperforms the baseline algorithm presently

used in ATLAS.
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1. Introduction

The Large Hadron Collider (LHC) is under construction at CERN [1], and will be colliding
bunches of protons at every25nsby the year of 2008. In order to search for the Higgs particle and
other new phenomena a new energy range will be explored by LHC. When operating at full ca-
pacity (with a luminosity of1034cm−2s−1) LHC will produce40×106 events/s. The total detector
information per second will be near60 Tbytes(1,5 MB/event). Considering this amount of data,
the filtering procedure must be performed online, under short latency times. Despite the very high
event rate, the interesting channels will rarely occur, so that the design of an efficient triggering
system is very important to guarantee that valuable information will not be lost.
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Figure 1: The ATLAS detector diagram.

Placed at one of the LHC collision points, the ATLAS detector has a cylindric format with the
LHC tunnel as central axis [2]. One important information that guides the particle identification
process is the energy deposition profile measured at the calorimeters. As illustrated in Figure1, the
ATLAS calorimeter system is split into electromagnetic (e.m.) and hadronic sections and has seven
layers, four e.m. and three hadronic. The granularity, varies for the different calorimeter layers, see
Table1. The pseudo-rapidity (η = − logtan(θ/2), whereθ = arctan(x/z)) and azimuthal angle
(φ = arctan(x/y)) are components of the ATLAS coordinates system, as illustrated in Figure2.

The ATLAS online trigger system has three sequential filtering levels as shown in Figure3,
the complete event data is available until an accept/reject decision is made. The detector informa-
tion is obtained from the calorimeters, muon chambers and tracking (inner detector) systems (see
Figure1). The first-level (LVL1) receives the full LHC event rate and shall reduce it to75kHz. The
decision must be taken in less than2.5µs. Calorimeter data with reduced granularity and hardware
implementation are used in LVL1 fast decision taking process. The High-Level Trigger (HLT),
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Table 1: Different granularity of the calorimeter layers [2].

PRESAMPLER Barrel Endcap
Granularity (∆η×∆φ ) 0,025×0,1 0,025×0,1

ELECTROMAGNETIC Barrel Endcap
Granularity (∆η×∆φ )
Layer 1 0,003×0,1 0,003×0,1 a0,1×0,1
Layer 2 0,025×0,025 0,025×0,025a0,1×0,1
Layer 3 0,05×0,025 0,05×0,025

HADRONIC Barrel Extended barrel
Granularity (∆η×∆φ )
Layers 1 e 2 0,1×0,1 0,1×0,1
Layer 3 0,2×0,1 0,2×0,1

Figure 2: ATLAS coordinates system [3].

which comprises both the second-level (LVL2) and the event filter (third-level), receives from the
first-level the primary location of regions in the detector where interesting information was identi-
fied. These detector regions are known as Regions of Interest (RoI). The HLT is implemented in
software, processed in parallel by thousands of PCs, and must reduce the event rate to 100Hz. The
overall processing time is about one second and LVL2 latency shall not exceed 10ms.

Among interesting objects for LHC, the most frequent for searching the Higgs particle are
electrons, photons and muons [2]. Electrons are immerse in an intense background noise of jets.
In terms of calorimetry, jets that arrive to the LVL2 trigger tend to fake electron signatures (highly
concentrated energy deposition profiles in the e.m. section and almost no energy left in the hadronic
calorimeter). Therefore, the electron/jet channel is very important for the detector overall perfor-
mance.

As proposed on [5], here the calorimeter RoI data are pre-processed and formatted into concen-
tric rings before being used for particle identification. As illustrated on Figure4, at each calorimeter
layer, the most energetic cell is defined as the first ring, and the following rings are formed around
this cell, making the classification procedure independent of the impact point. The energy measure-
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Figure 3: ATLAS trigger system architecture, extracted from [4].

ments that fells belonging to each ring are summed up and normalized. Examples of ring formatted
signals for typical electron and jet are illustrated on Figures5 and6, the calorimeter layers are lim-
ited by vertical dotted lines. For each event, the RoI size may vary, but for particle discrimination
purposes a fixed size0.4×0.4 area in theη × φ plane carries enough physics. Considering this
fixed RoI, the ring formatted signals comprise 100 components.
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Figure 4: Ring formatting of RoI cells.

This paper proposes a new particle discrimination strategy for ATLAS calorimeter based trig-
ger. For feature extraction, a Self-organizing Map (SOM) [6] is applied. The topologically orga-
nized mapping is further adjusted through a Learning Vector Quantization (LVQ) [7]: a vector basis
is formed by the neuron weights, and the LVQ algorithm uses the target information to move these
vectors to new positions, maximizing the classification performance. After the feature extraction
procedure, a neural classifier, through a Multi-layer Perceptron (MLP) architecture [8], performs
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Figure 5: Ring formatted signals for typical electron, Ei represents an e.m. layer.
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Figure 6: Ring formatted signals for typical jet, Ei represents an e.m. layer.

the hypothesis testing using as input information the mapping obtained by the SOM network after
LVQ adjustment. The algorithm overall processing time cannot exceed the limitations imposed for
the HLT.

On a previous work [5], a neural classifier was applied directly to the ring formatted signals
and good results were obtained on electron/jet classification. On the present work, using the SOM
feature extraction a considerable improvement on the discrimination performance was achieved,
with a small increase on the computational cost.

2. Feature extraction

A method that combines unsupervised and supervised training routines was applied for fea-
ture extraction on the ring formatted calorimeter signals. Self Organized Maps were trained without
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knowledge of the particle type and further adjusted, on a supervised way, through the Learning Vec-
tor Quantization algorithm. A MLP classifier uses the LVQ adjusted mapping to perform particle
discrimination. Figure7 describes the proposed technique.

Inputs

Electron/jet
discrimination

Characteristic
map

MLP
Classifier

. . .

x1 xn

Figure 7: Proposed procedure for particle discrimination.

2.1 Self organizing maps

The Self Organizing Map is an unsupervised trained neural network that realizes a topological
organization of the input data set. The SOM were first proposed by Teuvo Kohonen in 1982 [6],
and transforms a k-dimensional continuous input space into a discrete characteristics map (gen-
erally bidimensional). Each neuron of the map is fully connected to all inputs. SOM compacts
information while preserving topological relations of the input data set. SOM networks are widely
applied on different signal processing tasks like fault diagnosis, computer vision, statistical pat-
tern recognition, speech processing, noise cancelation [9] and nonlinear independent component
analysis [10, 11].

Basically three processes are involved in the SOM training phase: competition (for each input
vector there is only one activated neuron), cooperation (the winner neuron determines a neigh-
borhood of excited neurons) and adaption (the map weights are adjusted to reenforce the winner
neuron response to a given input pattern) [8].

The inputs are fully connected to each neuron, and the map weights are calculated iteratively
through:

w j(n+1) = w j(n)+η(n)hi j (n)(x(n)−w j(n)) (2.1)

whereη(n) is the learning rate andhi j (n) the neighborhood function, which is defined as:

hi j (n) = exp(−d2
i j /2σ2(n)) (2.2)
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After the training procedure has converged, the network outputs are obtained for each neuron
i through equation2.3:

ui = xTwi (2.3)

wherewi is a vector formed by the weightswi j that connect the inputx j to the neuroni. Self
organizing maps belong to a class of algorithms of vector quantization, searching for a fixed number
of vectors (or code-words) that better describe the input data set. The vectorswi form the SOM
code-book for the input data set.

For a specific input vectorxa, the highest value ofu is obtained for the neuroni that minimizes
the distance|xa−wi | [12], in other words,wi is the code-word closest toxa.

If a winner-takes-all operation of the SOM is preferred, the outputs may now be defined as:

yi = 1, ui > u j∀ j 6= i
yi = 0, other case

(2.4)

Considering equation2.4, the input vectorxa is mapped into the SOM neuron that better
describes it. As the map is topologically ordered, similar input patterns are mapped into neighbor
regions.

When applied to classification problems, it is expected that the SOM concentrates the different
inputs in opposite sides of the map, facilitating the hypothesis testing procedure.

2.2 Learning vector quantization

Vector quantization (VQ) is a coding technique in which a input data set is mapped into a finite
group of representative vectors. [13]. The k-dimensional input space is divided into a finite number
of regions and the quantizer mapsRk into a finite subsetY of Rk:

Q : Rk → Y (2.5)

whereY = {y1,y2, ...,yk} is the code-book. For each code-wordyi there is a partitionRi of the
input space that satisfies:

Ri = Q−1(yi) = {x ∈ Rk : Q(x) = yi} (2.6)
⋃N

i=1Ri = Rk, Ri
⋂

Rj = 0, i 6= j (2.7)

When a quantizer presents minimal distortion it is calledVoronoi quantizer. In this case
the input space is partitioned according to the nearest neighbor (NN) rule, and its partitions are
denominated Voronoi cells [14].

The code-words (or Voronoi vectors) can be approximately estimated by the SOM through
unsupervised learning procedure and the code-book is formed by the synaptic weights. For classi-
fication purposes, the Learning Vector Quantization (LVQ) algorithm [7] can be used to improve
the discrimination performance. Through a supervised procedure (using target information), LVQ
slightly adjusts the code-words location (obtained by the SOM) to improve the map clustering.

The LVQ algorithm, as formulated on [7], selects randomly a input vectorx and verifies
whether or not its class typeCxi is the same as the one the Voronoi vectorwc belongs to. In
case both classes are the same,wc is moved towardsx:

7



P
o
S
(
A
C
A
T
)
0
5
5

SOM of calorimetry information for high efficient online e−/j identification in ATLAS Jose M. Seixas

Cwc = Cxi → wc(n+1) = wc(n)+α[x−wc(n)] (2.8)

whereα is the learning rate (0 < α < 1). Otherwise,wc is moved away fromx:

Cwc 6= Cxi → wc(n+1) = wc(n)−α[x−wc(n)] (2.9)

Some examples of LVQ application for signal compaction and classification can be found
in [7, 15].

3. Hypothesis testing

The map outputs, after LVQ adjustment, were used to feed a Multi-layer Perceptron (MLP)
neural classifier [8], trained through the resilient back-propagation (RPROP) algorithm [16]. The
network used a single hidden layer and one neuron in the output. The number of hidden neurons
was chosen after testing exhaustively the discrimination performance of each network. A network
with four hidden neurons presented better results and was used for the obtained maps.

The particle discrimination process should be energy independent, so an energy normalization
was performed on input vectors. Here, data were normalized in a segmented way during the ring
formatting procedure.

4. Results
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Figure 8: Examples of (a) classes probability distribution and respective (b) ROC curve.

The Receiver Operating Characteristic (ROC) and the SP product were both used as figures of
merit of the particle discrimination performance. Considering a binary decision problem, where the
classes distribution are shown in Figure8(a), the respective ROC curve [17] (see Figure8(b)) illus-
trates how both the detection (PD) and false alarm (PF ) probabilities vary as the decision threshold
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(L) changes. For the problem illustrated in Figure8(a), if the probability distribution function of
the target class is defined as:PT(L), thenPD =

∫ Lm
−∞ PT(L)dL, andPF =

∫ ∞
Lm

PT(L)dL, whereLm is
the chosen threshold.

In our particular problem, electron signature represents the target signal to be detected and
jet corresponds to false alarm. As the interesting events are very rare at LHC, highPD is desired
for the online triggering operation. LowPF is also essential for the classifier design, as the huge
background noise has to be rejected, as much as possible, to allow offline data analysis on clean
data.

The SP product is defined as [5]:

(E fe+E f j)× (E fe×E f j) (4.1)

whereE fe is the detection efficiency for electrons andE f j is the corresponding efficiency for jets.
The maximum SP is 2, whenE fe = E f j = 1, and to obtain high SP values the efficiencies of both
classes must be close to 1. As the SP collapses for either lowPD or highPF (low E f j ), this figure
of merit is valuable for our application. The maximum SP (SP≈ 1.63) an the respective threshold
value (Lm≈ 8.18) for the classes of Figure8(a)are shown in Figure8(b).

The database used in this work, which comprises 22581 electron and 7509 jet signatures, was
obtained trough Monte Carlo simulation for proton-proton collisions. The detector characteristics
and the first level trigger effects were considered during the simulations [2].
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Figure 9: Activation probability for electrons and jets on a 6x10 neuron map after unsupervised training.

The database was divided, in approximately equal parts, into training and testing sets. The
training set was used to develop and train the algorithms, and the testing events were applied
to verify the proposed method performance. Two maps (6x10 and 8x10 neurons) were tested.
Considering a winner-takes-all operation of the SOM (see equation2.4), as illustrated on Figure
9 (for the 6x10 map), the SOM was able to concentrate the particle types on opposite sides of the
map, and moreover, the electron signatures projections are confined in a thinner region. The8×10
map showed similar behavior.

Using the LVQ algorithm to further adjust the map weights, by means of supervised training,
the SOM outputs were shifted towards the map edges (see Figure10). Therefore the border between
the mapped regions assigned to electrons and jets was reduced as a result of LVQ.
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Figure 10: Activation probability for electrons and jets on a 6x10 neuron map after LVQ adjustment.

Better particle discrimination performance was achieved using equation2.3 to compute the
Map outputs. Through this approach, for each ring formatted event, aN×M mapping is obtained
by the SOM and used to feed a MLP neural classifier. Through the proposed method 98% of
electrons are correctly identified for a misclassification of jets below 3%. The better calculated SP
product was 1.86 (for a6×10map).

0 0.05 0.1 0.15 0.2
0.8

0.85

0.9

0.95

1

PF

P
D

6x10 map
8x10 map
Neural rings
T2Calo

(a)

0.01 0.02 0.03 0.04 0.05 0.06
0.9

0.92

0.94

0.96

0.98

PF

P
D

(b)

Figure 11: (a) ROC curves for the proposed technique (6x10 and 8x10 maps), Neural_Ringer and T2Calo,
(b) detail for better visualization.

Different e−/ j discriminators are compared using this simulated second-level trigger data-
base (testing set). The baseline algorithm fore−/ j discrimination used at ATLAS (T2Calo) [4]
extracts, directly from calorimeter measurements, parameters that estimate the shape of the en-
ergy deposition profile. Thresholds on these parameters perform the particle discrimination. The
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Discrimination SP PD PF PD PF False electrons
Technique (%) (%) (%) (%) (jets / second)

T2Calo 1.4 81.1 3 95 20 5000
Neural_Ringer 1.82 96.8 3 95 2.2 550

8x10 map 1.84 97.5 3 95 1.8 450
6x10 map 1.86 98.2 3 95 1.4 350

Table 2: Comparison of detection (PD) and false alarm (PF) probabilities and SP products obtained through
different discrimination techniques.

Neural_Ringer [5] is another particle discrimination procedure that is implemented in the ATLAS
software platform (ATHENA). Using a MLP neural classifier operating over the ring formatted
signals, Neural_Ringer algorithm achieved better discrimination performance and similar com-
putational cost when compared with T2Calo. In Figure11(a), the performance of the proposed
method is compared to T2Calo and Neural_Ringer discriminators.

Analyzing the ROC curves (Figures11(a)and11(b)), T2Calo presents the worst performance.
The feature extraction through SOM maps improves slightly the discrimination performance of the
neural classifier fed from ring sum signals.

Table2 compares the detection probability (PD) for a fixed false alarm probability (3%) and
the maximum SP products obtained from the different discrimination techniques, it is also shown
PF values for a fixed PD=95%. The proposed approach is able to increase the detection efficiency
on 1.4 and 17.1 percent points, when compared, respectively, to Neural_Ringer and T2Calo. Con-
sidering LHC operating conditions at high luminosity, 25000 jets/second are expected at ATLAS
high-level trigger [4]. It means that, for a fixed PD, 1% increase of PF implies on recording more
250 false electrons per second. As shown in Table2, for PD=95%, the proposed technique reduces
the false alarm (less 200 and 4650 jets/sec when compared, respectively, to Neural_Ringer and
T2Calo), providing cleaner data for offline analysis.

Electron efficiency (Ee f) and jet false alarm (JFA) of the proposed method are compared for
different values ofη and φ in Figures12(a)and12(b) for a 6× 10 map (similar behavior was
obtained using the8× 10 map). Considering different values ofη (Figure12(a)), Ee f falls for
η > 1.5 due to a gap on calorimeter sensing elements that exists in this region. Through this
gap pass maintenance and communication cables to the inner detector.JFA does not appear to
be significantly affected by the calorimeter gap. BothEe f andJFA are uniformly distributed inφ
(Figure12(b)), this result was expected as the detector is symmetric in this axis.

5. Conclusions

A novel signal processing procedure was proposed for electron/jet discrimination at ATLAS
second-level trigger. Self-organizing maps were used for feature extraction, and MLP classifiers
performed the hypothesis testing. Using this technique 98% of electrons were correctly identified
for a misclassification of jets below 3%. This outperforms the current baseline design (T2Calo Al-
gorithm). The good performance points out that the combination of ring structured data formatting
and nonlinear signal processing technique is very efficient for electron/jet discrimination.
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Figure 12: Electron efficiency and jet false alarm for different values of (a)η and (b)φ (6×10map).

A proper study of the processing time is needed for the proposed algorithm, but a simple
comparison with the Neural_Ringer discriminator indicates that the HLT requirements may be
satisfied. On the work [5], it was demonstrated that the ring formatting and neural classification
algorithms, implemented at the HLT software platform (ATHENA) are faster than T2Calo. The
proposed technique adds only a matrix multiplication to the neural rings, and so, no significant
increase on computational cost is expected.

On this work, energy measurements from different calorimeter layers were combined to com-
pose a single input signal used for particle identification. A segmented feature extraction, as pro-
posed on [18], where the energy measurements from each calorimeter layer are processed indepen-
dently, preserves the different characteristics of each calorimeter layer and usually presents better
discrimination performance. A study is been conduced to design and train a different SOM for
feature extraction at each layer.
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