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A. SURVEY OF LATVIAN MORPHOPHONEMICS

Although the number of alternations encountered in Latvian phonology is rather large,

they are determined by a relatively small number of rules.

In this report we shall briefly survey, in the probable order of their application,

seven such rules or rule complexes. We shall refer to these as (1) the k/c rule (velars

[k, g] are replaced by strident dentals [c, dz] in the environment before front vowels

[i,ae]), (2) the i/j rule (diffuse vowels [i, u] are replaced by their corresponding glides

[j, w] prevocalically), (3) the n/i rule (a tautosyllabic preconsonantal n is replaced by

a diffuse vowel identical in gravity with the preceding vowel), (4) the a/e rule (a is nar-

rowed to e before i or j, with or without intervening consonants or glides), (5) metath-

esis (diphtongs with a compact first vowel [a,ae(e)], metathesize), (6) the V/4 rule (a

vowel is replaced by zero if the next morpheme starts with a vowel or s, and at the end

of a word), and (7) the syncope rule (sequences of identical vowels are replaced by long

vowels).

The above rules are applicable to strings assembled in the morphological component;

the output of these rules is subject to the application of further rules (mutation of den-

tals, assimilation, etc.). The more important of these will be discussed at the end of

this report.

(1) The k/c rule.

Velars (k, g) are replaced by strident dentals (c, dz) in the environment before front

vowels (i, ae):
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k, g > c, dz/ FV

Typical examples of this alternation are pairs like ruoka 'hand' and its diminutive
ruocira, augu 'I grow' and the corresponding causative audzinu, druska 'bit' and its

diminutive druscia, and ganu 'I herd' with the related dzaenu 'I drive'.
Since the k/c rule is very early within the morphophonemics of Latvian, its effects

are often overlaid with those of other rules, so that apparent exceptions occur in ter-
minal strings.

First of all, the effects of the subsequent V/p rule (rule 6 in this series), which de-
letes vowels prevocalically and finally, may obscure the conditions that lead to the k/c
alternation: audz 'you grow' and aig 'he grows' (from aug + ae + i and aug + a, respec-
tively), raedzu 'I see' (from raeg + au), saucu 'I call(ed)' (from saukae + au [Pres.] or
saukae + a + au [Past]).

Second, in cases where metathesis (rule 5) takes place in addition to vowel trunca-
tion (rule 6), it may appear that the environment calls for a k/c alternation, where non
occurs: vilki 'wolves' (from vilk + ai > [met.] vilk + ia > [V/p ] vilk + i), saki 'you say'
(from sak + a + ei > [met.] sak + a ia> [V/P] sak + i).

Third, the k/c alternation, seemingly implicit in morphological assemblies such as
skael + ti 'to split', may be superseded by the operation of another rule, e. g., the k/k
alternation in the environment s FV (precise statement elsewhere): 1vselt.

Fourth, the k/c alternation may be ruled out from some (foreign) lexical items: kinj
'movies'.

As far as we have been able to ascertain, the k/c rule is not ordered with respect
to rules (2), (3), and (4); it must, however, precede rules (5) and (6), as shown by
examples audz and vilki, above.

(2) The i/j rule.

All native instances of j and v point to their being prevocalic realizations of the
vowels i and u, respectively, e. g., suvu 'I sewed' and sut 'to sew', lija 'it rained' and
lit 'to rain', skreju 'I run' and skriet 'to run'.

Accordingly, no instances of v and j appear in the lexical core. All instances of
v and j, at least in the basic morphemes, are due to the glide rule, which states,
informally, that

i, u> j, w/ V

or i and u are replaced by their respective glides before vowels (and a late rule then
carries w to v).

While the rule must be stated in the entirely general form above, there are a num-
ber of environments from which it has been specifically exempted. In particular, the
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rule does not apply to any segment that precedes an identical vowel (i. e., the rule does

not apply to the first i in ii or to the first u in uu, and Latvian does not have the

sequences ji and vu, except under very special conditions): iiaen + a + s > ilens 'awl'

(not *jilaens) and uudaen + i + s > idens 'water' (not *vudens). The rule does not apply

to an i before a front vowel in the next morpheme: saaksi + aei > [met.] saaksi + iae >

[V/p] saaks + i> [sync.] saksi 'you will begin' (and not *saksi from *saksj + ai). Nor

does the rule apply to an u that follows a morpheme-initial consonant cluster ending in

other than a dental obstruent: tvans 'carbon monoxide' but puika 'boy', muita 'customs',

kuilis 'boar'.

Further exceptions are either lexical (tuaregs 'Tuareg', dicta 'diet'), or appear in

the lexicon with a v and j already specified as non-vocalic: Vladivostoka, jipts colloq.

'poison'.

The i/j rule is not ordered with respect to rules (1), (3), and (4). It must, however,

precede metathesis (5) - cf. java 'fluid mixture' and ieva 'bird-cherry' from iau + aa +

i and aeiu + aa + i, respectively. The i/j rule must likewise precede the vowel trunca-

tion rule (6) and the syncope rule (7) - (in order to yield lija 'it rained', the underlying

lii + aa may not be replaced by *li + aa or *1i + aa).

(3) The n/i rule.

The alternations covered by this rule involve the conversion of a tautosyllabic pre-

consonantal or final n into a high vowel identical in gravity with the preceding

vowel. Thus, unC is converted into uuC, aenC into aeiC, and so on. The form of the

rule is, informally:

i/FV c

u/BV J

None of the n/vowel alternations result in sequences that are retained in terminal

strings. Some are further subject to the syncope rule: gin + ti > (k/c) dzin + ti > (n/i)

dzii + ti > (V/4) dzii + t > (sync.) dzit 'to drive', iunt + a > (i/j) junt + a> (n/i) juut +

a > (V/4) juut > (sync.) jilt 'he feels', krint + a > (n/i) kriit +a> (V/ ) kriit > (sync.)

krit 'he falls', lind + aa > (n/i) liid + aa > (V/4) liid + a > (sync.) lida 'he crawled'.

Other intermediate strings (and these constitute the majority) are transposed by the

metathesis rule: zanb + a + s > (n/i) zaub + a + s > (met) zuab + a + s > (V/4) zuabs

> (other rules) zuops 'tooth', laenk + ti > (n/i) laeik + ti > (ae/e) leik + ti > (met.) liek +

ti > (V/p) liekt 'to bend', prant + a > (n/i) praut + a > (met.) pruat + a > (V/p) pruat >

(assim.) pruot 'he knows how', braend + n + a > (n/i) braeid + n + a > (a/e) breid + n +

a > (met.) bried + n + a > (V/ and other) brien 'he wades'.

The n/i rule (3) has to precede the ae/e rule (4), if the underlying form for Asf zaem +

aen 'earth' is correct. The form zaem + aen should first go to zaem + aei, then narrow to
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zem + ei, metathesize to zem + ie and truncate to the correct zemi. Since the narrowing

is caused by i, it follows that the n/i rule must precede the a/e rule. [There are other

possible explanations for the above; these, however, seem less attractive.] The n/i

rule (3) certainly has to precede metathesis (5), as already shown.

Exceptions to the n/1 rule are numerous, and all entirely lexical (i. e. , there is no

subclass of morphemes, foreign words aside, that consistently retain n): rinda 'row',

dzintars 'amber', censties 'to strive', taenkas 'gossip', anglis 'Englishman', and many

more.

(4) The a/e rule.

The narrowing ofae to e takes place before i or j, with or without intervening con-
/A

sonants or glides. Typical are examples like mieta 'maid', leja 'valley', slepju 'I hide',

celu 'I lift' (from kaeli + au). The narrowing, furthermore, is "contagious" insofar as

any number of vowels will be narrowed, so long as an a or u doesn't intervene: aecaetu

'I would harrow' and ecesi 'you will harrow'.

Apparent discrepancies are of two kinds. In one case, it appears as if the conditions

have been met, but no narrowing has taken place. The original conditions have been

most typically obscured by metathesis and truncation, e. g., deli (from daeaeel + ai)

'sons'. There are, however, other exceptions, e.g., verbs in -in-: vadinat 'to air'.

Conversely, it may appear that the conditions have not been met, yet the narrowing

has occurred. Here we typically have to do with medial or terminal vowel truncation,

e.g., mest 'to throw' (from maet + ti). Except under special conditions (aeixe, xaermanis

'Eiche, Hermanis'), e in loanwords is narrow: 'leta 'counter', texnika 'technology',

veto 'veto'.

As already shown, the ae/e rule must precede metathesis, and follow the n/1 rule.

(5) Metathesis.

In Latvian phonology, metathesis plays a central role. It is unconditioned, i. e., the

rule applies to all appropriate sequences regardless of environment, unless specifically

blocked. Subject to metathesis are ai, au, au from an, aei, aei from aen, and aeu, whereby

aei from aen and au from an metathesize invariably.

Exempt from metathesis are: ai in root syllables: maize 'bread', laiva 'boat'; au

in root syllables unless before a root-final vowel: saule 'sun' but guovs 'cow' (from

gauu + i + s); archaic imperatives eima 'let's go' and eita 'go!'; a small number of

highly frequent stems with aei (and their derivatives: beigt 'to end,' beigas 'end', beigts
'dead', teikt 'to say', teika 'legend', teicams 'praiseworthy', etc.; and late loans:

streiks 'strike'.

Examples of metathesis include skraei + n + a > skrien 'he runs' vs. skrija 'he ran',

laenk + a > liek 'he puts', daeu + d + a > duod 'he gives' vs. deva 'he gave', vilk + ai >
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(met.) vilk + ia > > (V/p) vilki 'wolves', skaties 'you look' (from skat + a + aeisi), lank

+ a + s > (met.) lauk + a+ s > (V/4 and other) luoks 'bow', sit + a + au > (met.) sit + a+

ua > (V/4) situ 'I hit (past)'.

The place of metathesis in the sequence of rules is perhaps best motivated of all.

Rules (1) through (4) must precede it (see above), and the V/ rule must follow it (see

below).

(6) The V/ rule.

Terminal strings in Latvian may not have numerous successive vowels; to the degree

that they have not been converted into glides, excess vowels are truncated. Vowels must

be truncated if the next morpheme (from a phonological point of view - i. e. , a stretch

of segments flanked by pluses) starts with a vowel or s and at the end of the word:

Accordingly, the reflex of an assembly of the type raega + au 'I see' is raedze + au

(k/c rule) -. raedza + ua (metathesis) - raedzu (truncation); sdki 'you began', is derived

from saak + a + aei (metathesis) - saak + a + iae (truncation) - saak + i (syncope) - saki.

Truncation before + s is illustrated by vilks 'wolf' from vilk + a + s.

Truncation must follow metathesis, as the examples raedzu and saki illustrate. It

must precede syncope (see below).

(7) Syncope.

The syncope rule contracts sequences of identical vowels into single long vowels;

lii + ti - lit 'to rain'. Its place after the truncation rule is shown by the following

example: skat + aa - skat + a 'he views' (truncation), i. e., the syncope rule changing

aa to a (as in skatam 'we view') may not apply prior to the truncation rule.

The rules just cited imply obviously appropriate underlying representations so that

the attested phonetic reflexes may be derived. The underlying strings in the major flex-

ional categories of Latvian are of special interest and will be reviewed below. Rules

other than the seven just discussed apply as well; they do not, however, affect our con-

ception of the underlying forms.

We illustrate the declension with the assemblies and phonetic realizations of vilk m.

a-stem 'wolf', gulb m. i-stem 'swan', lap f. a-stem 'leaf' and zaem f. ae-stem 'earth'.

Nsm vilk + a + s vilks gulb + is gulbis

Gsm vilk + a + aa vilka gulb + iaa gulbja

Dsm vilk + ami vilkam gulb + imi gulbim

Asm vilk + an vilku gulb + in gulbi

Lsm vilk + aaia vilka gulb + iiia gulbt
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Npm vilk + ai

Gpm vilk + au

Dpm vilk + aimi

Apm vilk + au + s

Lpm vilk + ausi

Nsf

Gsf

Dsf

Asf

Lsf

NApf

Gpf

Dpf

Lpf

lap + aa + i

lap + aa + si

lap

lap

lap

lap

lap

lap

lap

aia

an

aaia

aa + si

au

aami

aasi

gulb

gulb

gulb

gulb

gulb

vilki

vilku

vilkiem

vilkus

vilkuos

lapa

lapas

lapaj

lapu

lapa

lapas

lapu

lap am

lapas

The indefinite adjective is declined like

Nsm mazs 'small', Gsm maza, etc., Nsf n

The definite adjective and the pronoun

+ iai

+ iau

+ iaimi

+ iau + s

+ iausi

zem + aee + i

zaem + aeae + Si

zaem

zaem

zaem

zaem

z aem

zaem

zaem

aeia

ae n

aeae ia

aeae + si

iau

aeaemi

aeae si

gulbji

gulbju

gulbjiem

gulbjus

gulbjuos

zeme

zemes

zemej

zemi

zeme

zemes

zemju

zemem

zemes

the corresponding masc. and fem. a-stems:

laza, etc.

differ from the noun in one of two ways

an

the

is

element ai is infixed (in the Nsm, D, and L forms of the adjective,

L forms of the pronoun), or the morpheme containing the thematic

exempt from the truncation rule. Paradigms of mazajs 'the small (one)'

and tas 'that' follow

maz + aia + s

maz + a + aa

maz + aiami

maz + an

maz + aiaaia

maz

maz

maz

Asm, Lsf

+ aa + i

+ aa + si

+ aiaia

as Lsm

maz + ai

maz + au

maz + aiaimi

maz + au + si

maz + auausi
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and in

a-vowel

Nsm

Gsm

Dsm

Asmf

Lsmf

Nsf

Gsf

Dsf

Asf as

Npm

Gpm

Dpm

Apm

Lpm

mazaj s

maza

mazaj am

mazuo

mazaja

maza

mazas

mazajaj

mazie

mazuo

mazajiem

mazuos

mazajuos

a+s

a + aa

ami

an

aiaaia

aa + i

aa + si

aia

ai

au

aimi

au + s

aiausi

tas

t -

tam

tuo

taj a

ta

tas

taj

tie

tuo

tiem

tuos

tajuos
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NApf

Gpf as Gpm

maz + aa + si mazas

Dpf maz + aiaami mazajam

Lpf maz + aiaasi mazajas

In the conjugation, first note the assemblies and

its reflexive for the verb likt 'to put':

t + aa + si

t + aami

t + aiaasi

realizations of the

tas

tam

tajas

future tense and

is liksi + au

2s liksi + aei

ip liksi + mi

2p liksi + ti

3 liksi

liksu

liksi

liksim

liksit

liks

liksi

liksi

liksi

liksi

liksi

ausi

aeisi

mi + aeisi

ti + aeisi

ae isi

V
liksuos

liksies

liksimies

liksities

liksies

The reflexive morpheme has two allomorphs. The allomorph + aeisi occurs after Ci, the

allomorph si (without +) occurs elsewhere. The first person sg. morpheme is au, the

second person sg. morpheme is generally aei, but in the present tense non-reflexive

assemblies of a number of verbs, the second person sg. is introduced with a morpheme

boundary as ae + i. The past tense morpheme is realized as aa, the present tense mor-

pheme as aa or a depending on the stem-clan. Prior to the application of any morpho-

phonemic rules, one a is deleted from the singular assembly (i. e., maet + a + ae + i,

underlying met 'you throw', is adjusted to maet + ae + i, and saak + aa + aei, underlying

siki 'you began', is adjusted to saak + a + aei). This adjustment is crucial if the

k/c rule, the i/j rule, the ae/e rule and the V/ rule are to operate properly. A few

paradigms follow, already adjusted as to the extra a. The stems are maet 4-pres.

stem 'throw', lenk -pres. stem 'put', sak i-past stem 'say'

Present

maet + au

maet + e + i

maet + a + mi

met + a + ti

maet + a

In the past tense,

tioned:

maetu

met

maetam

m aetat

maet

laenk

laenk1 ae nk

laenk

laenk

laenk

+ au

+ ae +

+ a+

+ a

lieku

liec

liekam

liekat

liek

sak + a + au

sak + a + aei

sak + aa + mi

sak + aa + ti

sak + aa

the stem allomorphs met, lik, and sakii are morphologically condi-

met + a + au

met + a + aei

met + aa + mi

met + aa + ti

met + aa

metu

meti

metamn

metat

meta

lik + a + au

lik + a + aei

lik + aa + mi

lik + aa + ti

lik + aa
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saku

saki

sakam

sakat

saka

liku

liki

likam

likat

lika
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is sakii + a + au saciju

2s sakii + a + ai saciji

p sakii + aa + mi sacijam

2p sakii + aa + ti sacijat

3 sakii + aa sacij a

In addition to the seven rules discussed at the beginning of this report, a number of

other rules apply as well. These, however, are all sufficiently close to the phonetic

surface, that they present no theoretical or practical difficulties. The most important

among these are the following forms

(a) The t/s alternation.

Dental stops (t, d) are replaced by spirants (s, z) in the environment before other den-

tal stops and before j.

t, d > s, z/ t, d, j

e. g., met + ti > (ae/e) met + ti > (V/p) met + t (t/s) mest 'to throw'. In most cases, the

immediate reflex of t and d (i. e. , s, z) is subject to further rules: the mutation of den-

tals to palatals (b) - Dat. sg. maedi + ami > (i/j) maedj + ami > (ae/e) medj + ami > (V/P)

medj + am > (t/s) mezj + am > (palat.) me'j + am > (j/) mezam 'forest'; assimilation

in voicing (d) - vaed + ti > (ae/e) ved + ti > (V/) ved + t > (t/s) vez + t > (assim.)
vest 'to lead'; or loss (not discussed in this report) - kliid + tt + a > (V/b) kliid + tt >

(sync.) klid + tt > (t/s, across a plus) kliz + tt > (t/s) kliz + st > (assim.) klis + st >

(loss[or syncope?]) klist 'he strays'.

It is essential that the t/s rule precede the mutation of dentals - cf. zutis 'eel' and

Gs zusa (from zut + iaa > (i/j) zut + jaa > (V/p) zut + ja > (t/s) zus + ja > (palat.) zus +
V

ja > (j/p) zusa.

(b) The mutation of dentals.

Dental consonants are replaced by corresponding palatals in the environment

before j:
V V v v

c, dz, s, z, n, 1, r > c, dz, s, z, n, r/1, j,e.g. ,laak + iaa>(k/c)laac + iaa>

(i/j) laac + jaa > (V/) laac + ja > (sync.) lac + ja > (palat.) 1c + ja > (j/p) l1ca 'bear

Gen sg.'

The mutation rule may be considerably more general than suggested above and may
V

include the environment "after j" as well (vejs 'wind' from uaeaei + a + s) and the environ-

ment before other palatals (s1elt 'to split' from skael + ti). There are, however, some

minor difficulties in the formulation of a more general rule, among them the apparent
V Vcounterexamples, such as maijs 'May' (not *maijs) and runca Gs 'tomcat' (not *runca).
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(c) The j/ alternation.

In a number of environments, a j is lost. These include the environment after long

vowels at the end of polysyllabic words, e. g., mazgai + a > (i/j) mazgaj + a > (V/ )

mazgij > (j/p) mazga 'he washes'; as well as the environment after a palatal (the latter

generated by the previous rule): naz + iai > (i/j) naz + jai > (met.) naz + jia > (V/4) naz +
V .

ji > (palat.) naz + ji > (j/ ) nazi 'knives'.

It is not clear whether the j/p loss is connected with the loss of other segments,

e.g., d before n: braend + n + a > (n/i) braid + n + a > (ae/e) breid + n + a > (met.)

bried + n + a (V/p) bried + n > (d/4) brien 'he wades'.

(d) Assimilation in voicing.

Obstruent clusters are subject to a regressive assimilation in voicing, e. g., zirg +

a + s > (V/p) zirg + s > (assim.) zirks 'horse'. This assimilation must follow j-loss:

maedi + a + s > (i/j) maedj + a + s > (ae/e) medj + a+ s > (V/p) medj + s > (t/s) mezj +
s a+VV VV

s > (palat.) mej + _ > (j/p) mezs > (voicing) mess 'forest'.

M. Halle, V. J. Zeps

B. ON THE METRICS OF PRE-ISLAMIC ARABIC POETRY

The purpose of the following note is to give wider currency to certain facts of great

linguistic interest which because of the present somewhat artificial organization of schol-

arly publication are likely to escape the attention of all but a very small number of lin-

guists. The note is based on G. Weil's article CArud in the Encyclopedia of Islam, I

(Leiden, 1960), pp. 667-677.

The term Carud is used by the native Arab grammarians to designate the "science

of the rules by means of which one distinguishes correct metres from faulty ones in

ancient (pre-Islamic - M. H.) poetry." (667). In line with this conception of the primary

objectives of the science of prosody, the ancient grammarians distinguished between

usuil, which refers to the abstract underlying patterns, and furc, which refers to the

set of Verse types by means of which the abstract patterns may be actualized. If this

distinction were to be applied in the study of English prosody, basic verse patterns such

as "iambic pentameter" or "trochaic dimeter" would belong to usuil , whereas the rules

for actualizing the iambic pentameter - e. g. , the list of the "allowable deviations from

the basic iambic pentameter" - would belong to the furuc.

In the present note we restrict our attention to the rules that establish the 16 usul

patterns recognized by the native prosodists.

Rule 1. The verse line is composed of two identical hemistichs (misraCpl.

masari ).
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Rule 2. A hemistich contains either three or four pegs (watid pl. awtad).

Rule 3. In a given hemistich each peg is preceded by the same number of cord units

(sabab pl. asbab). This number may vary between one and three.

Rule 4. In hemistichs with four pegs no more than two cord units are admitted

before a peg.

Rule 5. In hemistichs with three pegs, no less than two cord units must precede

each peg.

If we represent a peg by P and a cord unit by C, we obtain from rules 2-5 the fol-

lowing four abstract patterns, which we designate here by the numerals with which they

are labelled in the Arab treatises:

CPCPCPCP V

CCPCCPCCPCCP I

CCPCCPCCP III

CCCPCCCPCCCP II

Rule 6. A peg is composed of a weak position and strong position.

In a regular line of verse the weak position is occupied by a short unstressed syl-

lable and the strong position is occupied by a long stressed syllable. When the weak

position precedes the strong position we have an iambic peg (watid majmi); when the

strong position precedes the weak position, we have a trochaic peg (watid mafr-ik). The

occurrence of trochaic pegs is severely restricted (see rule 7 below).

A cord unit is normally occupied by a single syllable whose quantity and stress are

apparently free.

Rule 7. In three-peg hemistichs with two intervening cord units (pattern III in (1))

the last peg may be either iambic or trochaic; otherwise trochaic pegs

are not admitted, and only iambic pegs are found.

Thus, if we assume that P in (1) stands for an iambic peg, and let Q stand for a tro-

chaic peg, we may think of rule 7 as adding a fifth pattern to the four cited m (1):

(2) CCPCCPCCQ (IV)

Rule 8. Subject to the restrictions below (see rules 9-11) the set of admissible

hemistichs is given by the strings formed by cyclical permutation from the

five patterns in (1) and (2).

Rule 8 expresses the main constitutive principle of Arabic. The founder of

Arabic prosody, the eighth century scholar, Al-Xalil, expressed this fact by repre-

senting the five patterns in (1) and (2) as circles. Thus, for instance, pattern

V of (1) above was represented by Al-Xalil in a form that is essentially equivalent to (3)
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where the two lines intersecting the circle indicate the two possible terminal points of

the hemistich. In view of this the five basic patterns of (1) and (2) are referred to tra-

ditionally as circles. This term will also be utilized below.

Assuming that the metrical entities are to be read in clockwise order, (3) can be

taken as representing the two hemistichs which Al-Xalil designated as

mutadarik

mutal$rib

CPCPCPCP

PCPCPCPC

It is obvious that from the pattern of circle V the strings in (4) are the only ones that can

be generated by cyclical permutation. From the pattern of circle III in (1) three dis-

tinct strings can be generated (as before the names on the left are those used by

Al-Xalil):

v
raj az

v

hazaj

ramal

CCPCCPCCP

PCCPCCPCC

CPCCPCCPC

Similarly, from the pattern of circle I in (1) only three distinct strings can be generated:

(6) CCPCCPCCPCCP

PCCPCCPCCPCC

CPCCPCCPCCPC

These, however, are subject to a special adjustment rule:

Rule 9. In hemistichs of the first circle delete the cord unit following even num-

bered pegs, if the line begins with the sequence CP; otherwise, delete the

cord unit following odd numbered pegs.

Rule 9 yields then the three attested strings of circle (I):

basit

tawil

madid

CCPCPCCPCP

PCPCCPCPCC

CPCCPCPCCP
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Rule 10. A sequence of three cord units functions in the permutation as a single

unit.

Rule 10 accounts for the fact that in circle II of (1) only two strings are generated:

(8) kamil CCCPCCCPCCP

wafir PCCCPCCCPCCC

Rule 11 a. A trochaic peg cannot begin a hemistich.

Rule 11 b. A hemistich may not end in a trochaic peg followed by one or more cord

units.

These two rules affect only strings in circle IV. Rule 11a excludes the string

QCCPCCPCC

Rule 11b excludes the strings

PCCPCCQCC

CPCCPCCQC

The remaining six strings that may be generated by cyclical permutation from circle

IV are all admissible:

(9) sari CCPCCPCCQ
V

mujtaee CQCCPCCPC

muktadab CCQCCPCCP

mudaric PCCQCCPCC

xafif CPCCQCCPC

munsarih CCPCCQCCP

It must be noted that rules 9, 10, 11 have a rather unmotivated appearance in the

form in which they are given above. This suggests that something essential has been

missed here.

The preceding discussion differs from the traditional treatment in that it dispenses
V

with the entities foot (juizC) and mora, which play a prominent role in the traditional dis-

cussions. We have found no use for these entities in our description, and at the present

state of our understanding we are inclined to believe that these entities appear in the tra-

ditional discussions because of certain features of the symbolic apparatus that is utilized

in the traditional discussion, rather than because of properties of the subject matter.

M. Halle

Footnote

1. This term is reminiscent of the Germanic "stave".
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C. ON THE INTERSECTION OF REGULAR LANGUAGES AND LANGUAGES

GENERATED BY TRANSFORMATIONAL GRAMMARS

1. Introduction

The studyl of transformational grammars presented in this report is based on the

definition of these objects which is forthcoming by Stanley Peters and Robert Ritchie.

This definition is in private circulation among workers in the field, and will not be

stated here, as it would be twenty pages in length. We shall, however, briefly recapit-

ulate their definition for the present purposes.

A transformational grammar, TG, consists of two parts. The first is a phase-

structure grammar which generates bracketed strings of terminal symbols. The second

is a sequence of transformations. A transformation is an ordered pair, the first mem-

ber of which is a structural condition, and the second member of which is a sequence of

operations. A structural condition, SC, is a Boolian combination of three predicates on

a given factorization of a bracketed string: (i) one sort of predicate says that a certain

factor or concatenation of factors is enclosed in a bracket of a certain type; (ii) the

second sort says that the interior of a certain factor in the factorization is identical

with the interior of another factor; and (iii) the third sort says that the debracketization

of a certain factor is identical to a given terminal string. The operations performed by

a transformation are of three elementary kinds: (i) the operation of deleting a certain

factor; (ii) the operation of replacing a certain factor by a sequence of other factors;

and (iii) the operation of adjoining a sequence of factors to a certain factor. The sequence

of transformations in the transformational component of the grammar apply by conven-

tion to the innermost S-bracket of a string 'working out' to the outermost.

The principle of recoverability of deletions is a constraint on the operations that

transformations in the transformational component of the grammar may perform. The

principle requires, in essence, that if the it h factor is deleted or is substituted for by

the jth- kth factors, then, either the it h factor must be identical to some other factor

which is not itself deleted or substituted for by the transformation, or else it must be

identical to one of a fixed finite set of terminal strings. It was thought (see e. g.,

Katz and Postal, An Integrated Theory of Linguistic Descriptions) that placing this con-

straint on CF-based TG's would make any language generated by such a device fully

recursive. Peters and Ritchie have shown that context-sensitive based TG's which meet

the condition on recoverability of deletions generate a class of languages which (modulo

Church's thesis) is coextensive with the class of all recursively enumerable languages.

We shall be concerned with the implications consequent upon a positive solution to

the intersection problem (IP) for transformational grammars (TG). The IP is as follows:

Given a context-free based TG, G 1 , which meets the condition on recoverability of dele-

tions, and a regular language, H, does there exist a TG, G Z , which is CF-based and
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meets the condition on recoverability, such that L(G 2 ) = L(G 1 ) n H?

Note first that a negative solution to this problem implies that the intersection of a

CF-based recoverable TG with a CF, context-sensitive or TG language is not generated

by another CF-based recoverable TG. As we shall see, however, the interest of IP

rests only peripherally on the implications of its negative solution. In essence, a posi-

tive solution to IP means that there are several linguistically important properties of

CF-based recoverable TG's that hold.

We shall consider TG's that meet the condition on recoverability of deletions and

have a CF base only.

2. The Filter Problem

Chomsky 2 states two functions performed by transformations in the construction

of grammars for natural languages: the first is "to convert an abstract deep struc-

ture that expresses the content of a sentence into a fairly concrete surface structure

that indicates its form." ; and the second is to act as filters on strings generated

by the context-free base allowing only a subset of those strings to qualify as deep struc-

tures for sentences grammatical in the language. 4 The formal device that he suggests
for accomplishing this is that if some obligatory transformation which should have

applied did not because its structural condition was not fulfilled, then a certain symbol

called 'sentence boundary' is left in the interior of the string. By convention, then, we

accept no strings in which sentence boundaries lie in their interiors.

It is evident that we can state the result of this convention formally by intersecting

the transformational language under consideration with a regular language, H, which

consists of all those strings over the terminal vocabulary which do not have sentence

boundaries occurring in their interiors.

Let us formalize the discussion above.

Definition 1: A filter is a transformation that must apply in each transformational cycle

in the derivation of a string in order for that string to be considered an element of the

language under consideration. (Notice that this is not a precise statement of what we need

linguistically, for, in fact, transformations act as filters in natural languages usually

when a certain part of their structural condition is fulfilled, but another part, e. g., an

identity condition, is not. It is immediately evident, however, that we can accomplish this

result by breaking the transformation in question down into two transformations which

perform the same operation and such that one of them is a filter by the above definition.)

Definition 2: The filter problem (FP) is as follows: Is the class of languages generated

by TG's with filters larger than the class of TG languages?

LEMMA 1: A positive solution to IP implies a negative solution to FP. (IP =~-FP)

Proof: Let G1 be a TG, a subsequence of the transformations of which, T ... Ti , are

filters. Form a TG, G 2, without filters as follows: the base components are the same

QPR No. 83 118



(XII. LINGUISTICS)

except that new symbols Pi ... ik are generated on the right-hand of each S-phrase

(i.e., if S - . is a rule of P 1 , then S - 4.Pi ... ik is a rule of P2). The transforma-

tions are the same, except that for each filter T. we add onto its SC the condition that
1.
J

it senses the symbol pi. and to its operation an erasure of Pi." Let H be the regular
J J

language over the enlarged terminal vocabulary consisting of those strings in which none

of the symbols Pi .' Pi. ever occurs. It is evident that L(G 1 ) = L(G 2 ) n H.
1 j

Notice that by the lemma, then, a positive solution to IP is the 'happy' solution lin-

guistically, in the sense that the linguist is not allowing an increase in the class of

structures which he is considering as potential grammars by the use of filters. On the

other hand, even a constructive solution to IP, i. e., one such that we give a procedure

for constructing G Z , given G 1 , and H, would not mean that we could eliminate filters

from use in the present framework of a transformational study of language, for the

strong generative capacity would evidently differ between G 1 and G2. And it is linguis-

tically important that the terminal strings have the correct surface structure, e. g. , for

input to the stress assignment rules of the phonological component.

3. The Optional-Obligatory Problem (OOP)

In the definition of TG by Peters and Ritchie, a transformation must apply if its SC

is satisfied by some analysis of the string. We have shown above that we can restrict

our language to those strings in which a certain transformation, in fact applied in each

cycle, modulo the IP. A natural question then concerns the class of languages generated

by TG's in which one or more transformation applies optionally. We formalize this

notion and the OOP as follows.

Definition 3: A transformation is optional when its application implies its SC has been

met. (It is obligatory when it applies iff its SC has been met.)

Definition 4: The optional-obligatory problem is as follows: Does the class of languages

generated by TG's in which one or more transformation is optional properly include the

class of languages generated by TG's, all of whose transformations are obligatory?

LEMMA 2: A positive solution to IP implies a negative solution to OOP. (IP ==-OOP.)

Proof: We shall consider a TG, G 1 , in which only one transformation is optional, and

it will be evident that the method of proof can be generalized to the case in which an

arbitrary subsequence of transformations of G 1 , including all of them, is optional.

Let G (P, (T ... Tk)), where T. is optional. Let G = (P', (T ... T .. T

where P' is like P, except that for every rule in P of the form S - w. introduce in addi-
J

tion a rule in P' S - w.Pi; and let T! be like T., except that in the SC of T.' we add the
Ji 1 1

condition that the symbol Pi appear on the right and be erased when T! applies. Let H

be all strings over the enlarged terminal vocabulary in which Pi never appears. We
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claim that L(G 1 ) = L(G2 ) n H. This can be seen by checking cases.

Case I: T i applied in a certain cycle in G . In this case, the symbol Pi was generated

by P' and T! applied in G2.
11

Case II: The SC of T i was satisfied in a certain cycle, but T i by option failed to apply.

Corresponding to this in G2 , all the SC of T! was satisfied, except that the symbol Pi
failed to appear as it did not happen to be generated in that cycle. Thus, T! failed to1
apply as its SC was not completely fulfilled.

Case III: The SC of T i was not fulfilled, and therefore it did not apply in GI . Then, in

G2 either Pi was generated by P' or it was not. In the latter case, nothing is altered.

In the former case, the symbol i will not be erased by T! and will therefore appear as

a terminal symbol; however, this string will not appear in the intersection of L(G 2 ) and

H, since it does not lie in H.

In fact, it would appear that we can arrive at a negative solution to OOP directly

without the necessity of a positive solution to IP. In the proof above, add a transforma-

tion Tk+1 which applies in the environment XpiY, and which deletes Pi. Then Pi will

never be left unerased in any string generated by G2 , and it is evident that L(GI) = L(G2 ).

Thus we can always transfer optionality in the transformations into optionality in the

base.

4. The Outermost S-Bracket Problem

According to the definition of Peters and Ritchie, it is impossible for the transforma-

tions to 'know' in which S-cycle they are operating in a string generated from the base;

in particular, they cannot 'know' when they are in the final S-cycle. From a linguistic

point of view this is a deficiency, for there is good evidence that in addition to the cycli-

cal transformations, i. e., the transformations that apply on each S-level from the

innermost one out, there must also be a set of postcyclic transforms that apply only at

the outermost S-bracket. Furthermore, these postcyclic transformations are inter-

spersed in order among the cyclic transformations in application at the outermost

S- bracket.

Definition 5: A postcyclic transformational grammar is a transformational grammar in

which a subsequence, T. ... Ti , of the transformations applies only at the outermost

S-bracket if they apply at all to a string.

Definition 6: The outermost S-bracket problem is as follows: Is the class of postcyclic

transformational languages properly larger than the class of transformational languages ?

LEMMA 3: Let G 1 be a postcyclic TG, then a positive solution to IP implies that there

exists a TG, G2 , such that y E L(G1 ) iff yt E L(G2), where t is a single symbol not in

VT.

Proof: Let T. . T be the postcyclic transformations of G 1. Form G2 by putting an
1 k
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additional rule S - c.t in P2 whenever the rule S - w. was in P . Add the postcyclic
1 2 1 1

transformations to the transformational component of G2 , preserving the relative order

of all transformations as they applied on the last cycle in G 1 , except that the structural

condition of the postcyclic transformations are altered so that they will apply only in the

environment Xt in addition to the rest of their SC's. Now, let H be the regular lan-

guage consisting of all strings over the enlarged terminal vocabulary in which the

symbol 't' occurs at the end and only at the end of each string.

The claim is that y E L(G 1 ) iff yt E L(G 2 ) f H. For let y E L(GI), where y was

derived transformationally from the string y' which was generated by the base P 1. We

then generate (y')t in the base P2, and exactly the same transformations which applied

to y' will apply to (y')t, including the postcyclic transformations that will apply in the

outermost S-bracket of (y')t because the presence of 't' triggers their application in G 2

as we have defined it above. Also, yt E H by the definition of H. Now let x E L(G ) f H.

Since x E H, we know x = yt, where y contains no occurrences of the symbol 't'. Let

yt be transformationally derived from the base structure (y')t. We know that y' E L(P 1)

by the construction of P 2 . And by the definition of the transformational component of

G. , we know that the same sequence of transformations will apply to (y')t in G 2 as will

apply to y' in G 1.
This lemma can be strengthened by using the same methods of proof. That is, all

that we have required of the postcyclic transformations in that they apply if they can,

but only to the outermost S-bracket. Suppose we require, however, that in addition all

the postcyclic transformations must apply in the last cycle (i. e. , a string will be in the

language iff all of the postcyclic transformations did in fact apply in the last cycle). We

might call these postcyclic filters, i. e., transformations which say that the final form

of the string must meet such-and-such structural conditions and must have had such-

and-such operations applied to it in the last cycle.

The question, as usual, is whether postcyclic filter grammars are essentially

stronger than grammars defined by Peters and Ritchie. And the answer, as usual, is

that a positive solution to IP implies a negative solution to this problem. The proof

utilizes the same methods as the proofs of Lemmas 1 and 3, and may be left as an

exercise.

It may be of interest to note that by using intersection with a regular language we

could demand that certain transformations apply, e.g., to all S-brackets nested, say,

17 levels below the outermost S-brackets; or that we can demand that transformation

T. apply exactly 5 cycles later than transformation T.; etc. We shall not prove these

assertions, although the proofs are not difficult; rather, the point of the remark is to

indicate the extreme power afforded us by intersecting a transformational language with

a regular language. Note, further, that the regular languages used are of a rather

simple kind. The word 'simple' here can be given a precise meaning in terms of the
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number of nestings of cycles generated by a regular grammar. In this sense, the gram-

mars for the regular languages that we have been using are the simplest of all regular
languages.

We turn now to the main result of this paper. There is good evidence, as indicated
above, that we need to intersect the strings generated by a transformational model of
the grammar of a natural language with a regular language in order to produce exactly

the grammatical sentences of the natural language. We should therefore want to find a
characterization of the class of languages generated by the intersection of a transforma-

tional and a regular language. The answer is that we can generate essentially any

recursively enumerable set in such a manner.

THEOREM 1: There exists a fixed regular language H such that for any recursively
enumerable set of natural numbers S there exists a transformational grammar G such
that nE S iff ant E L(G) fl H.5

The proof relies on a lemma that is due first to Leonard Haines.

LEMMA 4 (Haines): There exists a fixed context-free language L 1 and a fixed homomor-
phism X such that for any recursively enumerable set of numbers S there exists a

context-free language L2 such that X(L 1 i L ) = {an/n E S}.
The proof of this lemma is forthcoming by Haines, and we shall not repeat it here.

We must describe, however, the construction of L 1 and X for the proof of the theorem.

Let K be the language over the terminal alphabet {c, .. . g} consisting of all those

strings which reduce to E (if x reduces to E we shall write R(x)). A string x over

this alphabet reduces to E iff it meets one of the following conditions:

(i) x = E

(ii) (3 i)(x = cd c y ce c) & R(y)

(iii) (3 i)(x = cf ic y cg i c) & R(y)

(iv) (x = y z) & R(y) & R(z).

It is clear that we can generate K by some context-free grammar.

Then L 1 is the language over the terminal alphabet {a, b, c, ... g} as follows: L 1

(K U {a, b}* )*.

X is defined as follows: X(a) = a;

(b, .... g) = e, where e is the null string.

L2 is some CF language over the alphabet {a, .... g}.
The outline of the proof is as follows: In the base P of the grammar G we generate

two strings side by side, one each from L 1 and L2, and in addition an adjoining string

from the alphabet {a, ... g}. Let us call these strings x, y, z. The transformations then
essentially check, one symbol at a time, that x = y = z, and progressively delete x and

y at the same time. An additional transformation in each cycle performs the operation

of X on the string z. There is a postcyclic filter that ensures that z is not merely a
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proper initial part of the reflections of x and y. If some transformation fails to apply, the

string is filtered out. All deletions are in accordance with the principle of recoverability,

since we delete items from x and y only as they are equal to something in z, and we

delete symbols in z in performing X by virtue of equality with one of a finite number of

terminal strings.6 A trick is used to ensure that P provides us with the number of S

recursions needed to completely refine any string by means of the transformations.

We shall proceed with the details of the description of G. G = (P, (T, T 2, T 3)),

where P is the context-free base defined by the following rules.

S - Sap, S - Sa 1p3t S - S 1SZapl

S a Sgpl S SgP31 3t S - -- S1S 2zg

S -- S1Sz ap 3t

S _- S 1S glp 3 t

This system of 28 rules can be collapsed into one rule by the well-known convention

as follows:

S P1 (p 3 t)

S

1S2 1 (p 3t)

S 1 is the initial symbol of the CF grammar that generates language L 1 described above,

and S2 is the initial symbol of the CF grammar that generates language L 2 , where L 2

varies according to the recursively enumerable set S.

We shall not write the transformations in the formal notation of Peters and Ritchie,

since this notation is somewhat opaque. Rather, we shall use an informal notation close

to that which appears in most monographs in linguistics. It can be checked that the

operations described informally below do not exceed the capacity of the Peters-Ritchie

transformations.

T 1'

Analysis: [ x S ]S Z 3 t

such that (i) x and y are single terminal symbols

(ii) Z is any string over the alphabet.
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Operation: delete 'P3

T 2

Analysis: [Xx ]S 1 [ Yy ]S z Z z Pl W

such that (i) X, Y, Z, and W are any strings, including the null string

(ii) x, y, and z are single terminal symbols

(iii) x = y= z.

Operation: delete x, y, and 'P '

T
3

Analysis: Z z (t)

such that (i) Z is any string, including the null string

(ii) z is a single terminal symbol from the set {b .... g}

Operation: delete z.

(Note that T 3 is written as representing really two transformations, one of which oper-

ates in the environment 'Z z t', and the other of which operates in the environment

'Z z'.)

Explanation: The language generated by P consists of strings of the form [S..." [S[S 1 ]S

[SzY ]S 2 U 1I( 3 t) ]S ... unl(P 3 t) ]S' where x E L 1 , y E L 2 , and (ul... un) is an arbi-

trary string over the terminal alphabet. T 1 operates as a postcyclic filter because of

construction of the regular language H below. T 2 checks that the rightmost symbol of
'x' equals the rightmost symbol of 'y' equals u. in each cycle. If this equality holds,

the former two and the symbol 'Pl' is deleted. If the equality fails to hold, 'P11' is left

in the interior of the string and it is filtered out by construction of H. T 3 performs the

operation of the homomorphism X in each cycle; it is important that T 3 follow T 2 .
Let H consist of all strings over the terminal alphabet of the form ant, all P. In

an accepted string, 'P3 t ' is generated nowhere in the string except in the first cycle. If

it appears in the middle somewhere, or not at all, the string is filtered by H. The

string is accepted if x = y = (u n . .. u 1 )  T 2 progressively deletes 'x' and 'y', and T 3
performs k(ul. .. un). The following cases exhaustively treat strings generated by P

which fail to be in L(G) n H.

Case 1. lh(x) < n, or 1h(y) < n. Then, is some cycle the SC of T 2 will not be fulfilled,

T 2 will fail to apply, 'IP' will not be erased, and the resulting string will not be in H.

Case 2. lh(x) = 1h(y) = n, but the three-termed equality fails at some cycle. Then T 2
fails to apply, 'P ' is not erased, and the resulting string is not in H.

Case 3. lh(x) > n or 1h(y) > n. Then T 1 will sense on the last cycle that there is more

than one symbol left in either 'x' or 'y', it will fail to erase 'P3' and the resulting

string will not be in H.

We have, thus, that for all x, x E X(L 1 n L 2 ) iff x E L(G) n H. (For ease of reading,

'P1' should be written 'P2', and 'P3' written ' P'. The incongruity is due to a
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modification in ordering of the transformations while the proof was being written.)

Consider now the class of CF-based TG's with arbitrary deletions. A member of

this class can be considered as a finite calculating procedure, and thus, by Church's

thesis, the class of languages generated by this class of grammars is no greater than

the set of all recursively enumerable languages. From these considerations, we then

have the following result.

COROLLARY 1: For every CF-based TG with arbitrary deletions, G 1 , there exists a

regular language H and a CF-based TG which meets the condition on recoverability of

deletions such that L(G1 ) = L(G Z ) n H.

The answer to the converse question is given in the following theorem.

THEOREM 2: For every recursively enumerable set of natural numbers, S, there

exists a CF-based TG with arbitrary deletions such that for all n, n E S iff ant E L(G).

Proof: The proof proceeds by imitating the proof of Theorem 1 with a slight modifica-

tion. That is, we add to the grammar described in the proof above a new transforma-

tion, T 4 , which is ordered to follow the other transformations. T 4 will delete all

terms of its analysis if it ever senses "'1' or 'P3', or if it senses 't' in the interior of

a string. Actually, as transformations are now set up, it may be impossible to tell a

transformation, "do such-and-such if you sense a certain symbol anywhere besides on

the rightmost side of the S-phase in which you are working." If 't' is generated by the

base of G somewhere in the interior of a string, however, and ' 3' is in fact erased by

T1 because the latter's SC is satisfied, then on the next cycle 't' will appear either

two or else four symbols in from the right-hand side of the S-phase, because of the

definition of P. This predictability in the occurrence of 't' allows us to build a mecha-

nism into T 4 to sense 't' if it ever occurs in the interior of a string.

COROLLARY 2: For every CF-based TG 1 which meets the condition on recoverability

and every regular language H there exists a CF-based TG 2 over the same alphabet

with arbitrary deletions such that L(G 1 ) n H = L(G2 ).

The implications of Corollaries 1 and 2 for linguistic theory are as follows: If we

increase the power of a transformational model of a grammar of a natural language by

allowing intersection with regular languages, as evidently we must in order to handle

filters and postcyclic transformations, then we do not reduce the weak generative capac-

ity of the class of grammars proposed as models by restricting them with the condition

of recoverability of deletions. The important side of this equivalence is given by Corol-

lary 1; namely, given a language L generated by a CF-based TG with filters and post-

cyclic transformations and which uses arbitrary deletions, then we can generate L

with a CF-based TG with filters and postcyclic transformations which meets the condi-

tion on recoverability of deletions.

In terms of weak generative capacity, then, adding the principle of recoverability of

deletions to a CF-based TG with filters and postcyclic transformations is ornamental.
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It would be incorrect, however, to conclude that we have therefore a mathematical

proof that in the present context of transformational analysis the principle of recover-

ability of deletions is without empirical content, since the linguist is interested in the

strong generative capacity of those grammars that he proposes as models for the gram-

mars of natural languages.

Let us return finally to that with which we began, i. e. , IP. Corollary 2 suggests a

method by which to prove the negative of IP by proving that CF-based TG's with arbi-

trary deletions are stronger than CF-based TG's that meet the principle of recover-

ability of deletions. On this basis, one suspects immediately that IP does, in fact,

receive a negative solution, although I have not seen a proof that the condition on

recoverability of deletions may not be dispensed with where filters and postcyclic trans-

formations are not employed.

Note, however, that a negative solution to IP does not mitigate the force of the

remarks above concerning the power that we are adding to a TG by allowing filters and

postcyclic transformations. For Theorem 1 could be rephrased by dropping the part

about the regular language H and adding that G is a TG with filters and postcyclic trans-

formations. That is, if the conjecture above does in fact hold, namely, if CF-based TG's

with arbitrary deletions are stronger than CF-based TG's with recoverable deletions,

then we are increasing the generative power of this latter class of objects by adding fil-

ters and postcyclic transformations to them.

We should make the final remark that if the IP receives a negative solution, as we

have conjectured that it does, then languages generated by the Peters-Ritchie transfor-

mational grammars turn out to be strange mathematical objects. For it is known that

the other classes of grammars that have received extensive study, namely, regular

grammars, context-free grammars, and context-sensitive grammars, do not increase

in generative capacity upon intersection with a regular language.

If the IP does, in fact, receive a negative solution, then we have a characterization

of the extent to which the addition of the condition of recoverability of deletions restricts

the weak generative capacity of CF-based TG's. This is to say, dropping the condition

on recoverability will extend the weak generative capacity of CF-based TG's exactly as

much as will intersecting the 'recoverable' languages with regular languages. Further-

more, if IP receives a negative solution, then allowing filters and postcyclic transforma-

tion extends the generative capacity of CF-based TG's exactly as much as does

intersecting the languages generated by these devices with regular languages. A

stronger result, which comes from an analysis of the proof of Theorem 1, is that the

addition of filters and postcyclic transformation extends the generative capacity

of CF-based TG's exactly as much as the generative capacity of these grammars is

restricted by adding the condition on recoverability of deletions, providing that IP has

a negative solution.

QPR No. 83 126



(XII. LINGUISTICS)

5. Linguistic Implications

It may be plausibly argued that the results obtained concerning the generative power

of certain classes of transformational grammars are of only peripheral interest for lin-

guistics. For, what is of interest linguistically is the internal structure of the recur-

sive devices that serve as models for grammars. That is, suppose that we find

(somehow) that we do need a class of devices to serve as models of grammars such that

any recursively enumerable set can be generated by one of these devices. This does not

mean that the problem of constructing grammatical models for natural languages loses

interest on the ground that all we shall have shown is that grammars are, after all,

finite computational devices, which is always the implicit assumption in any case. The

linguistically interesting properties of grammars reside largely in the formal properties

of their rule systems, rather than in their generative capacity.

Generative capacity has been of linguistic interest, in that past, only in a negative

sense. That is to say, a characterization of the generative capacity of a class of devices

has been useful traditionally only in showing that such kinds of devices can not function

as models for grammars. Thus, it can be shown that there are nested dependencies

obtaining in natural languages which in principle are beyond the expressive capacity of

regular grammars, and presumably the same is true of grammars that generate context-

free languages, although several proofs of this now in circulation need revision, since

Ullian has shown a conjecture of Haines concerning nondoubling languages to be false.

In this light, we may ask whether the results reported here are of any central inter-

est to linguistics. I believe they are in the sense of suggesting certain changes in the

theoretical structure of Aspects. The proof of Theorem 1 does not depend upon deep

properties concerning the internal structure of TG's, but rather relies on a series of

tricks. These tricks are predicated on the fact that a transformation can read a

certain terminal symbol generated by the base which triggers its operation. Note also,

that we used this device in the proof of Lemma 2, which is linguistically surprising in

view of the past discussions concerning whether transformations in natural language

ought to be obligatory, optional or a mixture. The current work in restricting the gen-

erative capacity of TG's is concerned with strengthening the condition on recoverability

of deletions. 7 One very obvious means, however, of restricting generative capacity

which is suggested by the theorems above is that of not allowing transformations to be

sensitive to the existence of terminal symbols or terminal strings. Formally, this

would mean that we eliminate one kind of predicate from availability for use in the SC

of a transformation, namely, the third kind mentioned above.

The constraint of not allowing transformations to 'read' lexical strings has been pro-

posed by others. And we find in our results further reasons of a purely mathematical

nature for imposing this constraint. The empirical question that is raised, then, is that
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of whether a transformational grammar with this constraint is sufficiently powerful to

generate all and only the grammatical sentences of a given natural language.

J. P. Kimball
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