
XIX. LINGUISTICS

Academic and Research Staff

R. Jakobson
A. N. Chomsky
J. A. Fodor
M. Halle
J. J. Katz
R. P. V. Kiparsky

G. R. Bedell IV
T. G. Bever
E. W. Browne
R. J. Carter
P. G. Chapin
Janet P. Dean
R. P. G. DeRijk
R. C. Dougherty
J. E. Emonds
J. L. Fidelholtz

Prof. E. S. Klima
Prof. J. Kurlyowicz
Prof. G. H. Matthews
Prof. Krystyna Pomorska
Dr. S. Bromberger
Dr. M. F. Garrett
Dr. J. S. Gruber

Graduate Students

M. L. Geis
R. Goldfield
J. W. Harris
T. R. Hofmann
R. S. Jackendoff
L. Jenkins
R. S. Kayne
J. P. Kimball
R. L. Mendelsohn

Dr. S.-Y. Kuroda
Dr. A. Schwartz
Dr. D. E. Walker
G. B. Gragg
P. L. Peterson
J. J. Viertel

Amy E. Myers
A. J. Naro
D. M. Perlmutter
P. S. Peters, Jr.
C. B. Qualls
J. R. Ross
M. S. Snow
Carol A. Spielman
R. J. Stanley
Nancy H. Woo

A. A CHARACTERIZATION OF ESSENTIALLY CONTEXT-SENSITIVE LANGUAGES

The object of this report is to give a characterization of essentially context-sensitive

languages (i. e. , context-sensitive languages that are not context-free) and, for that

matter, a characterization of context-free languages among context-sensitive languages.

We begin by introducing a restricted type of linear-bounded automata, linear-bounded

automata with erasure:1

Definition. A lba M is said to be a lba with erasure if M contains in its alphabet

a special symbol c that does not affect computation in any way, i. e. , if M scans a

square with the symbol j it will not replace it by another symbol, will not change its

states, and will continue to move in the same direction as it has moved into the scanned

square (namely, continue to move to the right (left) if it has moved to the right (left) or

stay on the scanned square if it has stayed there). More exactly, the set of states of

M is divided into three disjoint subsets, S+ , SL , and S in such a way that M is in one-1' -- 1' -o
of the states in S+1 (S 1 , or S 0 ) just after it has moved to the right (left or not moved),

and further for every instruction of the form

(, S) - (a, T, D)

This work was supported principally by the U. S. Air Force (Electronics Systems
Division) under Contract AF 19(628)-2487; and in part by the Joint Services Elec-
tronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract
DA 36-039-AMC-03200(E), the National Science Foundation (Grant GK-835), the National
Institutes of Health (Grant 2 PO1 MH-04737-06), and the National Aeronautics and Space
Administration (Grant NsG-496).

QPR No. 82

Prof.
Prof.
Prof.
Prof.
Prof.
Prof.

215



(XIX. LINGUISTICS)

a is 4 , T is S, and D is +1, -1, or 0 according as S is inS , S_ , or S

We define the notion of acceptance by a iba with erasure M as follows: a string x

is accepted by M if there is a computation of M which accepts x in the usual sense of

acceptance by a iba and if, moreover, at the end of the computation the tape contains

only 4 's. Acceptance by a iba with erasure in this sense may be referred to by accept-

ance with erasure. In spite of the apparent specialization of the notion of iba, it is easy

to see that lba with erasure are as powerful as iba in the general sense; we state without

proof the following proposition.

Proposition. If a language L is accepted by a lba, there is a iba with erasure that

accepts L with erasure.

Now, let M be a iba with erasure and for each pair of states (Si, S ) of M let [Si, Sj]
be the set of strings accepted by the lba with erasure Mi j which is the same as M

except that its initial and final states are redefined as Si and Sj, respectively.

Let x = yz be in [Si, Sj]. We shall say that x is partitioned into y and z in [Si, Sj]
if (i), given x as an input, there is a computation C of M with S. and S as the initial1 j
and final states, respectively, which accepts x with erasure, and (ii) C is divided into

two successive subcomputations C1 and C 2 in such a way that, during C 1 and C 2 , M

scans, respectively, only the subtapes on which y and z are printed originally. In

other words, at the beginning of the computation C, M is scanning the leftmost element

of x (it is also the leftmost element of y) in the state Si; at some moment M will scan

the leftmost element of z for the first time, say, in the state Sk; this must be the end

of the subcomputation C 1 and at the same time the beginning of the subcomputation C2;

at this moment y has all been replaced by 4 's; after this M will never go to the left

of the square that it is then scanning.

If x is partitioned into y and z in [Si, Si], then y and z are elements of [Si, Sk] and

[Sk, Sj], respectively, for some Sk . Conversely, if x is in [Si, Sj] , x = yz, and y and

z are in [Si, Sk] and [Sk, Sj] with some Sk, respectively, then x is partitioned into y

and z in [Si, Sj].

Let x be again in [Si, Sj] and let x = vyw, where v, y, and w are non-null. We say

that x is decomposed into an interior y and two boundaries v and w in [Si, Sj] if there

is a computation C with the initial and final states S. and S. which accepts x with

erasure and will be divided into three consecutive subcomputations C 1 , C 2, and C 3 in

the following way. At the beginning of the first subcomputation C 1 (i. e. , actually at the

beginning of the entire computation) M is scanning the leftmost element of v (i. e. , the

leftmost element of x). During the subcomputation C 1, M stays inside the subtape on

which v is originally written. At the end of C1 , M will drop off the right edge of that

subtape and scan the leftmost element of y in the state, say, Sk . This is at the same

time the beginning of the subcomputation C 2 . During C2, M stays entirely inside the

subtape on which y is originally written. At the end of C 2 , this subtape contains only 4's

QPR No. 82 216



(XIX. LINGUISTICS)

and M drops off the right edge of this subtape, scanning the leftmost element of w in

the state, say, S . Then the final subcomputation C 3 begins. During C3, M may scan

any square of the entire tape, but the subtape on which y is originally written does not

affect the computation in any way, since it now contains only c 's. At the end of C 3 (i. e. ,

at the end of the entire computation) the entire tape contains only 's and M drops off

the right edge of the entire tape in the state S..
J

In the sequel we are interested only in such cases for which the two boundaries v and

w of a decomposition are elements (i. e. , strings of length 1).

We have the following theorem.

Theorem. Let M be a lba with erasure. If for any pair of states (Si , S ) and for any

string x of length greater than 1 in [St, Sj], x can be either partitioned into two sub-

strings or decomposed into an interior and two boundaries of length 1, then the language

L(M) accepted by M is context-free.

Proof. For each pair of states (Si., S.), let us now consider [S., S.] as a nonterminal

symbol for a grammar G, and let

[Si, Sj] - [Si, Sk][Sk, Sj]

be a rule of G for any i, j, and k. Further, let

[Si, S j ] - a[Sk, S2 ]b

be a rule if there exists x in the set [Si. Sj] which can be decomposed into an interior y

and boundaries a and b in [Si, Sj] , where y is in [Sk, S ] . Further, if an element a is

in [S, Sj], let

[Si, Sj] -a

be a rule of G. Finally, let S be the initial symbol of G and for each final state Sf of

M let

S - [S0, Sf]

be a rule of G, where S is the initial state of M. Then, L(M) is just the language gen-

erated by G.

From the theorem we obtain a well-known result that was first due to Chomsky and

Schiitzenberger:2

Corollary 1. If a language is accepted by a pushdown storage automaton, it is

context-free.

Proof. A pushdown storage automaton can be simulated by a real-time pushdown

storage automaton. 3 It is easy to see that a real-time pushdown storage automaton can

be regarded as a lba with erasure with the property stated in the theorem.

Actually, Haines derived this result from the equivalence of pushdown storage

QPR No. 82 217



(XIX. LINGUISTICS)

automata to real-time pushdown storage automata. 3 In his construction of a context-free

grammar equivalent to a real-time pushdown storage automaton he refers to the instruc-

tions of the automaton rather than to its states as we did above in the proof of our

theorem, and it would seem that the significance of the correspondence of the grammar

and the automaton is not sufficiently clarified. Furthermore, he did not relate the notion

of real-time pushdown storage automata to that of linear-bounded automata in an explicit

way. Hence, although our theorem is a fairly straightforward generalization of his

result, it may be of some interest, in particular, when we relate it to the fact that

linear-bounded automata are the automata-theoretic counterpart of context-sensitive

grammars, that is, that a language is context-sensitive if and only if there is a linear-

bounded automaton that accepts it. 4 In fact, our theorem will give a certain character-

ization of essentially context-sensitive languages. Let us first put it in the following

way.

Corollary 2. A context-sensitive language L is not context-free if and only if for

any lba M with erasure that accepts it there exists a string in it which cannot be

accepted by a completely localized computation of M.

The precise meaning of completely localized computation is as follows. Given a

string x, consider a computation C starting at the left end of x with a state S. and
1

ending at the right end of x with a state S , and with the tape filled entirely with 's.

This computation is said to be localized if (i) x is partitioned into y and z in [Si, Sj],
where y is in [Si, Sk] and z is in [Sk, Sj] for some Sk, and the computation C consists

of two successive subcomputations C 1 and C 2 which correspond to this partitioning of

x into y and z, or (ii) x is decomposed into an interior y and two boundaries a and

b and C consists of three successive subcomputations C1, C 2 , and C 3 which corre-

spond to this decomposition of x into a, y, and b. A computation C of x is said to
be completely localized if (i) x is of length 1, or (ii) if C is localized with respect
to a partitioning of x into y and z and the corresponding subcomputations C 1 and

C2 are both completely localized, or (iii) C is localized with respect to a decom-

position of x into a, y, and b, and the corresponding subcomputation of the interior

y is completely localized. In brief, a computation is completely localized if x is

processed by gradually partitioning and decomposing it until single elements are

reached.

Let us reformulate Corollary 2 in terms of (general) lba. We define the notion of

partition and decomposition with respect to a lba similarly to those notions with respect

to a lba with erasure, except that in this case we do not require that after each subcom-

putation of a partition or after the subcomputation of the interior of a decomposition the

corresponding subtape is filled with 's, but we do require of a decomposition that what-

ever is left on the interior subtape after the second subcomputation of the decomposition

does not affect the computation during the last subcomputation of the decomposition. 5 We

QPR No. 82 218



(XIX. LINGUISTICS)

then define the notions of localized and completely localized computations with respect

to a lba in the same way as with respect to a iba with erasure.

Now, given a lba M, we can construct a lba with erasure M' which is equivalent to

M in such a way that if x is accepted by a localized computation of M it is accepted by

a localized computation of M'. Indeed, M' can be constructed, in brief, by equipping

M with a device that erases symbols (i. e. , replaces them by c) on the tape. Thus, we

have the following corollary.

Corollary 3. A context-sensitive language L is not context-free if and only if for

any lba M that accepts L there is a string in L which cannot be accepted by a com-

pletely localized computation of M.

L and M being as in Corollary 3, the set of all strings of L which cannot be accepted

by a completely localized computation of M is obviously a subset of L which is respon-

sible for the degree of complexity of L as a context-sensitive language and itself cannot

be, for example, context-free. 6

S.-Y. Kuroda

Footnotes and References

1. By linear-bounded automata (hereafter abbreviated as iba) we understand nondeter-
ministic linear-bounded automata. For the definition of iba, see S.-Y. Kuroda,
"Classes of Languages and Linear-bounded Automata," Information and Control 1,
207-223 (1964). Note, however, that boundary symbol # is dispensable in the defi-
nition of iba, contrary to the remark made in footnote 3 of this paper; see
S. Ginsburg and G. F. Rose, "Preservation of Languages by Transducers" (to appear
in Information and Control).

2. N. Chomsky, "Context-free Grammars and Pushdown storage," Quarterly Progress
Report No. 65, Research Laboratory of Electronics, M. I. T., April 15, 1962,
pp. 187-194; M. P. Schiitzenberger, "Context-free Languages and Pushdown Auto-
mata," Information and Control 6, 246-264 (1963).

3. L. Haines, "Generation and Recognition of Formal Languages," Ph. D. Thesis,
M. I. T. , 1965.

4. S. -Y. Kuroda, op. cit.

5. In this case the definitions of partition and decomposition are, in a sense, behavior-
istic. Thus, for example, we know that x is decomposed as ayb with respect to a
computation only after having observed that the computation ended in the prescribed
way, and not by means of a particular instantaneous description of computation that
appears during the computation. Assume that we define [Si, Sj], analogously to the

previous case of lba with erasure, as the set of strings that are accepted (this time
in the general sense without erasure) with the initial and final states S. and S., respec-

tively. Then, on the one hand, it remains true that the product set [Si, Sk][Sk, Sj] is

a subset of the set [Si, Sj]. But, on the other hand, it does not hold that a[Sk, S]b is

a subset of [St, Sj] if there exists a string x in [Si, Sj] which is decomposed as ayb

with y in [Sk, S]. Thus, the proof of our theorem cannot be generalized directly to

the general case without erasure.

QPR No. 82 219



(XIX. LINGUISTICS)

6. Actually, the notions of iba and context-sensitive grammars are not essential restric-
tions in developing the ideas pursued in this report, and our theorem and corollaries
can be generalized as statements in terms of Turing machines and unrestricted
rewriting systems. On the one hand, this generalization is rather straightforward
conceptually, but, on the other hand, its exact formulation would become greatly
involved, since we must formulate a type of Turing machine that is allowed (not only
to add at the edges but also) to insert a piece of tape between two squares. Thus we
have restricted ourselves here to dealing with cases within the machinery that is
readily available at present.

QPR No. 82 220


