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A. INCOHERENT SCATTERING OF LIGHT FROM A PLASMA III

The adoption of an infrared laser, optics, and detector, for observation of coopera-

tive scattering effects from a plasma, was previously reported. Provided the signal-

to-noise is not seriously degraded for detection of small signals in the infrared versus

visible light, a great benefit in the form of enhanced spectral width is available, thereby

enabling a more detailed experimental view of plasma cooperative effects. The attendent

difficulties are mainly two: one being the considerable black-body radiation at a wave-

length of 10 microns, the other arising because thermal wavelength detectors are not as

sensitive as photomultipliers in visible light.

The H 2 , CO 2 laser 2 was operated at an internal power level of several hundred watts,

the measurement being achieved by coupling a fraction of the power out through a small

hole in one mirror. A direct current discharge of =50 ma, at a field of 4 kv/meter in a

gas mixture of 0. 7 torr CO., 1.5 torr N 2 , 2. 8 torr He in a glass tube of 25 mm I. D. and

3 meters length yielded 1-watt cw coupled out through a 1-mm diameter hole in one mir-

ror. Since the laser produces its power at a nominal 10. 6 microns, NaCl windows and

gold-coated mirrors (aligned in a hemispherical mode) formed the optical arrangement.

Measurements were made with a calorimeter designed to measure power directly in the

steady state. The power absorbed at one end of a copper rod gives a thermal conduction

along the rod, which in a few heat-diffusion times relaxes to a constant energy conducted

per unit time. The temperature difference between two points is linear with the input

power, for nominal temperature rises; moreover, convective and radiative losses can

be corrected for. It is anticipated that through a larger hole, a significant increase in

power could be coupled out, and future work will explore this possibility.

With regard to the scattering experiment; the equivalent noise power, in the thermal

fluctuations of dry-ice temperature black-body radiation, previously reported was

This work was supported by the United States Atomic Energy Commission (Contract
AT(30-1)-3285).
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PN z 10- 1 3 watt/(cps)1/2. This calculation was based on an effective field of view of 60

for the mercury-doped germanium detector. In fact, to observe a larger scattering vol-

ume, a re-design has led to an F.O.V. z 20 , thereby increasing noise. Furthermore,

since it would be desirable to leave the optics at room temperature rather than to cool

to dry-ice temperature, the more obvious way to proceed would be to use a cooled optical

filter in front of the sensitive area of the detector. With the filter inside the cold shield

of the detector (4 K), the filter would be essentially noise-free, the limiting noise being

the background fluctuation level within the filter bandpass.

A comparison of the merits of cooling the background (temperature Tb) and reducing

the bandwidth at the detector (nominal bandwidth z 12 microns) is made in tabular form
- 3  2

below. The detector has an area = 10 cm , and sees a solid angle A~ = 0. 094 ster.

Tb(OK) A%() PN(watts/(cps) 1/2

300 12 4.3 x 10 - 1 3

300 0. 12 4.3 X 10- 14

195 12 1.3 X 10 - 13

195 0. 12 1.3 X 10 - 1 4

Equally important with keeping noise power down to tolerable levels (since signal
-14

watts will be < 10 watt) is the problem of achieving high enough detector responsivity

= signal volts per unit power detected. The responsivity goes up proportional to the

decrease in DC background radiation. Typically, a detector with full-wavelength band-

width looking at a 300'K background has a responsivity of 4 X 105 volt watt - 1 , whereas

a reduction of 100 in DC background would give 4 X 107 volt watt - i . At the former

responsivity a signal voltage of only 2 nanovolts would have to be measured (from a

source impedance of many hundred kilohms) which is considerably below the noise figure

for any available preamplifier. Thus amplifier noise would intrude along with photon

noise. Also, the photoconductive detector is quiescent current biased, and a load resistor

couples out the signal. The Johnson noise of a 1-MQ resistor is =130 nanovolts/(cps)l/2

at room temperature, and z15 nanovolts/(cps)1/2 at 4°K. Thus a high responsivity is

mandatory, and the use of, or combination of, cooled optical filter and reduced back-

ground is required. The one disadvantage to reducing the background lies in the fact

that the detector impedance goes up, typical values being z4 MQ for a background noise

power 10 -13 watt/(cps) 1/

Noise measurements of several low-noise preamplifiers have been conducted, with

noise source input impedances from a few hundred kilohms to 10 megohms. A preampli-

fier utilizing field-effect transistors with an input impedance of 1000 MU was tested, and
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Fig. XIII-1. Experiment for observation of cooperative scattering
effects from a plasma.

a high-Q bandpass filter for the output was designed and tested. The nominal noise

voltage referred to the preamplifier input is 70 nanovolts/(cps)1/2 near 1 kc, with a

source impedance of up to 10 M2. With the larger responsivity, then, the signal level

will be equal to or greater than the amplifier noise.

The detector has provision for installing a narrow bandpass filter, and this will be

done. The filter achieves two ends - namely, reducing the background fluctuation level,

and blocking all of the lower and higher modes of the Fabry-Perot interference filter.

An over-all schematic diagram of the experiment is shown in Fig. XIII-1. The question

of whether the plasma will be intracavity to the laser, or whether a focused external

beam will be used, will depend on the final ratio of internal to external watts.

A. A. Offenberger
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B. NONADIABATIC TRAPPING IN TOROIDAL GEOMETRY

The construction of a toroidal nonadiabatic electron trap1 is now complete, and a

cw circulating electron beam has been achieved. This report describes measured and

calculated characteristics of the injected and trapped electron beam.

The device consists of a racetrack-shaped torus, 6. 15 meters long with an 11. 1-cm

I.D. The straight sections are 1.45 m long, B = 70 gauss, injection energy E = 2. 0 kV,

base pressure in the 10- 6 torr range, Larmor radius (if all 2. 0 kV are in the perpendic-

ular direction) rb = 2. 1 cm. The U-bend drifts are cancelled by vertical magnetic fields.

Rotational transform windings have been installed, but are not being used at present.

The electron beam (a few microamperes) is injected at an angle of 63. 3 with respect
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to the magnetic field. This results in a Larmor radius rb = 1. 9 cm with 80% of the

beam energy perpendicular to B.

TOP VIEW

BEAM PATH

3cm

SIDE VIEW

10 m Fig. XIII-2. Electron-beam injector.

BEAM PATH

V 1  
= 900

V2  
=900

Figure XIII-2 shows the injector configuration. The injection point is one Larmor

radius off-axis so that the guiding center is on the axis. The vertical electrostatic plates

furnish the proper E field to yield a horizontal trajectory to the tip of the injector snout.

A horizontal deflector bends the beam through an angle of 26. 7 in the horizontal plane.

The beam is thus injected as a helix of radius 1. 9 cm and pitch 6. 0 cm. The beam then

encounters the "corkscrew" 2 which has been designed to transform perpendicular energy

to parallel energy by resonant perturbation of the orbit. The corkscrew produces a

small magnetic field (3. 0 gauss) which is perpendicular to the main field and rotates in

space with a pitch that increases with length (see Fig. XIII-3) in synchronism with the

pitch of the beam. Thus the beam "sees" a X B force which monotonically increases

the parallel energy and straightens or "unwinds" the helical beam.

The performance of the corkscrew in unwinding the beam was checked by analyzing

the parallel energy of the beam with a retarding potential screen and Faraday cup appro-

priately biased to retain secondary electrons. The parallel energy distribution is shown

in Fig. XIII-4. Ideally the beam at the input to the corkscrew would be a spike at

400 volts, and the output a spike at 2000 volts. In reality the input beam has

a large divergence, and so the output is spread in energy. The fact that such

a large fraction of the input beam is unwound is due to the stability of the unwinding
3

orbits. The reason for the large spread in parallel energy of the input beam

is not yet understood.
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Fig. XIII-3. Perturbation field coil "Corkscrew."
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Fig. XIII-4. (a) Parallel energy distribution
the entrance to the corkscrew.
(b) Parallel energy distribution
the exit of the corkscrew.
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With the aid of fluorescent screens and grids which could be rotated into the

beam path, we ascertained that the beam was, in fact, closing on itself. In order

to measure the number of transits around the device, we employed the ion col-

lector 4 shown in Fig. XIII-5. The ion current collected is proportional to the

electron current and the background gas pressure. By bending the beam into the

wall after it passes through the collector, we measure I I , the ion current for

one transit. Then I N is measured for the closed circulating beam. The average

number of transits, N, is the ratio of the measured currents, IN/I I . By varying

the vertical field on the U-bends to obtain the "best" beam closure, N was max-

imized at approximately 15.

If all the loss was due solely to a directed drift, then N = vIo/ < >, and

if the loss was due solely to random steps, then N= vi o/  i . In reality we have

a combination of both; however, we can take the two extreme cases and place

upper bounds on v) and A 1/ as follows. vio is proportional to the

radius to the gun snout, 1.4 cm (see Fig. XIII-2), and vo is proportional to

rb = 2.1 cm. Also, we assume that the guiding center stays on the axis.
o

___> vlo 1.4
_< _ = 04

v Nv 15 X 2. 13 "
o o

1/2

____ < Vlo 1.4
< - =.17

v N1/2v 151/2 X 2. 13
o

A theoretical description is being worked out simultaneously with the experi-

mental work and runs as follows. Let f be a vector whose components fi equal

the number of electrons with normalized magnetic moment s = v /vo between

s i +-< s < s Then

df(s, t)

dt - Of(s, t-t') - Lf(s, t-t') + S(s, t),

where t' is the transit time,

f1 S l

2 S2
f = . = distribution S = . = source

function

f S
n n
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011 O12 . . O1N

21
O = = scattering

in matrix

ON1 ONN

L1 0

L 2

L = L 3  = scattering
out matrix

0 LN

where

O.. = probability that an electron in the jth, s interval when it enters the "corkscrew"

perturbation field will make a transition to the 1 t h , s interval divided by the time that

the electron took to make one transit of the torus.

Oii is set to zero, since this transition does not contribute to df/dt.
L. = probability that an electron in the 1 t h , s interval will make a transi-

th
tion out of the i , s interval divided by its transit time.

For the steady state,

df/dt = 0

-i
f = -(O-L)-1 S.

The elements of the O and L matrix are obtained by numerically integrating the
equation of motion for a given input s and many phase angles 0, which gives an s at the
output for each 0 at the input. From these computations the probabilities can be con-
structed, the O-L matrix can be formed, and the inverse obtained on the computer. This
gives the steady-state distribution.

We have divided s space into 9 intervals plus the "loss cone" where s(loss) = 0.44

(see Fig. XIII-6) and where the guiding center has been assumed to remain on the axis.
The results are

9

f. As.
i= l

N = 9 = 6.4 transits.

S.As.

i= I
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It is quite likely that the discrepancy between measured and computed values results

from a slow downward drift of the beam when the circulating current is experimentally

maximized. This would move the particle guiding centers away from the injection snout

even as they scattered in s and so reduce the effective size of the velocity-space loss

cone.

u.c Fig. XIII-6. Loss cone in velocity.z
6-

0.5 1.0

" 0/Vo

The number of transits obtained experimentally and computationally are preliminary,

and work is in progress to improve the techniques; however, the number of transits is

large enough to be used for measurements of diffusion produced by added perturbating

fields as originally planned.

R. W. Moir, L. M. Lidsky
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C. NONADIABATIC SCATTERING IN MAGNETIC FIELDS

1. Measurements of Particle Escape from a Corkscrew Magnetic Trap

Figure XIII-7 shows the experimental apparatus that is being used to investigate the

trapping and loss of particles in a "corkscrew" 1 nonadiabatic magnetic field. A 1600-volt
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Fig. XIII-7. Nonadiabatic trapping experiment.

5-10 amp electron beam was injected parallel to the axis of the system through a tube

piercing the center of Collector I which was located just outside Mirror I. Mirror I was

adjusted to produce a 1:1 mirror ratio, and

Mirror II was set at 5:1. With no corkscrew

( current, the beam struck Collector II where

its energy spectrum was measured by the

Z . retarding-potential method. When the cork-
w

a- z screw current exceeded 25 amps, the beam

Sr iwas given sufficient transverse energy to be

a: 25 n reflected by Mirror II and was collected by

30 Collector I. Mirror II was then set equal to
w 35 w Mirror I so that the beam was trapped.
-J

-J 400 Under these conditions 70% of the beam
O (n)
o Y current escaped through Mirror II and

O practically none through Mirror I. The

rest presumably escaped radially or was

1600 0 stopped by the detector screens. An

VOLTS VOLT increase of current to an unshielded

annular detector was noted, but no quan-
Fig. XIII-8. Escaping particle current titative measurements were made because

as a function of retarding
potential, secondary electrons and ions could not be
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separated from the injected particles.

Figure XIII-8 shows the energy analysis made at Collector II for 5 values of the cork-

screw current. In this figure the particles are distributed from 1600 volts (the total

beam energy) to nearly zero. This is due to the position of Collector I in the mirror's

throat. Particles that are scattered into the loss cone in the uniform central region have

parallel energies ranging from 1600 volts to 1280 volts, the minimum parallel energy

necessary to penetrate the mirror. As the 1280-volt particles move farther into the

mirror from the central field region, conservation of magnetic moment converts parallel

into perpendicular energy. Just at the mirror neck these particles have zero parallel

energy, while the 1600-volt particles, which have zero magnetic moment, still possess

all of their parallel energy.

The dip on the right in Fig. XIII-8 is due to the analyzing screen swinging positive

and collecting the beam. This point locates the zero retarding voltage. The first trace,

which is for the unperturbed beam, indicates the 1600-volt point. A similar energy

analysis taken with the detector retracted to a 100-gauss region outside the mirror accu-

rately reproduces the distribution of particles in the loss cone within the trap at any

instant. A derivative of this curve, which is proportional to the parallel energy distri-

bution of the particles, is shown in Fig. XIII-9 superimposed on an energy-space dia-

gram. It is apparent that the peak of this distribution lies well inside the edge of the loss

cone. This indicates the existence of a strong preferential scattering as opposed to a

diffusive loss mechanism.

The decay of the trapped particles was observed for pulsed injected beams. Fig-

160C

V_
(VOLTS)

V, (VOLTS)

Fig. XIII-9. Loss-cone particle distribu-
tion as a function of their
parallel energy.

ure XIII-10 shows a typical result. The

lower trace is for zero corkscrew current

and shows that the rise time of the detec-

tion circuit is less than 0. 5 p sec. The

upper curve is for a corkscrew current

of 38. 5 amps. The signal is constant at

its equilibrium level for approximately

3 transit times after the beam is cut off.

This indicates that the dominant loss of

particles is associated with the second

and subsequent forward transits of the

perturbation. The decay is exponential

to the limiting detector sensitivity and

has a time constant of 1. 49 psec.

A series of decay curves for varying

corkscrew currents were obtained, and

the decay time as a function of this
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current is shown in Fig. XIII-11. In each case the decay was exponential to the limit of

detector sensitivity. Because of this limit on sensitivity (~5% of the equilibrium signal),

t
z
w
a: Fig. XIII-10. Upper trace: Trapped particle decay.

Lower trace: Untrapped beam.

TIME 0.5 . sec/cm-

the existence of a group of long-lived particles is not ruled out. For example, a group

of particles trapped in a region of velocity space where their lifetime against scattering

was 15 lsec would be undetected unless their density exceeded 50% that of the fast-

decaying group. We are now at work on this problem. Figure XIII-11 does indicate that

the maximum lifetime occurs at the design current of the corkscrew.

For helical resonant trapping, the product of the current and the cosine of the design

phase angle is a constant. At lower currents the particle must follow closer to the posi-

tion of maximum radial field to follow the resonant orbit. Such orbits have been shown

to be less stable,2 and the particle will experience less windup. On the third pass these

particles having more v11 will be locally reso-

nant nearer to the center of the corkscrew
1.75 _ where the perturbation is strongest and will

. 1.50 be lost rapidly. For currents higher than the

S1.25 L design current, the particle sees a higher per-
1.25 -

turbation field and is lost rapidly because the
U 1.00 -
a scattering is stronger.
L 0.75 * The rapid initial loss of particles and the

0.5o I I I I I preferential forward scattering reported above
20 25 30 35 40 45

CORKSCREW CURRENT were not predicted by the previously existing

Fig. XIII-11. Lifetime as a function theories of nonadiabatic scattering. 3 ' 4 These

of corkscrew current. experiments have motivated a new approach to
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the description of this scattering which is outlined below.

The experiments described here were performed with a seven-turn corkscrew. In

order to obtain a better test of existing theoretical analyses, a highly tuned fifteen-turn

corkscrew was built and is being tested. This "Mark II corkscrew" has a screened

radial particle detector which should yield more accurate particle accountability. Also,

a scintillator-photomultiplier electron detection system was tested. Preliminary results

show that we might be able to increase the sensitivity of the lifetime measurements

enough to allow a conclusive check on the existence of a substantial long-lived group.

2. Validity of Stochastic Descriptions of Nonadiabatic Motion

The system under consideration can be idealized as in Fig. XIII-12. In a particular

case the fields in the magnetic-moment nonconserving region might be due either to a

v2, e , t
MAGNETIC
MOMENT v,+',t+At Fig. XIII-12. Idealization of a non-

Nadiabatic trap.

MAGNETIC-MOMENT CONSERVING
PHASE-MIXING MIRRORS

plasma wave or to external current windings and, in any case, they will be assumed to

be known functions of space and time. Thus, we shall consider purely deterministic

systems. The conditional probability per unit v 1 and c that for given vi and one will

observe vj and t' between vi and v' + Av I and p' and ' + d4' after a transit time At is

PZ(v o/vjjtAt) =(VI -V S ( S)

where

vs (v,o)

s s (vo, 0)

are solutions of the equations of motion. But c varies between zero and 27r many times

during the particle's orbit, so that p' and o appear to be uncorrelated. Symbolically,

we can write the conditional probability as

P 2  At) 1 (2)

In a magnetic trap we are mainly interested in describing the statistical behavior of a

particle's magnetic moment and so concern ourselves with vL. To simplify the problem
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of solving N orbit equations for N particles, it is tempting to employ the pseudorandom

character of the phase 4.
If we allow some uncertainty in 40, the delta function in Eq. 1 is broadened to the

extent of this uncertainty. Furthermore, one might hope that in the weak-field limit the

change in vj per transit would be small. If we make this assumption, we can state that

the conditional probability (1) is a sharply peaked function around

vI v+ _ o o , (3)

where

A0 << v0

Then, if we ignore the initial phase dependence of the small quantity Avi, the condi-

tional probability (1) becomes

P vopo /v At = P(vo/vIAt) P( 2 co/ At), (4)

where the velocity conditional probability is peaked around vi. If the initial phase

dependence of Av_ is not ignored, the separation in (4) is not valid. We shall show that

the results of the existing stochastic theories depend on this assumption and consequently

will fail if the assumption proves untenable.

The conditional probability in (4) can be used to generate a Fokker-Planck equation

in the usual way with the exception that higher order terms are not dropped because they

are proportional to high powers of the elemental time steps. They are dropped solely

because the small-field assumption ensures that they are small. The result is

Af = 2 - L + f + v f (5)s v 2 as 2 vs a (5)

where

22s = v /v

Avn= d' dv P AV P (o/v I'At). (6)I (6)

If we make the pseudorandom approximation, we may replace the integration over

4' by integration over 4° and, by using Eq. 4, find

Av = d0 Av P 2(4o/ ' At) (7)
hL
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and by using (2) get

_r  d n
Av-= Av (8)

V4

This is the starting point of the previous stochastic theories.4 We have shown that it is
o

based on the assumption that the probability of the transition v1 - vj is independent of
° . This assumption is only true in the limit of zero perturbation. Numerical analysis

will show that it does not apply in the case of the corkscrew magnetic trap.

The consequence of the usual assumption (Eq. 8) is that the dynamical friction term

in Eq. 5 is of second order and is in fact cancelled by the second term in braces. We

are left with

Af = 2s (9)as 2 5s

which predicts only currents proportional to the second power of the small field quan-

tities. In other words, Eq. 9 predicts a current resulting from the dependence of the

diffusion coefficient on s, but it cannot account for a current caused by a preferred

direction of scattering.

If PZ (vLo/vlAt) is not split up as indicated above, we might still assume that it

is peaked around vI on the basis of perturbation theory. In this case, however, Eq. 8

should be written

AvOn d 0° Avn F(po), (10)
0 v

where F(40) is an unknown function containing the previously neglected phase dependence

of the conditional probability. Now the dynamical friction term in the Fokker-Planck

equation is of first order in the small-field quantities. This could lead to a much larger

directional scattering than was previously suspected. Such rapid loss has been observed

experimentally and is consistent with numerical analysis of particle motions.

3. Digital-Statistical Description of Nonadiabatic Scattering

The equations describing the motion of a particle in a nonadiabatic magnetic

field arel

dv_
dz = c (r, z) cos X (11)
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dx o 2 -dz =  
_ (12)dz v p(z)

where wl and oo are qB_/m and qBo/m, respectively, and p is the pitch of the perturba-
tion field BI . Most of the interaction between a particle beam and the nonadiabatic field
in a magnetic trap take place near the axis. Then Eqs. 11 and 12 can be simplified by

neglecting the radial dependence of o. Employing this assumption and the normaliza-
tions of Lidsky, we obtain a simplified set of equations which closely describes the
motion of a particle in a corkscrew

dv cos X
d= a sin 2x -- (13)dx cos Xo

-dX1 1

SA v x(14)

The parameters are defined as follows:
2a final magnetic moment after one transit in the equilibrium orbit

p = corkscrew pitch normalized to its initial value po
X = a phase angle between the particle's position and the field maximum

Xo = phase angle in equilibrium orbit

A = 4L/po normalized corkscrew length
x = rrz/2L.

These equations were solved numerically to determine the change in a particle's
magnetic moment as a function of the initial phase. Typical results are shown in
Fig. XIII-13. This is a plot of the relative field-particle phase X as a function of posi-
tion along the corkscrew for a particle of initial magnetic moment 0.40 and various ini-
tial phases. The insert shows the final magnetic moment as a function of initial phase.
The insert also shows that particles increase their magnetic moments over only 17% of
the possible initial phases. In other words, a particle with random initial phase has an
83% probability of decreasing its magnetic moment. This is a startling conclusion that
clearly invalidates the stochastic theory already referred to. The physical reason for
this preferential downward scattering can be seen by examining the phase curves above
the insert in Fig. XIII-13. Upon entrance to the corkscrew, a particle with 40% initial
windup is rotating faster than the field in the frame moving with the particle's axial
velocity. Thus the phase is initially increasing as shown. Since the perturbing field
pitch is decreasing along the axis, there is some point where the field and particle will
rotate with the same angular velocity. This resonance condition is expressed ana-
lytically by
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Fig. XIII-13. Computer analysis of trapped-particle motion.
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dX
= 0 (15)

These zero slope points are shown in Fig. XIII-13, and we shall refer to them as turn-

over points.

Referring to Eq. 13 one notes that the direction of the change in the perpendicular

velocity (and consequently in the magnetic moment) is determined by the relative field-

particle phase X, In Fig. XIII-13 we have indicated two phase quadrants in which the

particle loses magnetic moment as "acceleration regions" since a particle losing mag-

netic moment is accelerated along the field. If a particle has a turnover point in such a

region, it experiences a resonant accelerating interaction. Figure XIII-13 shows that

most of the curves have turnovers in the accelerating region. The curve for 1400 initial

phase which starts to turn over in the middle of the deceleration region is pushed upward

into the next accelerating quadrant.

The physical basis for preferential acceleration can be seen by examination of the

necessary condition for turnaround. From (12) we get the turnaround condition

2
d X 2 d p wo dv I

d+ 2d vld <0 (16)2 2 dz +  dzdz p (v2 v '2

Employing the resonance condition, we obtain

Z , (17)
p /2

and by using Eq. 11 this reduces to

2

2 i 2- [cos X - cos XO]. (18)
dz Lw

This shows that for the corkscrew there is a forbidden region in phase where turnaround

is impossible. This forbidden region covers the range of phase where the particle sees

the maximum decelerating force. Thus, since the particle cannot come into resonance

in the most effective part of the decelerating region, its average step will be an acceler-

ation.

When we look at the physics of this effect, we see that it is more general than the

derivation above might indicate. Consider Eq. 11 which has general validity. Given a

particle that is rotating faster than the field, this equation tells us that v_ fluctuates as

X increases; however, it is the particle's z velocity which causes X to change. The
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faster vz, the slower X fluctuates. Alternatively, the slower v_, the slower X fluctu-

ates. Thus decelerating regions which decrease vz have, on the average, more fluc-

tuations than equivalent accelerating regions. The net result is a preferential downward

scattering in resonant systems with pitch-length decrease in the direction of particle

motion. Another way of stating this is that X tries to become stationary by decreasing

vj_. If it finds itself in a decelerating quadrant, it tends to move onward into the next

favorable quadrant. This effect is shown in the 1400 initial phase case in Fig. XIII-13.

We have also performed calculations on a Whistler model field. This is a helical

field with a linear phase variation along its axis. Although this calculation was not

scaled to any physical system supporting real waves, the effect noted above did appear.

We feel that with proper scaling Eqs. 11 and 12 should apply to the ionosphere. The

necessary calculations to check this scaling are being performed.

We have tried to indicate just how perturbation theory fails in the presence of prefer-

ential scattering. Figures XIII-14 and XIII-15 show the mean step and mean-square step

in v2/v2 obtained from our orbit calculations and from perturbation theory. 3 We have

indicated that preferential scattering will generate a current term proportional to the

first power of the field variable and also modify the second-order diffusion coefficients.

The magnitude of the discrepancy depends upon the relative width of the forbidden zone,

and is a complicated function of the details of the resonant-field perturbation. The dis-

crepancy becomes more important as the size of the normalized velocity steps decreases

because the confinement time is proportional to N-l for currentlike and to N - 2 for dif-

fusivelike losses, where N is approximately v /Av 0 .

The peak at v/v 2 = 0. 35 in Fig. XIII-13 is a case in point. This initial magnetic

moment displays the same behavior as that shown in the insert in Fig. XIII-13 which is

for v2 /v 2 = 0.40. The difference is that the 0.35 case has a narrow range of initial

phases that place the particle in the design orbit somewhere in the corkscrew. The

particles with their initial phases make very large steps upward in magnetic moment

and bias the mean-step upward. A particle with random initial phase will probably still

make a step downward. Thus, in this case, the Fokker-Planck equation with its average

coefficient As is not truly descriptive of the situation. Thus, the results of Section I

call into question the utility of the Fokker-Planck equation in describing the solution of

the distribution function in systems of physical interest even if asymmetric scattering

is correctly taken into account. Particles may fall into near-resonant orbits and suffer

selectively large perturbations. This behavior violates the essential assumption that

the distribution function changes slowly in the time scale describing individual particle

motion.

To describe the evolution of a particle distribution in a nonadiabatic trap, we have

developed a numerical-statistical analysis which we hope combines the economy of a

statistical approach with the accuracy of digital computation. Our basic postulate is that
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Fig. XIII-14. Mean change in magnetic moment per transit.
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Fig. XIII-15. RMS change in magnetic moment per transit.

our system can be described by a scattering matrix, each term of which gives the

probability of a particle's transition from a "state" of magnetic moment s 1 to a

"state" s 2 . Each term in this matiix is obtained from numerical orbit calculations

and is given by

A ij
P.. -

1J 2i '
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where Ai j is the range of initial phases for which a particle with a magnetic moment

within a small range of s. will scatter into a small range of s in a suitably normalized

time interval. The time evolution of the distribution is given by

As. = S + P..Ds. - s.,
1 13 3 1

where As. is the change in density of forward-streaming particles in magnetic moment
1

interval i, S. is the external source of such particles, P.. is the matrix representing

scatter from group j to group i, and D. is the operator describing the mirror losses and

variable transit time delays. Thus we are able to compute both the transient and steady-

state behavior of the system and, in particular, to compute the particle currents through

either mirror. These results will be directly comparable with the experimental meas-

urements described in Section I.

J. F. Clarke, L. M. Lidsky
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