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1. EXPERIMENTAL RESULTS FOR CONDENSING EJECTOR M-1

A detailed experimental program has been conducted on condensing ejector mixing

section M-1 with steam and water used as the working fluids. The tests were made on

the condensing ejector test facility which has been described in Quarterly Progress

Reports No. 78 (pages 149-159) and No. 79 (pages 149-151).

Mixing section M-l was machined from brass; the important details are shown in

Fig. XI-1. The total length of the convergent mixing section, constant-area mixing sec-

tion, and diffuser is 23. 37 inches. The convergent section has an inlet diameter of

1. 352 inches and is tapered to a diameter of 0. 626 inch at its exit. The angle of taper

is 2. 26 ° . The constant-area section is approximately 7 inches in length and has an
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Fig. 1. Details of mixing section M-1.
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Fig. XI-2. Mixing section M-l installation.
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Fig. XI-3. Over-all view of mixing section M-1 installation.
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inside diameter of 0. 626 inch. The diffuser has a 60 angle of divergence with inlet and

exit diameters of 0. 626 and 1. 95 inches, respectively. The water nozzle at the inlet of

the convergent section has an inside diameter of 0. 400 inch. The outside diameter is

approximately 0. 465 inch. The contours of the convergent section and diffuser are

blended smoothly to the contour of the constant-area section. Pressure taps are located

at numerous points along the condensing ejector.

The ratio of water-flow area to steam-flow area at section 1 (A'l/Al') is 0. 1. The

contraction ratio for the mixing section (A 1/A 2 ) is 5.

Figure XI-2 shows the installation of the mixing section in the condensing ejector test

facility. Figure XI-3 shows additional details of the installation. Detailed pictures of the

stagnation tanks were given in Quarterly Progress Report No. 78 (pages 150, 151).

Mixing section M-1 has been tested for inlet steam pressures at 20-50 psia and

for water inlet pressures as shown in Fig. XI-4. The steam velocity at section 1 was

approximately sonic velocity. The steam was saturated at the inlet to the condensing

ejector while the water inlet temperature was approximately 40 'F. For the test results

SYMBOL

+

o

P0

19.6

29.6

41 .0

48.5

PSIA

o0

o
0b.,

'EXIT PRESSURES ABOVE THIS
LINE ARE GREATER THAN
BOTH INLET PRESSURES

QPR No. 81

0 1 2 3 4 5 6 7

RATIO OF INLET WATER PRESSURE/INLET STEAM PRESSURE , p" /p'

Fig. 4. Performance for mixing section M-1.
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in Fig. XI-4 the pressure discontinuity was moved as far upstream as possible in the

constant-area section and the diffuser exit pressure (p4 ) was measured. This location of

the discontinuity is such that any farther upstream movement would cause the disconti-

nuity to move rapidly through the convergent section and change the conditions at sec-

tion 1. For these test conditions no major effects of the inlet steam pressure (po) are

observable. All test conditions correspond to exit pressures greater than the inlet pres-

sures. The exit pressure varies linearly with the inlet water pressure above values of

pg/po z 1. 5. This behavior is expected theoretically. Theoretical values of the exit

pressure, although not shown, are in good agreement with predicted values. For values

of po/po less than 1. 5, the exit pressures are lower than expected. In this range the

details of the mixing process must be known. This information is being obtained with

the new plastic sections.

G. A. Brown, E. K. Levy
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1. PERFORMANCE POTENTIAL OF SUPERHEATED RANKINE CYCLE SPACE

POWER SYSTEMS EMPLOYING MAGNETOHYDRODYNAMIC GENERATORS

The Rankine cycle space power system is generally considered to have a higher spe-

cific power potential than the Brayton cycle system, particularly in the megawatt range.

This conclusion is predicated on the

assumption that even with the use of

condensable metal vapors in the

1 Rankine cycle, the maximum cycle

temperature and component specific

T 4 5 weights are not substantially different

from those for the Brayton cycles.

When high-temperature reactors

capable of surface temperatures over

2000'K are developed, the use of

magnetohydrodynamic generators

becomes attractive for large space

s power systems in the megawatt

range. Even at these high sur-
Fig. XI-5. Superheated Rankine cycle em- face temperatures, however, ther-

ploying dry vapor in the MHD
generator. mal ionization is inadequate for

providing the necessary electrical

conductivity of the metal vapor, and nonequilibrium ionization must be employed.

It has been verified experimentally that dry potassium vapor can yield nonequilibrium

electrical conductivities above 1 mho/cm at pressures of approximately . 01 atm. This
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is adequate for an efficient MHD generator. Thus alkali metals could be employed in a

superheated Rankine cycle of the type shown in Fig. XI-5.

The optimum radiator temperature, T 2 , for maximum specific power for this cycle,

under the assumption of a fixed T 1 , can be shown to be given implicitly by

c aE- T 1 t2
c b TZpt - 5

opt opt

where

a = radiator specific area, Ar/mr (m2 /kg)

b = reactor heat source specific power, Ps/ms (kw/kg)

E = emissivity of the radiation

a = Stefan-Boltzmann constant

T = maximum cycle temperature.

The corresponding optimum cycle efficiency is given by

-1 T1/

R (opt) H T L2( t

where

a -1 hfg
H= y RT1

Here it is assumed that the vapor is a perfect gas and that the liquid phase has a con-

stant heat of vaporization, hfg.

The maximum specific power can be calculated from

P 1A e

max M = br R(opt) opt))

a+

opt

For a radiator-dominated system, yec approaches zero and (T 2 /T 1)opt -- 0. 8. The
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optimum cycle efficiency and maximum specific power have the simple approximate

forms

'R(dry) ( H2)

4) R (dry)
a 0.41 (ac-T 4
dry 1 1 - 1R(dry)/

If we are able to operate the MHD generator into the wet region, as illustrated by the

cycle in Fig. XI-6, substantial gains in specific power are possible.

An estimate of the gains to be made by operating into the wet regime can be obtained

5
T 4 Fig. 6. Superheated Rankine cycle

utilizing an MHD generator
that operates into the wet

3 Eregion.
2w

S

by assuming the same radiator temperature, TZW, as for the dry cycle. For a radiator-

dominated system with T 2 W/T 1 = 0. 8 we obtain

'IR(wet) - 1R(dry) [1+5HL]

R (wet)

1- " R (wet)

a(wet) ( a(dry) i ]R(dry) i
1 - R (dry)

Consider lithium with H 2.3 for T= 2000 K. Then for 5 per cent moisture, the cycle

efficiency and specific power are both increased more than 50 per cent over the dry-

cycle values.
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It should be noted that the cycle just discussed requires the boiler temperature, T 5,
to increase as L is increased. If the maximum permissible boiler temperature of the

reactor is limited, a more conservative cycle for comparison purposes might be one in

which T1 T 2 , and T 5 are all maintained at the same values as for the optimum dry-

vapor Rankine cycle. The MHD generator would then be assumed to be made somewhat

longer to allow operation into the wet regime of point 2W.

For this cycle the fractional wetness, a, is a function of both (T 2 W/TI) and the

generator efficiency. For lithium, under the perfect gas assumptions, we obtain

approximately 5 per cent moisture for TZW/T l = 0.7 and tgen~ 75 per cent. This results

in a cycle efficiency and specific power for a radiator-dominated system given by

'IR(wet) ~ 2TR(dry)

a(wet) = 1. 25a(dry)'

Therefore, even for this very conservative case, the cycle efficiency is approximately

double, and the specific power is increased about 25 per cent over the dry vapor values.

These potential increases in specific power to be obtained by operating into the wet

region are predicated under the assumption that the generator efficiency remains near

the dry-vapor value. If the generator efficiency decreases appreciably in the wet

regime, King 2 has shown that the best specific power is obtained by operating only with

dry vapor to the saturated vapor line as in Fig. XI-5.

A recent theoretical study by Solbes 3 indicates that under certain conditions with

drop radius large compared with the Debye length, nonequilibrium ionization can be sus-

tained in a wet vapor. His initial experimental results tend to support this conclusion.

If nonequilibrium ionization can be obtained and sustained in a wet vapor, high gen-

erator efficiency in the wet regime should be attainable. The substantial increases in

specific power which would then be possible provide strong motivation for the present

study of the electrical conductivity of wet potassium vapor.

M. A. Hoffman, G. W. Zeiders
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