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A. INTENSITY DISTRIBUTION OF LIGHT SCATTERED BY THERMAL SURFACE

WAVES ON A LIQUID SURFACE

The intensity distribution of light scattered by a thermal ensemble of surface waves

on the plane surface of a metallic conductor was calculated with the use of a vector

Kirchhoff integral formula. The calculation is similar to that of Gans1 and will not be

repeated here; the results are presented and expected intensities are shown for an

experiment to be undertaken with liquid mercury.

The geometry of the problem is the following. The unperturbed liquid surface is

taken to be the x-y plane, and the z-axis extends from the liquid. The direction of the

incident plane wave of light is taken to be in the x-z plane, at an angle 0 to the z-axis,

and the observer is at the angles 0, kb. This is shown in Fig. VI- 1.

With this definition of angles, we find for the electric field at the peak of the diffrac-

tion maximum, for scattering off of one surface wave of peak surface displacement %o

S8a eikrcos o0 cos C cos 0; -cos 0 sin E

"Eso cos 0 sin 4; (cos - sin 8 sin 8) E

where the liquid surface has been taken to be a square of side a.

The choice of parameters X, the light wavelength, and 0 and 4, the observation

direction angles, determines uniquely the surface wave wavelength, N, and surface

wave direction, y, up to an additive constant of 1800. These relations are

x sin 4 sin
tan = - x =sin

1 - x cos Q 0

S= {sin 0 +sin Z -2 sin0sin @
0 cos}~}-Z
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Fig. VI- 1. Scattering Geometry

For scattering off of a thermal ensemble of surface waves, the number of waves

scattering into solid angle AQ is

2 2
An = KdKd = (kL) 2

? -Tr )\27 -T (cos 0)(A ).

For surface tension waves, the rms surface displacement is

4K T
= -B

rms o(KL)2

where KB is Boltzmann's constant, and ar is the surface tension.

Summing the scattered waves incoherently, we find for the total scattered intensity

Ssin2 + sin - 2 sin 0 sin sin 0 sinsin cos 4

(cos 0O cos 4 cos 0)2 (-cos 0 sin )2

(cos o0 sin4 ) 2 (cos - sin o sin )O)
IllLII

For the case of mercury, u = 500 ergs/cm2, and the multiplying constant at
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room temperature is

-8
I - (8. 26 10 8) AQ2Ii f (0 , ,$ ),Sc in o

and for a collecting solid angle of 0. 1, 10% transmission through the optics, and an inci-

dent intensity of 100 iwatts, Isc 10-1 f(, ) watts. For backscattering at a grazing

incident angle f z 1 for the proper polarization, and the expected signal current is of

the order of the photomultiplier dark current.

R. H. Katyl

References

1. R. Gans, Ann. Physik 74, 231 (1924); 79, 204 (1926). See also A. Andronow and
M. Leontowicz, Z. Physik 38, 485 (1926).

B. ACOUSTIC WAVE AMPLIFICATION

Theoretical studies have been carried out on the spontaneous amplification of an
acoustic wave in a weakly ionized gas. The amplification mechanism is a coherent

heating of the neutral gas by the electrons, which move in phase with the neutrals and

ions in the acoustic mode. The linearized equations of motion for the three componets

of a plasma ionized to the extent of approximately 10 - 6 and with a pressure =1 torr lead

to the acoustic dispersion relation

k2 = (w/cn)2 1 +i/WT a+(i/o )(1-i/WTa)(1 +i/O'T) - 1

where

2
Ta = Cn/( 1- ) anNe z 1

ne
T' = (Yn-l)me N cT/y e mnNn c  10

The quantities in these expressions are defined by the following relations:

an = 2(me/mn) (KT /m e 3/2 a(2/r)1/2

Pn = 2(me/mn 2 (KTe/me 3 (Ne/T e)(2/) (3/2 +dn /dln Te

T = equilibrium temperature
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N = equilibrium particle number density

m = particle mass

y = specific heat ratio

K = Boltzmann's constant

c = (KT/m) / 2 = speed of sound

k = wave number

o = (2r) times the frequency, (10 2 < < 10 5 )

a- = cross section for energy transfer,

with the subscripts n and e referring to the neutrals and electrons.

At high frequencies (for example, w >> 10 4 sec-i ) the process is almost adiabatic

and the electron temperature is not significantly affected by the amplification mechanism.

The dispersion relation becomes

k=(w/c n ) [1-i( a+T ')/Z .

At low frequencies, however, the electron temperature is strongly affected by the

process, and the degree of amplification depends on the energy dependence of the

electron-neutral cross section. The dispersion relation becomes

k (w/c) [+(T' a+T1 
)/ -i(T -T )/2W-iw2T ' TP/ZTp

and the degree of amplification depends on the energy-dependence of the electron-neutral

cross section. For a hard-sphere gas with yn = ye = 5/3, it detrelops that Ta = T . Sig-

nificant amplification is possible at low frequencies only if C- decreases with energy.

A similar calculation for ion-acoustic waves in a strongly ionized gas yields substan-

tially the same results, but the electron-ion cross section always decreases with energy.

The amplification mechanism, however, competes with the attenuation caused by

ion-neutral momentum-transfer collisions.

H. M. Schulz III

C. LATERAL ACOUSTIC INSTABILITY

Strickler and Stewart1 have reported a lateral acoustic instability which results in a

pronounced modification of the path of a constricted argon discharge when the current is

modulated at a lateral resonant frequency of the neutral gas in the discharge tube.

Futher examination of this effect has recently revealed that the geometric shape of

the discharge path depends on the longitudinal pressure wave, as well as on the radical

and azimuthal one. Thus all three quantum numbers of the wave play a role in deter-

mining the discharge path. In a typical experiment situation the discharge tube has a
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length much greater than its diameter, and the frequency is determined principally by
the radical and azimuthal quantum numbers, that is, by the indices of the Bessel function
Jm(kn r). The longitudinal wave function cos fTrz/L contributes only a small increment
to the frequency but is very important in establishing the path of the discharge. It has
been possible to resolve the fine structure of the m = 1, n = 1 mode, that is, of the lowest
mode of the tube, from f = 0 up to approximately 2 = 15.

Preliminary results are consistent with a model in which the discharge follows a
path of maximum pressure variation. Both spiral and planar discharge paths have been
observed. It would appear that spiral paths must be associated with modes having
m > 2, while planar displacements are most logically associated with models having
m < 1.

MODULATED

Fig. VI-2.

Figure

n = 0, and

wall. The

MODULATION FREQUENCY
9036 cps

Lateral displacement of an intensity-modulated plasma filament at
modulation frequencies close to the acoustic lateral resonances in
the tube. Each white rectangle and each black rectangle on the
scale has a height of 2 cm, and the tube is 2. 5 cm in diameter and
40 cm in length.

VI-2. shows an unmodulated discharge and a discharge for which m = 1,

2 = 4 or 5. The less intense trace is a reflection of the discharge in the tube
frequencies correspond to a gas temperature = 350' K.

H. M. Schulz III, K. W. Gentle
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D. CONSERVATION EQUATIONS FOR A PLASMA

The object of the present report is to derive for the general case the equations for

conservation of particles, momentum, and energy for a plasma, and to examine the phys-

ical nature of the various terms in these equations. The treatment will include the rela-

tivistic and nonrelativistic cases, consider gravitational and electromagnetic (but not

nuclear) forces, and allow for the existence of field sources external to the plasma.

The starting point for the discussion is the Boltzmann equation

af adf\I
a _8 8E + ( X ) f a+m a f =(1)a a a 

dat + - (fa) +- "  (1)Sx dcollisions

Here the subscript a refers to the at h species contained in the plasma (a=1, 2,... , n),

and the gravitational force per unit mass is assumed to be g((). Note that (1) is appro-

priate for both the relativistic and nonrelativistic cases. To obtain the equation for the

conservation of particles, we merely integrate (1) over all momentum space. If there

is no excitation, ionization, or recombination during collisions the result is

an a a -
-+- J =0 (2)at a

na = d3p fa  ~a d3p I fa

Thus n a is just the particle density of the a t h species, and J is the particle current.

Equation 2 is clearly a simple continuity equation; the mass and charge continuity

equations for the a t h species may easily be obtained by multiplying (2) by ma and qat
respectively.

The momentum conservation equation is obtained by multiplying (1) by F, integrating

the result over all momentum space, and then summing over all a. The result, since

momentum is conserved in any collision, is

d3 f + -a d3p r
at p a a _X a

a a

S5' d 3pf a{a(E + XB+X m- . (3)

a

With the aid of Maxwell's equations
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a - a -
.E = 4rrp -. B = 0

ax ax

1 aB " 4TrJ 1 aE (4)
c t VXB c c at'

and the analogous gravitational equations

a. = -4TrGp V X = 0 (5)
ax

where pm is the mass density, and G is Newton's gravitational constant, (3) becomes

S+-T = 0 (6)
at ax

P= Sdp f 2 4
ca

T Cj d3 P p f -- r B B -+
a ~4r 8r -  4rr 8Tr 4rrG 8+rrG

a

S= -- E X B = Poynting vector.

Thus (6) is also a continuity equation, similar in form to (2), except that in (6) we

have summed over all the various species. The vector P is obviously the total momen-

tum density of the entire system, while T is an effective pressure tensor equal to the

"particle" pressure tensor minus the electromagnetic (Maxwell) stress tensor minus

the analogous gravitational stress tensor.

Finally, we obtain the energy conservation equation by multiplying (1) by

mac 2 (1-v c2 -1/2-mac 2 ], integrating the result over all momentum space, and then

summing over all a. If we assume that all collisons are elastic, the result is

at+ Q d3p a f (7)

a

3 2 2 2 -1/2 B

a

3 dp fm (I1-v /c ) - /-1] V + S.

a
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Equation 7 is almost an energy continuity equation; U is clearly the total energy

density, while Q is apparently the total energy flow. The term on the right-hand side

seems to correspond to some kind of gravitational flow, although its form certainly does

not fit in well with the other terms of (7). This difficulty would quickly disappear if we

postulated the existence of a gravitational magnetic field h which was coupled to 9 by

a set of "gravitational Maxwellian equations":

- g = -4rp m- . h = 0

1 h 4Tr 1
7VMX g = c X h = - Jm -. (8)

g g g

Equations 8 are written in units in which G = 1; and cg, the speed of "gravitational

waves" in vacuo is presumably c. The "gravitational Lorenz force" would be

F = m( + c X h) (9)

and the "gravitational Poynting vector" is

c

Sg = g X h. (10)

For this case, Eq. 7 would now have no term at all on the right-hand side, while Q
2would contain the additional term S, and U would contain the term -g /8r.

It seems quite possible that the set of equations (8) is actually valid. It would cer-

tainly be very difficult to measure the force attributable to h directly in any experiment,

since it would be greatly masked by the force resulting from '. In electromagnetic

theory, this problem can be circumvented by the use of currents having no net charge

density; the (apparent.) nonexistence of negative mass precludes this technique in grav-

itational experiments, however. The release of energy through radiation of gravitational

waves is presumably negligible, except in stars. Since gravitational effects tend to

completely dominate electromagnetic effects in such bodies, however, it seems likely

that this is the chief source of energy loss from asteral systems.

J. A. Ross
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