III. OPTICAL AND INFRARED SPECTROSCOPY^{*}

Academic and Research Staff

Prof. C. H. Perry

Graduate Students

Jeanne H. Fertel J. F. Parrish E. F. Young

A. FAR INFRARED SPECTRA OF TETRAHALO, TETRAAMMINE, AND DIHALODIAMMINE COMPLEXES OF PALLADIUM

1. Introduction

Recently, a number of far infrared studies of platinum halide complexes have been reported.¹⁻⁵ The majority of the compounds studied were alkali salts of the halide complexes of platinum (II). Thus far, the infrared investigation of the corresponding palladium complexes has covered only the spectral range 4000-250 cm⁻¹.⁶⁻⁸ In this region the only skeletal vibrations observed are the Pd-N and Pd-Cl antisymmetric and symmetric stretching vibrations.

2. Discussion

The infrared spectra of a number of square planar palladium (II) complexes of the type M_2PdX_4 , PdL_4X_2 , and trans and cis isomers of PdL_2X_2 (where $M = NH_4^+$, K^+ , Rb^+ or Cs^+ ; $L = NH_3$; $X = Cl^-$, Br^- or I^-) have been recorded from 4000 to 40 cm⁻¹ with the use of instrumentation described previously.⁹ The compounds were examined both at room temperature and at liquid-nitrogen temperature.

The investigation of four tetrachloropalladium (II) complexes gave Pd-Cl stretching vibrations in the range 327-336 cm⁻¹, Pd-Cl in-plane bending vibrations in the range 183-205 cm⁻¹, and Pd-Cl out-of-plane bending vibrations from 160 to 175 cm⁻¹. Four similar bromo complexes gave the corresponding Pd-Br vibrations in the ranges 249-260 cm⁻¹, 130-169 cm⁻¹, and 114-140 cm⁻¹, respectively. The Pd-N in- and out-of-phase bending vibrations of the tetraammine complexes were found in the ranges 245-273 cm⁻¹ and 160-190 cm⁻¹, respectively. In the M₂PdCl₄ and M₂PdBr₄ compounds, the two bands of lowest frequency correspond to the lattice vibrations, and these assignments are confirmed by the decrease in these frequencies for the compounds in the order $NH_4^+ > K^+ > Rb^+ > Cs^+$ which is expected as the atomic (or molecular) weight of the cation increases.

^{*}This work was supported by the Joint Services Electronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 36-039-AMC-03200(E).

Fig. III-1. Far infrared spectra of some Tetrahalopalladium (II) Salts.

Fig. III-2. Far infrared spectrum of <u>Trans</u> $Pd(NH_3)_2Cl_2$. Solid line: room temperature; dotted line, liquid-nitrogen temperature.

$(\mathrm{NH}_4)_2 \mathrm{PdCl}_4$	${\rm K_2PdCl}_4$	${\rm Rb}_2{\rm PdCl}_4$	$\mathrm{Cs}_2\mathrm{PdCl}_4$	$(\mathrm{NH}_4)_2 \mathrm{PdBr}_4$	$K_2^{PdBr}_4$	${}^{\mathrm{Rb}}_{2}{}^{\mathrm{PdBr}}_{4}$	$\mathrm{Cs}_2\mathrm{PdBr}_4$	Assignment
318 2 s	<u></u>	a montana an		3170s				NH_4^+ stretching
3038s				3020s				NH_{4}^{+} stretching
2812w				2796w				2 × 1398 = 2796
1649m				16 2 4m				NH4 ⁺ antisymmetric deformation
1398s				1398s				${\rm NH_4}^+$ symmetric deformation
340sh	356sh			363m				combination
							2 55sh	
327s	336s	331s	328s	254s	260s	258s	249s	Pd-X stretching
205sbroad	193m	188m	183m	169sbroad	140sh	135sh	130sh	ہ v_in-plane bending
175s	n. o.	166m	160m	l40sh	130s	125m	114m	out-of-plane bending
120s	110s	88s	75s	n. o.	100s	76s	67m	A_{2u}^2 lattice mode
n. o <i>.</i>	95s	70sh	50sh	97s	85s	65sh	38sh	$\mathbf{E}_{\mathbf{u}}$ lattice mode

Table III-1. Internal and lattice vibrations of ${\rm M}_2{\rm PdX}_4$ complexes.

Abbreviations: m = medium, s = strong, w = weak, sh = shoulder, n.o. = not observed.

Pd(NH ₃) ₄ Cl ₂	Pd(NH ₃) ₄ Br ₂	Assignment			
3230s	3240s	NH ₃ stretching			
3140s	3147s	NH ₃ stretching			
2 618w		$2 \times 1301 = 2602?$			
2365w	2373w	?			
2130w	2 130w	1301 + 830 = 2131			
2065w	2064w	?			
1608s	1618s	NH_3 antisymmetric deformation			
1320sh	1319sh	NH ₃ rocking + Pd-N stretching			
1301s	1301s	NH_3 symmetric deformation			
1285sh	1284sh	?			
1278sh	1277sh	?			
830s	825s	NH ₃ rocking			
	515	?			
505sh	501sh	?			
500sh	495sh	?			
494m	490m	Pd-N stretching			
476w	471w	2 × 245 = 490			
330vw		?			
245m	273m	in-plane bending			
160w	190w	out-of-plane bending			
115m	n. o.	lattice modes			

Table III-2. Infrared frequencies of $Pd(NH_3)_4X_2$ complexes.

Abbreviations: m = medium, s = strong, w = weak, sh = shoulder, n. o. = not observed.

trans	trans	cis	trans	cis	trans	
$Pd(NH_3)_2Cl_2$	$Pd(ND_3)_2Cl_2$	$Pd(NH_3)_2Cl_2$	$Pd(NH_3)_2Br_2$	$Pd(NH_3)_2Br_2$	$Pd(NH_3)_2I_2$	Assignments
3320s	2479s	3314s	3307s	3307s	3296m	NH ₃ stretching
3240m	2352m	3237s	3233m	3234s	3223m	NH ₃ stretching
3181sh	2328m	3177sh	3171sh	3169sh	3152sh	NH ₃ stretching
1605m	1183m	1610m	1598m	1601m	1594m	NH ₃ antisymmetric deformation
	1148sh					$2 \times 579 = 1158$
	lll6sh					?
1255sh	1051m	1269sh	1251sh	1263m	1256sh	NH ₃ rocking + Pd-N anti- symmetric stretching
1247s	974s	1248s	1245s	1245m	1242s	NH ₃ symmetric deformation
				774sh		?
753m	579m	752s	753m	741m	n. o <i>.</i>	NH ₃ rocking
496w	461w	495w	490w	480w	480w	Pd-N antisymmetric stretching
		476w		460w		Pd-N symmetric stretching
333s	329s	327s	n. o.	258w	191s	Pd-X antisymmetric stretching
		306s		n. o.		Pd-X symmetric stretching
245s	218vs	245s	220s	225s	263w	Pd-N bending
222s	194vs	218s	220s	225s	2185	Pd-N bending
				190m		?
				177m		?
162m	161m	160m	122m	120m	109m	Pd-X bending
137m	134m	135m	101m	100w	n. o.	Pd-X bending
	109vw	109w				lattice mode

Table III-3. Infrared frequencies of trans and \underline{cis} isomers of $Pd(NH_3)_2X_2$.

Abbreviations used: m = medium, s = strong, w = weak, v = very, sh = shoulder, n. o. = not observed.

(III. OPTICAL AND INFRARED SPECTROSCOPY)

Weak shoulders are observed in some of the compounds and have been assigned as combinations of infrared and Raman active modes in the corresponding platinum complexes.¹ These bands in the palladium complexes cannot be uniquely assigned, however, as the Raman spectra have not been obtained, owing to their intense colors.

By using the assignments for the tetrahalo and tetraammine complexes, as well as the isotopic shift data, assignments for the fundamental modes for a series of <u>cis</u> and trans dihalodiammine complexes of palladium (II) are given. The results are summarized in Tables III-1, III-2, and III-3, and the far infrared spectra of some tetrahalopalladium (II) salts are shown in Fig. III-1. Figure III-2 shows the far infrared spectrum of trans $Pd(NH_3)_2Cl_2$. The interpretation of the data and discussion of the results in more detail are contained in a paper submitted to <u>Spectrochimica Acta</u> as Part III in a series on palladium complexes.^{6, 10}

We would like to express our thanks to Professor J. R. Durig and Mr. B. R. Mitchell, of the Chemistry Department, University of South Carolina, for some of the samples and cooperation in this research. All computation work connected with the Fourier transforms were performed on the IBM 7094 computer at the Computation Center, M. I. T. We would like to thank Dr. H. J. Sloane, Beckman Instruments, Fullerton, California, for the spectra of some of the alkali salts of palladium halide complexes taken on the Model IR-11 spectrophotometer and for checking our results at room temperature.

C. H. Perry, D. P. Athans, E. F. Young [Mr. D. P. Athans is now in the Department of Mechanical Engineering, University of Southern California, Los Angeles, California.]

References

- 1. J. H. Fertel and C. H. Perry, J. Phys. Chem. Solids 26, 1773 (1965).
- 2. D. M. Adams and H. A. Gebbie, Spectrochim. Acta 19, 925 (1963).
- 3. H. Poulet, P. Delorme, and J. P. Mathieu, Spectrochim. Acta 20, 1855 (1964).
- 4. A. Sabatini, L. Sacconi, and V. Scheltino, Inorg. Chem. 3, 1775 (1964).
- 5. R. A. Walton, Spectrochim. Acta 21, 1795 (1965).
- 6. J. R. Durig, R. Layton, D. W. Sink, and B. R. Mitchell, Spectrochim. Acta 21, 1367 (1965).
- 7. S. Mizushima, I. Nakagawa, M. J. Schmely, C. Cuirraw, and J. V. Quagliano, Spectrochim. Acta <u>13</u>, 31 (1958).
- 8. D. M. Adams, J. Chatt, J. Gerratt, and A. D. Westland, J. Chem. Soc., p. 734, 1964.
- C. H. Perry, Quarterly Progress Report No. 70, Research Laboratory of Electronics, M.I.T., July 15, 1963, pp. 19-31; R. Geick, C. H. Perry, E. C. Reifenstein III, H. D. Wactlar, and E. F. Young, Quarterly Progress Report No. 76, January 15, 1965, pp. 27-38.
- 10. J. R. Durig, B. R. Mitchell, D. W. Sink, and A. S. Wilson (to appear in Spectrochim. Acta, Vol. 22, 1966.

B. FAR INFRARED SPECTRA OF METAL CLUSTER COMPOUNDS

Recent crystallographic studies have revealed the existence of a surprisingly large number of inorganic compounds containing discrete, well-defined metal-metal bounds, and these compounds have recently been reviewed.¹ Great interest has been expressed by inorganic and theoretical chemists in the properties of these metal-metal bounds, but there is very little experimental data available. Since most of these compounds are intensely colored, Raman data will be scarce for some time, and any vibrational data must be obtained by far infrared spectroscopy.

The octahedral metal-atom cluster compounds were chosen for study mainly due to

Fig. III-3. Far infrared spectra of $[(Mo_6X_8)Y_6]^{2-}$ compounds. Solid curves: spectra obtained on the interferometer; dashed curves, same sample run on the Perkin-Elmer 521; dotted curve, a nujol mull run on the Perkin-Elmer 521.

(III. OPTICAL AND INFRARED SPECTROSCOPY)

the completion of a molecular orbital calculation for these structures.² Spectra have been obtained over the region 350 to 100 cm⁻¹ for the compounds $[Mo_6Cl_8(X)_6]^{2-}$ (X = Cl, Br, I), $[W_6Cl_8Cl_6]^{2-}$, and $[Nb_6Cl_1(X)_2]$ (X = Cl, Br). The only satisfactory results thus far, however, are for the $[Mo_6Cl_8(X)_6]^{2-}$ compounds, and these spectra are shown in Fig. III-3. To make an assignment of the observed bands with assurance, we must wait for the spectra of the compounds $[Mo_6X_8(Y)_6]^{2-}$ (X = Br, I) (Y = Cl, Br, I) which have been prepared and will be run soon. Several considerations, however, have led to the present tentative assignment of the bands as follows: Bands A, 2 degenerate vibrations of the triply-bridging Cl's; Band B, stretching of the terminal X_6 groups; Band C, stretching vibration of the metal-metal bonds in the M₆ octahedral frame.

All samples used were pressed polyethylene discs of the compound, and the spectra were run on the interferometer kindly made available by the Optical and Infrared Spectroscopy Group of the Research Laboratory of Electronics.

R. Zimmerman [Mr. Ralph Zimmerman is a Research Assistant in the Department of Chemistry, M.I.T.]

References

- 1. F. A. Cotton (paper to be published in Quart. Rev.)
- 2. F. A. Cotton and T. E. Haas, Inorg, Chem. 3, 10 (1964).