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1 Introduction

Experimental particle physics is opening a new window for particle discoveries and precision mea-
surements of existing theories by the startup of the Large Hadron Collider being commissioned at
the European Organization for Nuclear Research — CERN — located just outside Geneva, Switzer-
land. The LHC accelerator will collide protons at a center ofmass energy of 14 TeV at four beam
crossings, one of which houses the ATLAS detector [1]. This is the largest of the LHC experi-
ments, employing a great variety of detector technologies to identify and measure the properties
of a wide range of particles. The complex magnetic field and big amount of material within the
ATLAS detector, along with the high collision rate of the accelerator, make track reconstruction
very challenging. Track parameter and the associated errorpropagation is at the heart of almost
any reconstruction algorithm, hence good accuracy and highspeed — along with the consideration
of material effects, such as energy loss and multiple scattering — are essential to the ATLAS track-
ing algorithms, such as thesimultaneous track and error propagation(STEP) algorithm presented
here. This algorithm transports the track parameters and associated covariance matrices through the
dense volumes of the simplified ATLAS material description —the so-called tracking geometry [2]
— which approximates the material distribution of the ATLAScalorimeter and muon spectrometer
by a set of blended dense volumes to speed up the tracking process. This paper describes the error
propagation of the STEP algorithm, while the transport of the track parameters is found in ref. [3].
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Error propagation is usually handled in a purely analyticalor numerical way. The first case is
possible when the track model is explicitly given, thus allowing a direct derivation from the track
model of the Jacobian needed to transport the covariance matrix. Unfortunately, explicit track
models are limited to straight lines or helices, only usefulin a vanishing or homogeneous magnetic
field. Within the inhomogeneous ATLAS magnetic field, a numerical approach is necessary. The
simplest numerical way of finding the derivatives of the transport Jacobian involves the propagation
of one auxiliary track for every track parameter, which usually amounts to five additional tracks.

There is, however, a third alternative to the error propagation; the semi-analyticalBugge-
Myrheim method[4]. This method propagates the transport Jacobian in parallel with the track
parameters at little extra cost. Although this method has been known for many years, its accuracy
and speed are not well documented in the scientific literature. In this paper we study the quality and
speed of the Bugge-Myrheim method as a function of the accuracy of the underlying track parame-
ter propagation. Furthermore, we look at the impact of the magnetic field and energy loss gradients
on the accuracy and speed of the error propagation. We also show that the Bugge-Myrheim method
is significantly faster than any purely numerical approach.

In section2 we describe the error propagation in general before going into detail on the Bugge-
Myrheim method in section3. Furthermore, we look at the numerical error propagation — used
for validating the semi-analytical error propagation — in section 4. In section5 we compare
the elements of the transport Jacobian obtained by the semi-analytical and the numerical error
propagation. Moreover, in section6we perform a statistical test of the semi-analytically transported
covariance matrix. Finally, we present a short conclusion in section7.

Natural units (~ = c = 1) are used throughout this paper, and vectors and matrices are gener-
ally given in bold italic and bold capital letters, respectively.

2 Error propagation

The track parameters are often reconstructed from empirical data with associated uncertainties
introduced by noise from the material interactions during the parameter transport, and uncertainties
related to the misalignment and limited resolution of the detector. Here we focus on transporting
the intrinsic measurement errors arising from the limited detector resolution, figure1, leaving the
discussion of the noise contributions from the material interactions to ref. [5]. It should, however,
be noted that the noise contributions are added to the measurement errors during the propagation
and hence are transported in the exact same way.

The measurement errors are given by the symmetric5 × 5 covariance matrix with entryij;

Σij = 〈(ξi − 〈ξi〉)(ξj − 〈ξj〉)〉 (2.1)

whereξ is a vector of thelocal track parameters

ξ =















l0
l1
φ

θ

λ















(2.2)
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Figure 1. Transporting the track parameters and the associated uncertainties (covariance matrix) — indicated
by the ellipses and cones — from one surface to another. The uncertainty of the momentum magnitude is
omitted in this illustration.

and〈ξi〉 are the expectation values of these parameters. The local track parameters [6] are defined
by the local track position at a surface (l0, l1), the direction of the track momentum in the global
ATLAS coordinate system (φ, θ) and the signed inverse of the momentum (λ ≡ q/p). The global
Cartesian, right-handed ATLAS coordinate system is approximately given by the LHC tunnel cen-
tre (x), the earth’s surface (y) and the LHC beam pipe (z). The spherical polar coordinatesφ andθ

are defined as follows within this coordinate system; the azimuthal angleφ is given by the opening
between the projection of the momentum into thex-y plane, and thex-axis, while the polar angleθ
is given by the opening between the momentum and thez-axis. Together they define the direction
of the momentum in the ATLAS coordinate system unambiguously, giving the following relations
between the momentum components (px, py, pz) and the angles (φ, θ);

px = p cos φ sin θ

py = p sin φ sin θ

pz = p cos θ (2.3)

Theglobal track parametersused within STEP — to accommodate the propagation of bending
tracks — are given in the above-mentioned global ATLAS coordinate system by

(x, y, z, T x, T y, T z, λ)

whereT = p/p is the normalized tangent vector to the track, and (x, y, z) is the track position.
If the track model is explicitly given, the common approach to transporting the covariance

matrix is to expand the analytical parameter propagation functions to first order in a Taylor series,
and use these derivatives to propagate the covariance matrix in an approximate way. This is called
linear error propagation. The availability of the derivatives of the propagated track parameters with
respect to those at the starting point of the propagation — the so-calledJacobianJ — is therefore
essential to the linear error propagation. In our case, the Jacobian becomes a5 × 5 matrix

J =











∂lfinal
0

∂linitial
0

· · ·
∂lfinal

0

∂λinitial

...
. . .

...
∂λfinal

∂linitial
0

· · · ∂λfinal

∂λinitial











(2.4)
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and transporting the symmetric covariance matrix by linearerror propagation simply becomes a
similarity transformation

Σfinal = J ·Σinitial · J
T (2.5)

However, because of the inhomogeneous magnetic field of ATLAS, and the resulting lack of
explicit analytical functions for the propagation of the track parameters, the Jacobian cannot be cal-
culated directly. The linear error propagation (2.5) is still valid, but the Jacobian must be obtained
in another way. This is done in three steps; first, we find the Jacobian required for transforming
the covariance matrix from the initial local track parameters to the initial global track parameters
used within the STEP algorithm. Furthermore, this Jacobianis transported along with the track
parameters to the destination surface. Finally, it is multiplied by the Jacobian which transforms
the covariance matrix to the local track parameters at the destination surface. The resulting Ja-
cobian (2.4) transports the covariance matrix from one set of local track parameters at the initial
surface to another set of local track parameters at the destination surface (2.5). The initial and
destination surfaces can be picked independently from any of the five surfaces defined within the
ATLAS event data model, and positioned arbitrarily. In thispaper we focus only on the second of
the three steps; the transport of the Jacobian along the track.

3 Semi-analytical error propagation by using the Bugge-Myrheim method

As mentioned above, the common way of obtaining the derivatives (Jacobian) needed for the lin-
ear error propagation is to expand the parameter propagation functions to first order in a Taylor
series. The lack of analytical parameter propagation functions in this case unfortunately makes this
approach impossible. Another common technique is the numerical error propagation described
in section4. This method is slow, but robust and accurate, making it useful for testing the error
propagation. A third way of obtaining the Jacobian is to differentiate the recursion formulae of
the numerical integration method directly. This is the essence of the Bugge-Myrheim method. For
reasons of efficiency and consistency, the natural choice isto pick the same integration method as
used in the STEP parameter propagation, which is the adaptive Runge-Kutta-Nyström method. The
Bugge-Myrheim method, however, follows the same principles regardless of the chosen integration
method, only the recursion formulae change.

The basic idea of the adaptive Runge-Kutta-Nyström methodis to divide the integration inter-
val into steps and solve each step independently in an iterative procedure. Every step becomes an
initial value problem and can be solved as best suited for that particular part of the integration inter-
val. This is especially useful when varying the step lengthh to make the procedure adaptive. The
solution of every step is estimated by evaluating the equation of motionu′′ at four different points
— often referred to asstages— along the step. Every stage, except the first, is based on theprevious
stages of the step. In the end, all stages are weighted and summed to find the solution to the step.

In the parameter propagation, we find the propagated global track parameters — whereΛ is
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the integrated change inλ, or the total energy loss — of the equation of motion

u =











x

y

z

Λ











, u′ =
du

ds
=











T x

T y

T z

λ











(3.1)

by integrating their respective differential equations byusing some recursion formulaeF andG.
Given the Runge-Kutta-Nyström method, one step (numberedby n) becomes

un+1 = F (sn,un,u′
n) = Fn(un,u′

n) = un + hu′
n +

h2

6
(u′′

1 + u′′
2 + u′′

3)

u′
n+1 = G(sn,un,u′

n) = Gn(un,u′
n) = u′

n +
h

6
(u′′

1 + 2u′′
2 + 2u′′

3 + u′′
4) (3.2)

To obtain the derivatives (Jacobian) of the propagated global track parameters with respect to
the initial local track parameters (i denoting initial)

ξi =















li0
li1
φi

θi

λi















(3.3)

the recursion formulae (3.2) have to be differentiated with respect toξi, giving

Jn+1 =





∂un+1

∂ξi

∂u′

n+1

∂ξi



 =





∂Fn

∂ξi

∂Gn

∂ξi



 =





∂Fn

∂un

∂Fn

∂u′

n

∂Gn

∂un

∂Gn

∂u′

n



 ·





∂un

∂ξi

∂u′

n

∂ξi



 = Dn · Jn (3.4)

where the derivatives∂un/∂ξi and∂u′
n/∂ξi of the8×5 JacobianJ are given by the4×5 matrices

∂un

∂ξi
=









∂xn

∂li0
· · · ∂xn

∂λi

...
. . .

...
∂Λn

∂li0
· · · ∂Λn

∂λi









,
∂u′

n

∂ξi
=









∂T x
n

∂li0
· · · ∂T x

n

∂λi

...
. . .

...
∂λn

∂li0
· · · ∂λn

∂λi









(3.5)

Dn is an8 × 8 matrix containing the recursion formulaeFn andGn differentiated with respect to
the global track parameters

Dn =
∂(Fn,Gn)

∂(un,u′
n)

=





∂Fn

∂un

∂Fn

∂u′

n

∂Gn

∂un

∂Gn

∂u′

n



 (3.6)

giving the4 × 4 matrices

∂Fn

∂un
=









∂F x
n

∂xn
· · · ∂F x

n

∂Λn

...
. ..

...
∂FΛ

n

∂xn
· · · ∂FΛ

n

∂Λn









,
∂Fn

∂u′
n

=









∂F x
n

∂T x
n

· · · ∂F x
n

∂λn

...
. . .

...
∂FΛ

n

∂T x
n

· · · ∂FΛ
n

∂λn









(3.7)
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and

∂Gn

∂un
=









∂GTx

n

∂xn
· · · ∂GTx

n

∂Λn

...
. . .

...
∂Gλ

n

∂xn
· · · ∂Gλ

n

∂Λn









,
∂Gn

∂u′
n

=









∂GTx

n

∂T x
n

· · · ∂GTx

n

∂λn

...
. . .

...
∂Gλ

n

∂T x
n

· · · ∂Gλ
n

∂λn









(3.8)

By writing the recursion formulae of the derivatives as a product ofDn andJn (3.4), we can
differentiate the recursion formulaeFn andGn with respect to the global track parametersun and
u′

n instead of the initial local track parametersξi. This simplifies the differentiation a lot, giving

∂Fn

∂un

= 1 +
h2

6

(

∂u′′
1

∂un

+
∂u′′

2

∂un

+
∂u′′

3

∂un

)

∂Fn

∂u′
n

= h +
h2

6

(

∂u′′
1

∂u′
n

+
∂u′′

2

∂u′
n

+
∂u′′

3

∂u′
n

)

∂Gn

∂un
=

h

6

(

∂u′′
1

∂un
+ 2

∂u′′
2

∂un
+ 2

∂u′′
3

∂un
+

∂u′′
4

∂un

)

∂Gn

∂u′
n

= 1 +
h

6

(

∂u′′
1

∂u′
n

+ 2
∂u′′

2

∂u′
n

+ 2
∂u′′

3

∂u′
n

+
∂u′′

4

∂u′
n

)

(3.9)

To calculate these derivatives explicitly, we need to differentiate the individual stages of the Runge-
Kutta-Nyström method with respect to the global track parameters,

Ak =
∂u′′

k

∂u′
n

, Ck =
∂u′′

k

∂un
(3.10)

wherek denotes the individual stages, andu′′
k is given — in a general form — by the equations of

motion of the global track parameters [4]

x′′ = λ(T yBz − T zBy)

y′′ = λ(T zBx − T xBz)

z′′ = λ(T xBy − T yBx)

Λ′′ = −
λ3gE

q2
(3.11)

The last equation handles the energy loss, withE being the energy andg the energy loss per unit
distance. The energy loss and its gradient varies little within each recursion step, hence the values
calculated in the first stage are recycled by the following stages. This lowers the computing cost
considerably.

Writing the4 × 4 Ak andCk matrices in a general form, we get

A =







∂x′′

∂T x · · · ∂x′′

∂λ
...

. . .
...

∂Λ′′

∂T x · · · ∂Λ′′

∂λ






=













0 λBz −λBy T yBz − T zBy

−λBz 0 λBx T zBx − T xBz

λBy −λBx 0 T xBy − T yBx

0 0 0
(

1
λ
(3 − p2

E2 ) + 1
g

∂g
∂λ

)

Λ′′













(3.12)
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and

C =







∂x′′

∂x
· · · ∂x′′

∂Λ
...

. . .
...

∂Λ′′

∂x
· · · ∂Λ′′

∂Λ






=













λ(T y ∂Bz

∂x
− T z ∂By

∂x
) λ(T y ∂Bz

∂y
− T z ∂By

∂y
) λ(T y ∂Bz

∂z
− T z ∂By

∂z
) 0

λ(T z ∂Bx

∂x
− T x ∂Bz

∂x
) λ(T z ∂Bx

∂y
− T x ∂Bz

∂y
) λ(T z ∂Bx

∂z
− T x ∂Bz

∂z
) 0

λ(T x ∂By

∂x
− T y ∂Bx

∂x
) λ(T x ∂By

∂y
− T y ∂Bx

∂y
) λ(T x ∂By

∂z
− T y ∂Bx

∂z
) 0

−λ3E
q2

∂g
∂x

−λ3E
q2

∂g
∂y

−λ3E
q2

∂g
∂z

0













(3.13)
With the help of these matrices, we find the elements ofDn, which is multiplied byJn to pro-
duce the transported JacobianJn+1 (3.4). This procedure is repeated for every recursion step,
transformingJ along the way.

When applied to real problems, the gradients ofA andC are usually quite costly to calculate,
hence it is common practice to set all of the∂g/∂λ, ∂Bi/∂xj and ∂g/∂xj gradients,i and j

indicating thex, y and z components, to zero. This is, however, only correct for the material
gradients∂g/∂xj of the blended dense volumes of the simplified ATLAS materialdescription.

4 Numerical error propagation

To test the semi-analytical error propagation, we need an alternative way of calculating the deriva-
tives of the Jacobian (2.4). The most straightforward way is by using the definition of the numerical
derivative

f ′(ξi) ≈
f(ξi + hi) − f(ξi)

hi
(4.1)

wheref(ξi) propagates the local track parameters — denoted byi — from the initial surface to
the target surface, whilehi is kept sufficiently small, ideally zero. By using the above definition
of the derivative, we vary the initial local track parameters by a small amounthi, one at a time.
This is the key to knowing exactly how these variations translate to the final local track parameters.
Registering the changes to the final parameters gives us the 25 derivatives of the Jacobian.

Though very easy and straightforward, this method is quite inaccurate. One way of increasing
the accuracy is by using the symmetric derivative

g(hi) ≈
f(ξi + hi) − f(ξi − hi)

2hi
(4.2)

which typically has a fractional error two orders of magnitude better than the original definition of
the derivative [7].

To further increase the accuracy, we use a numerical method called Ridders’ algorithm [7].
The essence of Ridders’ algorithm is to parameterize the symmetric derivative as a function ofhi

alone by calculating it for descending values ofhi, figure2. This parameterization ofg(hi) is used
to estimate the derivative in the limithi → 0. Since it has to be done for every derivative, this
method is very time consuming and only useful for testing.

Compared to the semi-analytical error propagation even thesimplest numerical error propaga-
tion is slow, needing at least five additional parameter propagations for every track, increasing the
computing time accordingly.
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g(h)

h
h2

g(h2)

g(0)

g(h0)

g(h1)

g(h3)

h0h1h3

Figure 2. Schematic plot of the Ridders algorithm. The graph shows the parameterization of the symmetric
derivativeg(hi). This algorithm reduces the problem with the increasing rounding errors — indicated by the
error bars — of the symmetric derivative whenhi → 0.

5 Validating the Jacobian in an inhomogeneous magnetic fieldincluding energy loss

To get a complete understanding of the semi-analytical error propagation, we need to study the
Jacobian terms in a realistic, inhomogeneous magnetic fieldwith energy loss. The test setup in-
volves propagating muons — through solid Silicon in the realistic ATLAS magnetic field — in
random directions, covering all azimuthal and polar anglesat momenta ranging from 500 MeV to
500 GeV, starting off from an initial surface located at the interaction point of the ATLAS detector.
The particles are propagated towards a target surface randomly placed and rotated in a cube with
sides of 20 m centered in the detector. Generally, muons experience a 5 GeV energy loss in the
ATLAS detector — regardless of their initial momentum — which is doubled by the solid material
of the test volume. The most energetic muons of the track sample are displaced by a few cm from
a straight line by the ATLAS magnetic field on their 15–20 m trip through the detector, while the
intermediate muons at around 100 GeV are displaced 10–20 cm and the lowest energy muons might
be shifted several meters.

During this test, the derivatives required by the error propagation are calculated twice; first
semi-analytically by the Bugge-Myrheim method, and then numerically by the Ridders algorithm.
The numerical derivatives define the baseline for the semi-analytical terms. To assure the quality of
the numerical derivatives, the STEP propagator at an error tolerance of10−8 is used for calculating
the symmetric derivatives of the Ridders algorithm. The error tolerance is a user specified number
steering the accuracy of the propagation, a low error tolerance giving a high accuracy, and vice
versa. Theabsolute, relative residual

|semi-analytical derivative− numerical derivative|
|numerical derivative|

(5.1)

is then used to compare the 25 derivatives of the semi-analytical and numerical Jacobians.
Figure 3 shows three histograms of the logarithm of the absolute, relative residuals of the

Jacobian element∂lf1/∂λi, f and i indicating the final and initial values. These histograms are
typical of all the∂lf0/∂ξi and∂lf1/∂ξi Jacobian elements.

Figure4 shows the effect on the residuals of two Jacobian terms by only including one type
of gradient into the calculation of the semi-analytical derivatives. These terms are only sensitive

– 8 –



2
0
0
9
 
J
I
N
S
T
 
4
 
P
0
4
0
1
6

(Absolute, relative residual)
10

log
-7 -6 -5 -4 -3 -2 -1 0 1 2

#E
ve

nt
s

1

10

210
initialλ∂

final
1l∂Error tolerance

310
-310
-810

(Absolute, relative residual)
10

log
-7 -6 -5 -4 -3 -2 -1 0 1 2

#E
ve

nt
s

1

10

210

Figure 3. Logarithms of the absolute, relative residuals of the∂lf
1
/∂λi Jacobian term in an inhomogeneous

magnetic field with energy loss. The semi-analytical derivatives are calculated at three error tolerances with
both gradients included, whereas the numerical derivatives are all calculated at an error tolerance of10−8.
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Figure 4. Logarithms of the absolute, relative residuals of two Jacobian terms in an inhomogeneous mag-
netic field with energy loss. The semi-analytical derivatives are calculated with, and without including the
magnetic field gradients∂Bi/∂xj (left) and the energy loss gradient∂g/∂λ (right). Both the semi-analytical
and numerical derivatives are calculated at an error tolerance of10−8.

to either the magnetic field gradients or the energy loss gradient. Due to the underlying single
precision of the analysis program used to produce the plots (ROOT [8]), no relative difference
better than approximately10−7 is seen. Entries with better relative precision become identically
zero and are not shown.

Figure5 shows the mean values of residuals of a selection of Jacobianterms with and with-
out both gradients included. All of the semi-analytical derivatives are sensitive to the gradients,
especially the angular derivatives.

The improvements in the residuals when turning on the magnetic field gradients are presented
on the left-hand side of figure6, while the additional improvements by including the energyloss
gradient are shown to the right. The effect of the energy lossgradient is only seen in the last
column of the Jacobian,∂ξf/∂λi, illustrated by the constant∂lf0/∂φi residual in the right-hand
plot of figure6, whereas the effects of the magnetic field gradients show up all over the Jacobian,
except in the last row∂λf/∂ξi, as illustrated by the constant∂λf/∂λi residual in the left-hand plot
of the same figure.
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Figure 6. Improvements in the mean values of the logarithms of the absolute, relative residuals by including
the magnetic field gradients (left), and the additional improvements by including the energy loss gradient
(right) in an inhomogeneous magnetic field with energy loss.The semi-analytical derivatives are calculated
at different error tolerances, whereas the numerical derivatives are all found at an error tolerance of10−8.

Figure7 shows the additional computing time — relative to the STEP parameter propagation
— spent by the semi-analytical error propagation, magneticfield and energy loss gradients. The
error propagation is only done after the adaptive parameterpropagation has found the optimal step
length, making the nominal computing cost of the error propagation relatively stable over the whole
error tolerance range. Thus, the drop in the additional computing cost of the error propagation at
low error tolerances is mostly caused by the increased computing cost of the parameter propagation.

6 Verifying the propagated covariance matrix in an inhomogeneous magnetic field
including energy loss

In the previous sections we have looked at the individual Jacobian elements to get a deeper un-
derstanding of the error propagation. Now, we examine the final covariance matrix produced by
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Figure 8. Testing the error propagation by smearing the initial track parameters according to the covariance
matrix. The residual is normalized by the propagated covariance to produce the pulls, and multiplied by
the inverse of the propagated covariance to find the chi-square. The angles and the momentum are smeared
similarly to the positions shown in the figure.

the linear error propagation (2.5). From this transformation, we see that the elements of the final
covariance matrix are sums and products of many initial covariance and Jacobian terms. Evaluat-
ing the final covariance elements on an individual basis becomes prohibitively difficult, yet testing
the Jacobian alone is not sufficient to guarantee the qualityof the error propagation. Only a full
error propagation, using a realistic initial covariance matrix, allows us to test the significance of
the missing, or inaccurate Jacobian elements, and the gradients. To perform this test, we use the
fact that the initial covariance matrix defines the Gaussianvariances and correlations of the initial
track parameters. By varying the initial track parameters according to their associated covariance
matrix before propagating them to the target surface, the variation of the final track parameters
should be reflected in the final covariance matrix. In short, we use the initial covariance matrix for
smearing the simulated tracks and the final track parametersfor statistically testing the propagated
covariance matrix, figure8.
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6.1 Smearing the initial track parameters according to the covariance matrix

To simulate the variances and correlations of the initial local track parameters, we first decompose
the initial covariance matrix into two triangular matricesby using Cholesky’s method [7]

Σinitial = L · LT (6.1)

This method is easy to use and sufficient for decomposing symmetric, positive definitive matrices
such as the covariance matrix.

The elements of the initial covariance matrices are picked at random from Gaussian distribu-
tions with mean values of zero and widths of 50µm for the positionsl0 andl1, 1 mrad for the angles
φ andθ, and 1% for the inverse momentumλ. These are realistic values of the resolution of the
ATLAS detector, except from the 1%λ uncertainty, which is too optimistic. This is kept low due
to the big amount of material — and hence large energy losses of the particles — in the test setup.

After decomposing the initial covariance matrix, we use it to smear [9] the initial local track
parametersµi (i denoting initial)

ξi = µi + L · η (6.2)

whereL is the lower triangular matrix obtained through the Cholesky decomposition (6.1), andη

is a vector of five independent variables picked at random from a Gaussian distribution of mean
zero and variance one. Equation (6.2) assumes that the initial local track parameters are Gaussian
distributed and smears them accordingly by using the initial covariance matrix.

6.2 Statistical validation of the semi-analytically propagated covariance matrix

In this test, muon tracks are generated — with their initial parameters smeared according to the
above procedure — and propagated by using the test setup described in section5, replacing the
Silicon with Iron. Enough tracks are generated to make the statistical uncertainties insignificant.
The track parameter and error propagation is done by STEP with the magnetic field and energy loss
gradients included, at an error tolerance of10−8 to assure the quality of the tracks. Each track is
propagated twice to produce the undisturbedµ and smearedξ local track parameters at the target
surface. Theξ − µ residuals are then statistically compared to the semi-analytically propagated
covariance matrixΣfinal by using the normalized residuals, orpull values

ˆ
ξj
k =

ξj
k − µj

k
√

Σjj
final,k

(6.3)

and thechi-square

χ2
k = (ξk − µk)

T ·Σ−1
final,k · (ξk − µk) (6.4)

with k indicating the simulated tracks andj the track parameters.

Sinceξj
k is Gaussian distributed aroundµj

k, the pull values should be Gaussian distributed
around zero. Moreover, if the propagated covarianceΣfinal,k is correct, the width of the pull values
should be normalized to one. All of the pull values presentedin figure9 satisfy these requirements,
showing good agreement between the semi-analytical error propagation and the simulation. The
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Figure 9. Pull values of the final parameters of tracks smeared by the initial covariance matrix, and their
Gaussian fits (solid lines). The covariance matrices are propagated semi-analytically at an error tolerance of
10−8 with the gradients included.

tails of theλ pull are intrinsic to the semi-analytical error propagation and arise from the informa-
tion loss caused by introducing the temporary global track parameters during the error propagation.

Whereas the pull values are calculated for each parameter ofthe simulated track, the chi-
square incorporates the whole covariance matrix and all of the track parameters. Assuming that
all five track parameters are Gaussian distributed, and thatthese distributions obey the variances
and correlations given by covariance matrix, the test chi-square distribution should be similar to
the standard chi-square distribution corresponding to fivedegrees of freedom. By integrating the
standard chi-square distribution from the test chi-squareto infinity, we get the so-calledp-value, or
probability value of this test statistic. If the test chi-square distribution is correct, the p-value plot
is flat. Inverting the covariance matrix by using singular value decomposition [7], we get the flat
p-value plots of figure10, showing good agreement between the semi-analytical errorpropagation
and the simulation.
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Figure 10. P-values of the final parameters of tracks smeared by the initial covariance matrix, and their linear
fits. The covariance matrices are propagated semi-analytically at an error tolerance of10−8, excluding all of
the the gradients (left) and by only including the magnetic field gradients (right).

6.3 Estimating the impact of the gradients on the semi-analytical error propagation

The covariance matrices of the pulls of figure9 are all propagated by including the∂g/∂λ and
∂Bi/∂xj gradients discussed in section5 into the error propagation. Including these gradients
improves some elements of the Jacobian significantly. Such improvements are also seen when
comparing the p-values found by only including the magneticfield gradients (right) to those found
by excluding all of the gradients (left) in figure10. The flat p-value plot found by only including the
magnetic field gradients leaves little room for further improvement. Thus, only the magnetic field
gradients — and not the energy loss gradient — are included into STEP by default. The gradients’
influence on the pulls is insignificant, consequently they are not presented here.

Pull and p-values obtained by using an error tolerance of10−2 for the semi-analytical error
propagation — instead of the10−8 used in figures9 and10 — produce similar plots, indicating
little sensitivity to the error tolerance in the semi-analytical error propagation.

7 Conclusion

In this paper we have performed an extensive study of the Bugge-Myrheim method, gaining a
quantitative understanding of the impact of the magnetic field and energy loss gradients on the
accuracy and speed of the semi-analytical error propagation. Results show that only the magnetic
field gradients have a visible effect on the covariance matrices transported by the semi-analytical
error propagation in the ATLAS magnetic field, hence the energy loss gradient is left out of the
error propagation by default.

The computing cost increase — relative to the parameter propagation — by adding the semi-
analytical error propagation is less than 100% at medium andhigh accuracies. This is significantly
less than the minimal computing cost increase of 500% seen inthe numerical error propagation
methods. Furthermore, the additional computing cost for including the magnetic field and energy
loss gradients is around 30–40% for each type of gradient. Finally, the nominal computing cost
and accuracy of the semi-analytical error propagation is relatively stable over the whole error tol-
erance range.
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