
C
ER

N
-L

H
C

-P
R

O
JE

C
T-

R
EP

O
R

T-
10

84
30

Ju
n

20
08

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 
European Laboratory for Particle Physics 

 
 

CERN 
CH - 1211 Geneva 23 
Switzerland 
 

 

 

 
 

CERN-LHC-Project-Report-1084
 

The LHC as a Nucleus-Nucleus Collider 

John M. Jowett 
 

Abstract 
 

This paper begins with a summary of the status of the Large Hadron Collider at CERN, including 
the lead-ion injector chain and the plans for the first phases of commissioning and operation with 
colliding proton beams.  In a later phase, the LHC will collide lead nuclei at centre-of-mass energies 
of 5.5 TeV per colliding nucleon pair.  This leap to 28 times beyond what is presently accessible 
will open up a new regime, not only in the experimental study of nuclear matter, but also in the 
beam physics of hadron colliders.  Ultraperipheral and hadronic interactions of highly-charged 
beam nuclei will cause beam losses that dominate the luminosity decay and may quench 
superconducting magnets, setting upper limits on luminosity and stored beam current.  Lower limits 
are set by beam instrumentation.  On the other hand, coherent radiation by the nuclear charges 
should provide natural cooling to overcome intra-beam scattering.  As with protons, a flexible, 
staged approach to full performance will test the limits and make optimal use of scheduled beam 
time.      
 
 
 
 

Submitted to Journal of Physics G, Nuclear Physics 

 

Invited Paper at Quark Matter 2008, 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions 
Jaipur, India - 4-10 February 2008 

 

Large Hadron Collider Project

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44198752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

 



The LHC as a Nucleus-Nucleus Collider

John M. Jowett

Accelerators and Beams Department, CERN, CH-1211 Geneva 23, Switzerland

E-mail: John.Jowett@cern.ch

Abstract.

This paper begins with a summary of the status of the Large Hadron Collider

at CERN, including the lead-ion injector chain and the plans for the first phases of

commissioning and operation with colliding proton beams. In a later phase, the LHC

will collide lead nuclei at centre-of-mass energies of 5.5 TeV per colliding nucleon

pair. This leap to 28 times beyond what is presently accessible will open up a

new regime, not only in the experimental study of nuclear matter, but also in the

beam physics of hadron colliders. Ultraperipheral and hadronic interactions of highly-

charged beam nuclei will cause beam losses that dominate the luminosity decay and

may quench superconducting magnets, setting upper limits on luminosity and stored

beam current. Lower limits are set by beam instrumentation. On the other hand,

coherent radiation by the nuclear charges should provide natural cooling to overcome

intra-beam scattering. As with protons, a flexible, staged approach to full performance

will test the limits and make optimal use of scheduled beam time.

Submitted to: J. Phys. G: Nucl. Phys.
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1. Introduction

CERN and its world-wide network of collaborating institutions are almost at the end

of the long road from the first public “Feasibility Study of a Large Hadron Collider

in the LEP Tunnel” in 1984 [1] to colliding protons and heavy (lead) nuclei in the

LHC. A recent survey of the machine design, superconducting technology and the

accelerator physics relevant to its performance as a proton collider can be found in [2].

After a brief update on the status (as of February 2008), this paper will describe the

LHC’s second role as an ultra-relativistic nucleus-nucleus collider, with emphasis on

performance expectations and the physical phenomena that will limit luminosity. The

heavy-ion physics programme itself is described in other papers at this conference.

The project has required a host of technological developments [2, 3] of which

industrial scale production of the 15 m long dipole magnet is the most prominent. There

will be 1232 of these, operating with their superconducting coils bathed in superfluid

helium at a temperature of 1.9 K.

Inevitably, in such a large and immensely complex enterprise there have been a

few setbacks. Well-known examples were difficulties with the main cryogenic helium

transport line, the low-β triplet quadrupoles and the interconnect modules that have

to keep the beam impedance low while compensating the thermal expansion of sections

of the beam screen (inside the vacuum chamber) during warm-up and cool-down of the

machine. As part of the enormous efforts made in recent years to minimise slippage of

the schedule, technical solutions have been found and implemented. Installation of the

collider’s hardware is now complete and hardware, then beam, commissioning will soon

be under way.

1.1. Luminosities

The nucleon-nucleon luminosity, LNN, and ion luminosity, L, of the LHC are given by

LNN = A2L =
A2N2

b kbf0

4πσxσy

F (θc, σ
∗, σz) =

A2N2
b kbf0γ

4π ǫnβ∗
F (θc, σ

∗, σz) (1)

where f0 is the revolution frequency, Nb is number of particles (protons or ions) per

bunch, kb is the number of bunches per beam, γ = E/(mc2) is the usual relativistic

factor; ǫn =
√

γ2 − 1 σ2
x,y/β

∗ is the “normalised” (independent of beam momentum p)

emittance related to the beam size σ∗ and β∗, the optical function at the interaction

point (IP) (the beams are round so these quantities are the same in both planes); finally,

F (θc, σ
∗, σz) = (1+ (θcσz/2σ

∗)2)−1 is a reduction factor from the half-crossing angle, θc,

and bunch length σz.

With its nominal bending field of 8.3 T, the LHC will provide collisions at the

centre-of-mass energy

√
s =

{

14 TeV (p-p)

1.15 PeV = 5.52 A TeV (208Pb82+–208Pb82+)
(2)
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in the first years of operation, eventually aiming for the design nucleon-nucleon

luminosities

LNN ≈

{

1034 cm−2 s−1 (p-p)

4.3 × 1031 cm−2 s−1 = 1027A2cm−2 s−1 (208Pb82+–208Pb82+)
(3)

Each of the four large experiments will study p-p collisions while heavy-ion (nuclear)

collisions will be provided to ALICE, ATLAS and CMS.

2. Present status of the LHC

2.1. Schedule

At present, we expect the whole machine to be cold by early June 2008, some 2-3 weeks

behind the schedule published in October 2007. The schedule, which is constantly

updated at [4], is technically feasible but remains sensitive to any major new problem.

Proton commissioning and operation for physics will continue through 2008 and

2009. At present, the target date for the first Pb-Pb collisions is at the end of the 2009

run, before the winter shutdown. The ion injectors will not run in 2008 and must be

made ready earlier in 2009.

2.2. Commissioning with proton beams

Since the injector chain and transfer lines from the SPS to the LHC are already fully

capable of delivering the required proton beams, commissioning of the accelerator with

protons will start with procedures to achieve injection, RF capture and good lifetime at

injection energy for single, moderate intensity bunches. Thereafter commissioning will

proceed in defined stages (labelled A–D), gradually increasing kb, Nb and “squeezing”

β∗ to smaller values. Further details of the beam parameters and procedures are given

under “Commissioning” at [4].

Experience of previous colliders shows that it is hard to predict the time necessary

to achieve first collisions although the estimate for the LHC is about 2 months. This

machine will require particular care to establish a precise knowledge of the orbit and

beam optics. The aperture available to the beam is small and the stored energy in the

beams will be quite unprecedented. Therefore the luminosity attainable will depend on

the ability to protect the machine from losses (∼ 1/β∗), experience with the collimation

system and other factors. Unlike any previous collider, the collimation system’s primary

purpose is to clean the beam and protect the machine rather than to reduce backgrounds

in the experiments.

3. Ion Injector Chain

The heavy ion beams required for the LHC are much more demanding in intensity and

emittance than those used in the SPS fixed target programme. This has required a

new electron-cyclotron resonance (ECR) ion source, the electron cooling ring LEIR and
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many other changes and upgrades to the CERN injector complex [5]. Together these

constituted the bulk of the cost of the “Ions for LHC” project.

Two reference sets of LHC beam parameters (dubbed “Early” and “Nominal”)

correspond to different modes of operation of the injectors (see [3, 5] and Table 1).

The status of the injector chain was most recently reviewed in [6]; only more recent

developments are summarised in the following.

Source and Linac3 achieved adequate intensity for Early beam (record of 31 eµA of

Pb54+ out of the linac). The stability and reliability required for Nominal beam

will be supplied by an upgrade of the source generator to 18 GHz. Numerous other

improvements have been implemented or are on the way.

LEIR is working well for the Early beam and there has been progress towards Nominal.

PS and transfer lines will require further work for the Nominal beam.

SPS was commissioned for ions in late 2007 although there were substantial delays with

some hardware. The Early beam parameters were essentially achieved but there

are concerns about beam losses on the longer injection plateau needed for Nominal.

If these are not reduced by further development on the RF system, it may be

necessary to change the LHC filling scheme to shorten the plateau. Nevertheless

a 208Pb82+ beam was ejected along one of the transfer lines from the SPS towards

the LHC.

4. Pb-Pb collisions

Historically, the Nominal parameters (Table 1) were defined, on the basis of experimental

requirements, many years ago. The ion injector chain was accordingly designed to

provide appropriate beam intensities. More recently, it was recognised that the Pb-Pb

luminosity in the LHC might be limited by new beam physics effects, not seen in any

previous collider. A peak luminosity L0 ≃ 1027cm−2s−1 has been kept as a goal although

quantitative uncertainties in the performance limits (discussed below) might limit it to

values 2–3 times less.

The Early parameters (Table 1) were introduced more recently [3] as a first step

in a staged commissioning plan, allowing more rapid commissioning of the injectors,

exploration of the new performance limits in the LHC itself, and a luminosity sufficient

for initial physics.

Ultraperipheral and hadronic interactions of beam nuclei with other nuclei, either

in the opposing colliding beam or in the stationary beam environment are at the root

of the main performance limits of the LHC when it collides heavy nuclei.

4.1. Ultraperipheral collision processes

The cross section for free e+e− pair-production in collisions of nuclei with charges Z1

and Z2 is σPP ∝ Z2
1Z

2
2 ≈ 2. × 104 b for Pb-Pb at the LHC. A small fraction of the
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Parameter Units Nominal Early

Energy/nucleon TeV 2.76

Peak luminosity L0 cm−2s−1 ∼ 1027 ∼ 5. × 1025

No. of bunches kb 592 62

Bunch spacing ns 99.8 1350

Optics (β∗) at IP2/IP1,5 m 0.5/0.55 1.0

No. of Pb ions/bunch Nb 7. × 107

Transverse normalised RMS emittance ǫn µm 1.5

Longitudinal emittance/charge ǫl eV s 2.5

Luminosity half-life (1,2,3 experiments) h 8, 4.5, 3 14, 7.5, 5.5

Table 1. Selected performance parameters for the “Nominal” and “Early” Pb-Pb

collision modes; for full details see chapter 21 of [3].

pairs are produced with the electron bound to one nucleus in bound-free pair production

(BFPP):

Z1 + Z2 →
(

Z1 + e−
)

1s1/2,...
+ e+ + Z2 (4)

and with a cross section [7] depending much more strongly on Z:

σBFPP ≃ Z5

1Z
2

2 [A log γCM + B] ≈ 281 b, (5)

for Pb-Pb at the LHC; [7] gives values for the constants A and B. This process, together

with the electromagnetic dissociation (EMD) via the Giant Dipole Resonance

208Pb82+ +208 Pb82+ −→208 Pb82+ +207 Pb82+ + n (6)

dominates the intensity loss (“burn-off”) from collisions [8, 9]. The collision products

have a different charge-to-mass ratio and are lost from the main beam [10]. The beam

aperture and optics are such that the 207Pb82+ nuclei produced by EMD are lost safely

in the momentum collimation system. However the beams of 208Pb81+ ions from BFPP,

emerging from each side of each collision point, strike the beam screen inside one of

the first superconducting bending magnets at the start of the main arc (the dispersion

suppressor section) of the LHC. The 281 kHz loss rate at nominal luminosity generates

25 W of heating power in a ∼ 1 m long spot.

Detailed analysis [11], including simulations of the hadronic showers, and revised

estimates of the tolerable energy deposition (thermodynamics of liquid He and heat

transfer), suggest that the magnets are not likely to quench because of BFPP beam

losses; however, quenches remain possible within the uncertainties. Additional beam loss

monitors have been installed around the IPs to monitor these losses in LHC operation

and strategies are being prepared to redistribute them to some extent.

Despite much smaller rates during the RHIC Cu-Cu run, it was just possible to

detect this process [12] and test the methodology used to predict the energy deposition

in the magnet coils and signals on beam loss monitors in the LHC.
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Figure 1. Luminosity, L, vs. single bunch current Ib, limited from below by the

dynamic range of BPMs and current monitors (BCTDC, FBCT) for both Early and

Nominal bunch filling schemes. L is limited by BFPP and total current kbIb by

collimation inefficiency. Operation is restricted to the diamond at upper right.

4.1.1. Collimation inefficiency The collimation system is essential to protect the LHC

machine from particles that would be lost causing magnet quenches or damage.

The principle of collimation for protons is that particles at large amplitudes

undergo multiple Coulomb scattering in a sufficiently long, (carbon) primary collimator,

deviating their trajectories onto properly placed secondary collimators which absorb

them in hadronic showers. However ions undergo nuclear fragmentation or EMD before

scattering enough so the secondary collimators are ineffective [13]. The machine then

acts as a spectrometer with isotopes lost in other locations, including superconducting

magnets, with consequences as described above. Simulation of these processes requires

detailed nuclear physics input with cross sections for many fragment channels. Again,

the results suggested the locations of additional beam monitors.

This may turn out to be a more severe limit on Pb-Pb luminosity than BFPP.

Nevertheless it should be kept in mind that the conventional (1996) quench limit

(tolerable heat deposition in superconducting magnet coils) now appears pessimistic.

This is also a soft limit: losses are evaluated with the hypothesis that the single-beam

(not including collisional) losses have reached a level corresponding to a lifetime of

12 min. Meanwhile the simulations have been successfully benchmarked with Pb beams

and an LHC collimator in SPS.

Since there will be a Phase 2 Collimation upgrade for p-p operation, we are looking

at what might be included to improve collimation efficiency for ion beams (cryogenic

collimators, crystals, magnetic collimation, optics changes, etc.)

4.1.2. Beam Instrumentation The total charge in a Pb bunch is only a factor 3-4

above the lower limit of visibility on the beam position monitors (BPMs); therefore it



LHC as nucleus-nucleus collider 7

will always be necessary to inject close to nominal bunch current and (very likely) dump

beams when their intensity decays below this threshold. There are similar limits on the

beam current monitors, all indicated in Figure 1. Any limits on total bunch will be

respected by adjusting the number of bunches.

The methods for measuring beam sizes and emittances are also limited, with greater

reliance on beam-gas ionization monitors and Schottky spectra than for protons.

4.1.3. Beam and luminosity lifetime Once beams are put into collision, the subsequent

evolution of the intensity and lifetime depends on the interplay of a number of effects.

Predictions of the net results are shown in Figure 2.

Beam-gas interactions, reducing intensity and increasing emittance, are not

expected to be significant once good vacuum conditions are established.

Intra-beam scattering (IBS) or multiple Coulomb scattering within bunches tends

to blow up the beams on a time scale of several hours. However, since the nuclear charges

radiate coherently at relevant wavelengths, the LHC ions will be the first hadron beams

to be significantly affected by synchrotron radiation damping. Somewhat surprisingly,

radiation damping for Pb ions is about twice as fast as for protons (see Chapter 21

of [3]) and fast enough to overcome IBS at full intensity, hence the shrinking emittance

in Figure 2. In addition (although it is not immediately apparent in these plots),

longitudinal RF noise is also being used to counteract the damping of the longitudinal

emittance, keeping it roughly constant. This helps to reduce the effect of IBS on

transverse emittances.

The intensity decay is dominated by the strong “burn-off” in collisions from the

large electromagnetic cross-sections. Instantaneous beam and luminosity lifetime are

reduced in proportion to the number of active experiments. This is partly compensated

by the faster emittance damping as the intensity drops. But beams must also be dumped

sooner and the average and time-integrated luminosity will depend strongly on the time

taken to dump, recycle, refill, ramp and re-tune the machine for collisions. Clearly, the

integrated luminosity per experiment will fall as more experiments take collisions.

4.2. Commissioning Pb-Pb collisions

The “hot-switch” to Pb-Pb collisions will be done when the LHC is already operational

with protons and the ion injector chain is ready. It will not be a start-up from shutdown.

The rapid commissioning strategy is based on the principle of making the absolute

minimum of changes to the working p-p configuration.

The quasi-static magnetic fields of the LHC magnets will have exactly the same

effect on the spatial trajectory of a Pb ion as on a proton (for equal momentum per

charge, p/Z, or magnetic rigidity). Thus, all the magnetic settings established in p-p

operation for the transfer, injection, ramp, and squeeze of the ATLAS and CMS collision

optics should also work for Pb ions. Moreover, the nominal emittances are chosen to

give equal beam sizes so all related considerations (e.g., of aperture) should be similar.
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Figure 2. Evolution of emittance, bunch intensity and luminosity in an “ideal” fill,

starting from design parameters giving Nominal luminosity. Cases of 0,1,2 or 3 active

experiments are shown. Beams will most likely be dumped when the intensity decays

to the BPM visibility threshold.

The main change to the magnetic cycle will be the completion of a β-squeeze for ALICE;

we expect that the experience gained by then with the other experiments will allow this

to be commissioned quite efficiently. Indeed, most or all of this setup may well have

been done with proton beams.

The LHC beams see few externally applied electric fields apart from the time-

dependent electric fields of the RF system, localised near Point 4. Adjustments of

the RF frequency and phase will compensate for the change in speed and revolution

frequency of the ions—“energy matching” and “capture” at injection, then a calculable

shift at each energy in the ramp—will match the ions’ orbit to that of the protons.

Other operational differences will arise from the different bunch filling patterns and

adaptation of the beam instrumentation but these should generate little overhead.

This may seem inconsistent with the experience at RHIC, which has switched

species several times, typically from A-A to p-p. However RHIC requires more

complicated changes to the magnetic fields (transition crossing in the ion ramp, polarized

proton beams) that are not necessary in the LHC. A better comparison might be with

the CERN ISR which switched from p-p to light ion collisions a few times in the late

1970s. Those switches went very quickly [14], in less than a day, precisely because the
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machine was kept magnetically identical.

After a first run with the Early beam, we will gradually push up the number of

bunches towards Nominal, always maximising the single-bunch current within the overall

limitations. As with protons, it may be worth changing the bunch filling pattern in the

light of better quantitative knowledge of the performance limits.

5. Beyond Pb-Pb collisions

So far resources have been concentrated on the “baseline” of p-p and Pb-Pb collisions.

However the heavy-ion physics programme at the LHC is expected to include further

stages not yet scheduled within the CERN programme. These may include:

p-Pb collisions are a crucial element of the physics programme, just as d-Au collisions

are at RHIC [15]. A preliminary study [16] has shown that the injector chains for

protons and ions can work in tandem to efficiently fill the two LHC rings with

matching bunch trains. However the two-in-one magnet design of the LHC (as

opposed to the separate magnets of RHIC) means that provision of hybrid collisions

in the LHC gives rise to quite different beam dynamics. Concerns have been raised

about different revolution frequencies during injection and part of the energy ramp

and the consequent moving beam-beam encounters. At present, [16] gives plausible

indications that an acceptable luminosity can be obtained or even surpassed.

A-A collisions of lighter ions such as Ar, Ca, . . . , the choice of ion being determined

by the physics requirements and ease of production by the ion source.

Electron-ion collisions: If, one day, e±-p collisions are implemented (the LHeC

option) then it would be natural to provide e±-A collisions also.

To widely varying degrees, each of these would require further study and

adaptations of the CERN accelerator chain and the LHC rings themselves. Detailed

scheduling will have to take into account other uses and upgrades to the LHC in the

years to come.

6. Conclusions

• The LHC is on track for the first proton beams and collisions in summer 2008. The

schedule nevertheless remains tight.

• The first nucleus-nucleus (Pb-Pb) collision run is expected at the end of 2009. The

timing of this is very sensitive to the scheduling of beam time and resources for the

ion injectors in 2009 and to the allocation of LHC beam time.

• The Pb-Pb luminosity is limited by new beam physics, particularly nuclear

electromagnetic interactions that lead to energy deposition in superconducting

magnet coils. Measures are being taken to monitor and alleviate these effects.

Furthermore, our understanding has been steadily improving and subjected to

experimental tests.
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• Integrated luminosity per experiment decreases with the number of active

experiments, particularly for smaller β∗.

• The programme for collision species beyond the baseline p-p and Pb-Pb remains to

be established and studied.
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