
Developing a Contactless Bankcard Fare Engine for Transport for London

by

Peter S. C. Lau

B.S. Electrical Engineering and Computer Sciences
University of California, Berkeley, 2007

SUBMITTED TO THE DEPARTMENT OF CIVIL AND
ENVIRONMENTAL ENGINEERING IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN TRANSPORTATION
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2009

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 10 2009

LIBRARIES

©2009 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Department of Civil and Environmental Engineering
May 21, 2009

Certified by:

George Kocur
Senior Lecturer of Civil and Environmental Engineering

Thesis Supervisor

Certified by:

Nigel H. M. Wilson
Professor of Civil and Environmental Engineering

Director, Master of Science in Tra rtation

Daniele Veneziano
Professor of Civil and Environmental Engineering

Chairman, Departmental Committee for Graduate Students

Accepted by:

ARCHIVES

Developing a Contactless Bankcard Fare Engine for Transport for London

by

Peter S. C. Lau

Submitted to the Department of Civil and Environmental Engineering on
May 21, 2009 in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Transportation

ABSTRACT

This thesis investigates the design of a fare engine which operates within the constraints of
using contactless bankcards as a fare instrument, while satisfying the complex current and
future fare requirements of Transport for London (TfL). A fare engine is a system which
transforms user transactions at fare gates and validators into chargeable fares. Contactless
bankcard fare payment differs from current fare smartcard systems by requiring a
centralized fare engine.

The proposed fare engine utilizes a data structure which maintains each user's journey
history in three successive tiers of linked objects. This structure enables transactions to be
correctly sequenced without a guarantee of in-order arrival of gate and validator
transactions. A cleanup routine prevents the data structure from growing without bound as
journey history accumulates. A dynamic journey linking mechanism allows the effect of
inserted transactions to be propagated throughout the data structure and reflected in the
affected journeys with near-constant time complexity. This ensures scalability while
providing real-time feedback for customer service and payment authorization needs.

A solution is devised for the coupling of arbitrary origin-destination fares with zonal period
tickets. The paradigm of automatic ticket selection is introduced, overcoming the
limitations of the existing capping algorithm used by TfL. Through the tracking of parallel
fare scenarios, passengers are guaranteed a total fare no higher than if they had purchased
the optimal period ticket for their usage profile.

With the solutions proposed in this thesis, a contactless bankcard fare engine for TfL
appears feasible.

Thesis Supervisor: George Kocur
Title: Senior Lecturer of Civil and Environmental Engineering

Acknowledgements

I would like to express my thanks to my advisor, George Kocur, who never failed to provide gems of

expertise and timely insight. My appreciation also goes to Professor Nigel Wilson and John

Attanucci for their guidance and advice throughout the course of this degree.

This research is funded by Transport for London as part of its collaboration with MIT. I would like to

acknowledge Will Judge and Shashi Verma of TfL for the support they have lent to this project, as

well as the staff of Fares and Ticketing - Brian Dobson, Ian Thomley, Behdad Haddadien, Peter

Svensson and Andrew Gaitskell for their assistance and feedback.

I want thank all of my colleagues in the MST program for their support and in particular, Michael

Frumin and Candace Brakewood for their help in the area of fare payment. I am also grateful to

Ginny Siggia, whose hard work has kept this program running smoothly.

Finally I owe the deepest appreciation to my parents and to Sara, who has given me endless

encouragement and the strength to see this thesis through to completion from its uncertain

beginnings.

Table of Contents

Acknowledgements ... 4

Table of C ontents ... 5

1 Introduction and Background ... 13

1.1 Traditional Electronic Fare Payment Technologies 13

1.1.1 M agnetic F arecards... 13

1.1.2 Transit Sm artcards .. 14

1.1.3 C om m on C hallenges.. 15

1.2 Overview of Contactless Bankcards .. 16

1.2.1 Contactless Smartcard as a Financial Instrument 16

1.2.2 State of the Technology in the US... 16

1.2.3 State of the Technology in UK and Europe 17

1.2.4 Bankcard Payment Process .. 18

1.3 Direct Fare Payment with Contactless Bankcards.............................. 20

1.3.1 Earlier Attempts at Transit-Contactless Bankcard Integration 20

1.3.2 Benefits of Direct Fare Payment with Contactless Bankcards 21

1.3.3 Issues and Challenges 22

2 Research Question and Framework 26

2.1 D efinitions...... 26

2.1.1 What is a Fare Collection System? 26

2.1.2 W hat is a Fare Engine?27

2.1.3 Example of a Simple Fare Collection System 27

2.2 Research Q uestion.. 29

2.3 Investigative Process ... 29

2.4 Developm ent Considerations .. 30

3 Current TfL Fare Structure 31

3.1 Fare D escription 3 1

3.1.1 Lateral Consistency 31

3.2 General Fare Structures 32

3.2.1 W hat is a Fare Structure? 32

3.2.2 Fare structure Evolution 33

3.2.2.1 Conceptual Fare Structure ... 33

3.2.2.2 Parameterized Fare Structure .. 34

3.2.2.3 Domain-defined Fare Structure .. 34

3.2.2.4 Initialized Fare Structure .. 35

3.2.3 Applying a Fare Structure..36

3.2.4 Normalization of Fare Variation... 36

3.2.5 Fare Structure Implementation .. 37

3.2.6 Limitations of a Matrix Based Fare Structure ... 38

3.3 Organization of a TfL Fare Structure .. 38

3.3.1 Product Spheres 38

3.3.2 H ybrid and B ridging Features .. 39

3.4 Single Products 39

3.4.1 Tier Definition and Structural Domain ... 40

3.4.1.1 Fare M edium 42

3.4.1.2 D iscount G roup 42

3.4.1.3 T im e Band 42

3.4.2 Charge Code 43

3.4.2.1 T fL Z ones 44

3.4.2.2 Z onal Pairs..................... 44

3.4.2.3 Special C ases 45

3.4.2.4 Charge Code Lookup... 46

3.4.2.5 Charge code Optim izations 47

3.4.2.5.1 Type 1 Optimization .. 47

3.4.2.5.2 Type 2 O ptim ization 48

3.4.2.6 Charge Code Exam ple ... 48

3.4.2.7 C harge C ode Sum m ary.. 5 1

3.4.3 Bus Journeys.......................... ... 51

3.4.4 Matrix Utilization and Treatment of Null Fields ... 52

3.4.5 Example M aster M atrix 53

3.5 Period Products 55

3.5.1 Tier Definition and Structural Argum ents 55

3 .5.1.1 A pp lication C ontext .. 55

3.5.1.2 D iscount G roups 57

3.5.1.3 Validity Periods ... 57

3.5.1.4 T im e B ands 58

3.5.2 C harge C ode 59

3.5.3 M atrix Utilization 62

3.6 Interchanges 63

3.6.1 Out-of-Station Interchange 63

3.6.2 Bus-Rail Interchange 63

3.6.3 N ational Rail Interchange .. 64

3.7 PAYG Capping 64

3.7.1 Peak and Off-peak Caps 65

3.7.2 Oyster Implementation 66

3.7.3 Running Total Example ... 67

3.7.4 W orked Exam ple .. 68

3.7.5 Capping Lim itations 70

3.7.5.1 Zonal O verextension .. 71

3.7.5.2 Cross-band Zonal Interference ... 72

3.7.5.3 Non-contiguous Zonal Overextension 73

3.7.5.4 Capping with Pre-existing Tickets 74

3.7.6 Capping and Buses 75

3.8 Other Services .. 75

3.9 M otivations for a Fare Structure ... 77

3.9.1 M otivation vis a vis Oyster.. 77

3.9.2 The User Experience Motivation 78

3.9.3 The Next Generation Fare Engine Motivation 79

4 Fare Engine Requirem ents .. 80

4.1 Travel Services................................... 80

4.2 Product Spheres... 81

4 .3 F are M edia 8 1

4.4 User Identification....................... .. 81

4.5 Modes Supported ... 81

4 .6 Single Products 82

4.6.1 Fare C alculation................................ .. 82

4.6.2 Tim e Bands................................ 83

4.6.3 Discount Groups 84

4.7 Journey Properties 85

4.8 Journey Linking 86

4.8.1 Definition of a Linked Journey 86

4.8.2 Journey Segments ... 87

4.8.3 Journey Linking Criteria.. 87

4.8.4 Out-of-station interchange (OSI).. 88

4.8.5 Intermediate Validation .. 89

4.8.6 Cross-mode Interchange .. 90

4.9 Period Products ... 92

4.9.1 Best V alue 92

4.9.2 Modes 93

4 .9 .3 T im e ban ds 93

4.9.4 D iscount G roups...................... ... 94

4.9.5 Zonal Validity 94

4.10 O ther Services.........................94

5 TfL Future Ticketing Architecture ... 96

5.1 F inancial E ntities................................ 97

5.1.1 C ontactless B ankcard 97

5.1.2 Merchant Acquirer.. 98

5.1.3 C ard Issuer ... 98

5.2 Customer Interfaces .. 98

5.2 .1 Point of service 98

5.2.2 Website/Kiosk ... 99

5.3 Internal Subsystem s 99

5.3.1 D evice M anager................................. 99

5.3.2 R isk M anager.. 100

5.3.3 A ccount M anager 100

5.3.4 Billing Engine.. 101

5.3.5 Fare Engine... 102

6 Fare Engine Design .. 103

6 .1 D esign C riteria 103

6.2 Fare Engine O rganization ... 103

6.3 Fare Engine D ata Flow s 104

6 .3 .1 T ap 10 5

6.3.2 LinkedJourney ... 107

6.3.2.1 JourneySegm ent .. 107

6 .3 .3 B illin g Item .. 10 9

6.4 Fare Engine M odels .. 111

6.4.1 Oyster Card - Stateless Fare Engine ... 111

6.4.1.1 Transaction Sequencing... 112

6.4.2 Contactless Bankcard - Batch processing ... 113

6.4.3 Contactless Bankcard - Dynamic Object Oriented Data Structure .. 113

6.4.4 Comparison of Fare Engine Models 115

7 Journey Processor .. 118

7.1 Internal Journey Processor Objects ... 118

7.1.1 JPTap 118

7.1.1.1 Station Areas 120

7.1.1.2 Tap Types ... 120

7.1.2 JPJourneySegm ent.. 122

7.1.3 JPLinkedJourney 123

7.1.4 Exam ple configurations ... 124

7.2 User M anagement 126

7.2.1 Implications for Load Balancing ... 126

7.3 Journey Processor W orkflow 127

7.4 T ap O perations 129

7.4.1 Tap Insertion........................ 129

7.4.2 Eligibility Test 130

7.4.2.1 Syntactic and Semantic Patterns 131

7.4.2.2 Semantic Pattern Variability................. 131

7.4.2.3 Typical Semantic Patterns .. 133

7.5 Journey Segm ent Operations.. 138

7.5.1 Journey Segment Operators .. 138

7.5.1.1 Adjacency 138

7.5.1.2 Linking 139

7.5.1.3 T erm inator 14 1

7.5.1.4 Type............................ 142

7.5.2 Journey Segment Linking Control.. 142

7.6 Linked Journey Operations ... 145

7.6.1 Linked Journey Operators .. 145

7 .6 .1.1 A djacency .. 14 5

7.6.1.2 B illability.................... 145

7.6.2 Linked Journey Linking Control .. 146

7.6.2.1 General Linkability Test 146

7.6.2.2 Environm ent Scenarios... 149

7.6.3 A lternative A pproach 154

7.6.4 Posting and De-posting ... 155

7.7 C leanup R outine .. 157

7.7.1 Cleanup Cycle 160

7.7.1.1 R olling and Fixed C leanup 160

7.7.2 Multi-threading Considerations ... 162

7.7.2.1 B atch C leanup 162

7.7.2.2 U ser Level Locking ... 162

7.7.2.3 Journey Level Locking 164

7.7.2.4 Recommended Solution.. 164

8 Fare Processor .. 165

8.1 System O verview 165

8.2 Inputs and Outputs 165

8.3 Fare Structure Assumptions 166

8.3 .1 B us Journ eys... 167

8.4 F are C alculator 167

8.4.1 H andling of Fare Zones 168

8.4.1.1 Zonal Reducible Fare 169

8.4.1.2 Non-Reducible Fare 172

8.4.2 OXNR Matrix Control System (MCS) .. 174

8.4.2.1 Adapting MCS for the Contactless Bankcard Fare Processing .. 175

8.4.2.2 Prototype Implementation .. 176

8.4.3 Automatic Ticket Selection Unit ... 176

8.4.3.1 Daily Best Value 177

8.4.3.2 W orked Exam ple 178

8.4.3.3 W eekly B est V alue ... 183

8.4.3.4 Best Value with Pre-purchased Ticket .. 185

C onclusions .. 187

8.5 Summary of Research Process ... 187

8.6 Identified Challenges and Solutions ... 188

8.7 Further Work.. 191

R eferences .. 192

A ppendices ... 194

A. Current Oyster Fare Structure Hierarchy ... 194

B. Matrix Control System Sample Output ... 197

C. System Maps ... 202

11

12

1 Introduction and Background

This thesis formulates the design of a contactless bankcard fare engine for Transport for London

(TfL). The first chapter provides an introduction to the current state of the art in fare payment. We

examine the drawbacks of current fare payment systems and why contactless bankcards are an

attractive alternative to existing technologies.

In chapter 2, we frame the thesis question inside the context of a fare collection system. We define a

fare engine, and the goals to be met along the way as we design one. In chapter 3, we examine TfL's

current fare structure model and frame it in a systematic fare structure which we develop. In chapter

4, the requirements of the contactless bankcard fare engine are laid out, based on the fare structure

constructed in chapter 3, as well as the expected future needs of TfL. We also review ongoing plans

for the future ticketing fare collection system. This is the infrastructure that TfL is planning to

support contactless bankcard fare payment. We define the role of the fare engine within this system.

Chapters 5 to 7 are devoted to the design of the fare engine. In chapter 5, we outline the two major

modules that constitute the fare engine, the fare processor and the journey processor. We describe the

data flows that connect the fare engine to other systems within the fare collection system and the data

flow that connects the journey processor and the fare processor within the fare engine. Chapter 6 is

an in depth discussion of the journey processor where we describe a solution to the problem of tap

sequencing without guaranteed in-order arrival and a mechanism for dynamic journey linking. In

chapter 7, we give a detailed treatment of the fare processor, including approaches for implementing

National Rail support and true best value.

1.1 Traditional Electronic Fare Payment Technologies

Prevailing electronic fare payment technologies in use today fall into two categories - magnetic

farecards and smartcards.

1.1.1 Magnetic Farecards

Magnetic farecards are produced from either a paper or polyester base material and contain a

longitudinal magnetic stripe which is read-write capable. This technology dates from the 1960s,

having first been introduced in London and on the Long Island Railroad of New York. Subsequent

deployments on the Bay Area Rapid Transit (BART) system of San Francisco in 1972 and

Washington DC Metro (WMATA) in 1976 are more sophisticated and are capable of distance based

fares [11].

The strengths of magnetic farecards include the low cost of the fare medium (as low as $0.02 per

card as of 2003) and automation in vending (by means of Ticket Vending Machines or TVMs) and

entry/exit control (by means of automatic fare gates). Finally, the discarding of farecards with small

residual value by customers becomes an additional revenue stream for the transit agency in offsetting

the cost of the system's operation. Both the Chicago Transit Authority (CTA) and WMATA

experience unused fares of more than $3 million per year [12].

However, magnetic fare cards have limited data capacity, restricting the agencies' ability to

implement multi-ride and fare pass options. Interoperability between transit systems is weak. The

fare processing equipment (both TVMs and fare gates) for magnetic farecards is expensive and

requires considerable maintenance due to the number of moving parts involved. Attempts to reduce

these costs by using swipe readers, such as New York City Transit (NYCT) has done, have resulted

in an unreliable user experience [12]. Finally, magnetic tickets generally have weak or no security

features beyond the inaccessibility of card reading equipment; in other words, they rely on security

from obscurity, which is unadvisable. Magnetic farecards are subject to exploitation and

counterfeiting by individuals possessing the necessary equipment and technical knowledge.

1.1.2 Transit Smartcards

Unlike magnetic fare cards, smartcards are intended to be reusable over a long period. They are

usually made of rigid plastic and conform to standardized credit card dimensions. ID-1 of the

ISO/IEC 7810 standard defines this to be 85.60mm x 53.98 mm. Modern smartcards contain a

microprocessor capable of basic data processing and substantial storage compared to magnetic

farecards. The card communicates with the reader through either a contact interface, which consists

of a set of small metallic contacts on the face of the card, or through a contactless interface. A

contactless interface consists of an antenna coil embedded inside the plastic of the card that serves

both to collect power to operate the microprocessor and to transmit and receive data from the reader.

The technology used to implement contactless smartcards is known as Radio Frequency

Identification (RFID). The radio frequency and transmission protocol used in RFID have been

standardized into several standards, one of which is ISO 14443, a popular standard for both transit

and financial applications.

A pilot study in contactless transit smartcards took place in London as early as 1990. Since then, this

technology has been introduced in over fifty transit systems worldwide [12]. The first widespread

deployment was the multi-modal Octopus Card in Hong Kong in 1996. The first US deployment was

launched by WMATA in 2000, while London Transport (now Transport for London) introduced the

current form of its smartcard system, the Oyster Card, in 2003.

Smartcards have some notable advantages as a transit fare technology. Durable and reusable

smartcards eliminate the waste associated with disposable magnetic farecards, and reduce ongoing

costs. In particular, contactless reader devices have no openings or moving parts, enabling them to be

completely sealed against environmental factors and vandalism. They have significantly lower

acquisition and maintenance costs compared to traditional technologies. For this reason smartcard

deployments in transit have largely gravitated toward contactless interfaces. The data capacity and

processing capabilities of smartcards support advanced applications, including a combination of

passes and stored value and business logic for implementing and tracking complex fare structures.

Finally, contactless smartcards are extremely easy and intuitive to use. Reduced user interaction time

has increased passenger throughput on both rail and bus systems.

One former disadvantage of transit smartcards is the high unit cost of each card. However this is

becoming less of an issue today as the unit cost has dropped from over $10 in 1994 to less than $1

[12]. This cost is often passed directly onto the user in the form of a purchase price or deposit,

impacting the take-up of the technology. Although many systems have been designed with regional

participation, a multitude of competing transit smartcards standards still proliferate. Inter-regional

interoperability is weak.

1.1.3 Common Challenges

The two electronic fare technologies each have their pros and cons. However, they share a common

drawback. As currently implemented, most transit fare payment systems are solely-owned and

custom-designed [7]. Each system is tailor designed for the transit property using it, often at great

cost and with limited opportunities to leverage economies of scale. Transit agencies must set up and

maintain the infrastructure necessary to support their fare payment system. This infrastructure must

support:

* Card lifecycle management - This includes the procurement, distribution (issuing),

tracking, replacement and disposal of farecards or smartcards. For example, a network of

ticket/reload machines is required. This is in turn associated with high acquisition,

maintenance, and cash handling costs. Another cost is the payment of commissions to

distribution and reload vendors (such as convenience stores).

* Revenue allocation - If the fare payment technology is shared among multiple agencies, a

settlement clearinghouse must be established for distributing funds among the participating

agencies.

* Customer service - A complete customer service system, including sales, inquiries, dispute

resolution and fraud protection must be implemented. Staff must be trained to use specialized

fare processing and diagnostic equipment.

As the existing generation of fare payment systems mature and their replacement becomes a concern

on the horizon, many agencies are seeking to reduce their role as an issuer of closed fare payment

media. Contactless bankcards are gaining traction as a viable alternative to existing fare payment

technologies.

1.2 Overview of Contactless Bankcards

1.2.1 Contactless Smartcard as a Financial Instrument

We have discussed the value of contactless smartcards as fare payment medium. The value of

contactless technology has also been recognized by the financial industry. The term contactless

bankcard (CLBC) covers the application of RFID technology to credit, debit and prepaid cards. In

particular, we use the term to refer to credit, debit and prepaid cards that are compatible with one of

the major payment networks. The three largest networks of interest, in no particular order, are Visa,

MasterCard and American Express.

1.2.2 State of the Technology in the US

As of 2007, 35 million contactless bankcards are in circulation in the US, up from 19 million in 2006

and 13 million in 2005. In other words, up to nine percent of the US population now holds a

contactless credit or debit card. Consumer research has shown widespread public acceptance of and

satisfaction with contactless bankcards [7, 16]. In 2005, contactless payment was accepted in over

32,000 merchant locations, a number likely to have since increased [7]. Contactless bankcards are

now issued in the US by most major banks and all three payment networks. Well known national

merchants, such as McDonald's, 7-Eleven, CVS Pharmacy and AMC Theater now accept contactless

payments. Contactless bankcard readers are beginning to be seen on soft-drink vending machines

and at smaller local merchants. The rapid introduction of contactless bankcards in the US is aided by

the relative simplicity of the US bankcard requirements. Traditional US bankcards employ an

unencrypted magnetic stripe which stores the bankcard number. Weak card security is backed up by

real-time verification of the transaction against the bankcard issuer (online authorization) where

available, and to a lesser extent, signature request. Duplication of this functionality over a contactless

interface is relatively straightforward. From both a merchant's and a customer's perspective,

contactless payment in the US is simply another way to present a bankcard to the point-of-sale

system with little distinction between the functionality of the contactless payment card and the

standard magnetic stripe card [7].

Payment Network Contactless Bankcard Product

Visa PayWave

MasterCard PayPass

American Express ExpressPay

Figure 1.1 - Major bankcard payment networks.

1.2.3 State of the Technology in UK and Europe

In the UK and Europe, however, contactless bankcards have yet to gain traction owing to the more

complex bankcard technology currently in use. UK and Europe bankcards conform to the Europay-

MasterCard-Visa (EMV) standard which utilizes a contact smartcard. EMV bankcards are capable of

both online and offline transactions. Online transactions are authorized against the card issuer in a

similar fashion to what happens with US cards. In offline transactions, the EMV bankcard authorizes

the transaction by itself without any communication with a remote entity.

These features are enabled by the intrinsic high security of an EMV card. Unlike US bankcards, an

EMV card is able to authenticate itself as being genuine (in other words, it is very difficult to clone a

usable EMV card). Furthermore, EMV cards can securely store and verify the PIN number that the

user must enter to complete the transaction. In the UK, EMV bankcards are known as Chip-and-Pin

cards, referring to the microchip embedded inside the smartcard and prominent role of PIN numbers

in transactions.

The security features of EMV have significantly reduced bankcard fraud. On the other hand, it has

also slowed the introduction of contactless bankcards in regions, such as the UK, where the standard

has been adopted. Development of a contactless version of EMV has been complicated by the

complexity of the handshaking needed to authenticate a card, which involves a much higher volume

of data transfer than the simpler US-style transaction. Another consideration has been the complex

business requirements associated with offline transactions. For example, a transaction floor

mechanism has been implemented in which contactless transactions are allowed until a floor limit,

say £20 is reached, at which point the card must be used in a PIN-verified or online transaction to

reset the limit. However these difficulties have been resolved. EMV compliant PayPass and

PayWave cards were introduced in London in 2007 and are being offered by major UK banks, such

as HSBC.

1.2.4 Bankcard Payment Process

As we have seen, contactless technology has brought significant changes to how customers use their

bankcards, as well as the bankcards themselves and the customer-facing infrastructure for supporting

them. However, the merchant-side services have remained largely similar to what a traditional

bankcard transaction requires. In either case, the following entities are involved [10]:

* Card Holder - The customer.

* Merchant - This is the company or organization that the card holder is purchasing from. E.g.

McDonalds or TfL.

* Merchant Acquirer - The merchant acquirer is a financial institution responsible for a

merchant's transactions with the network. It accepts bankcard charges on the merchant's

behalf and deposits funds into a bank account held in the merchant's name (either with the

merchant acquirer or a different bank). In the case of member-structure based payment

networks such as Visa and MasterCard, the merchant acquirer is typically either a bank that is

a member of a payment network, or a consortium involving such a bank. An example of a

merchant acquirer is Paymentech, a joint venture between Chase and First Data Corporation.

* Issuing Bank (Issuer) - Issuers are financial institutions that give the bankcards to

customers and are ultimately responsible for the purchases they make. When a bankcard

charge arrives at the issuer, the amount of the transaction is either posted to the user's credit

account, or debited from the user's bank balance. The funds are then sent to the merchant

acquirer. An issuer must also belong to a payment network. Examples of issuers include

Citibank and HSBC.

* Payment Network - The payment network is the connection between the merchant acquirer

and the issuer. The payment network forwards a charge from the merchant acquirer to the

correct issuer. For this to happen, the merchant acquirer and issuer must belong to the same

network. In practice, most merchant acquirers and issuing banks belong to both Visa and

MasterCard, providing most bankcard users with a seamless and transparent experience. Note

that some payment networks do not follow this model exactly. For example American

Express, a payment network, is also itself a bank which performs merchant acquiring

functions.

Below we will describe the processes involved in a typical bankcard transaction, as they apply to

both traditional and contactless bankcard payments [7].

1. The merchant equipment, also known as the point-of-sale (POS) sends an authorization

request to the merchant acquirer with the transaction amount and the card number.

2. The merchant acquirer may forward the authorization request through the payment network

to the issuing bank of the card; it may check a shared database of credit card status without

going to the issuing bank; or it may apply other rules, such as floor limits to authorize the

transaction.

3. The issuing bank, if contacted, verifies the validity of the card (e.g. whether it has been

marked stolen) and performs other checks to determine whether to accept or deny the charge.

Tests may include whether there is a suspicious pattern of transactions and size of the

transaction as it relates to the user's current credit balance and his credit limit. Once a

decision is made it is passed back to the merchant acquirer, again via the payment network.

4. The merchant acquirer transmits the result back to the merchant, where it is displayed on the

POS terminal.

The above authorization sequence occurs within a short interval (typically in the order of seconds)

after the user's card has been swiped at the terminal. Bear in mind that this sequence of events is only
to authorize a purchase. No charges are actually made until the end of each day, when the day's

transactions are bundled together (captured) by the merchant, and sent to the merchant acquirer, who
distributes the charges to the appropriate issuing banks. In return, funds are transmitted from issuing

banks back to the merchant acquirers owed them, again routed though the payment network. This

process is called settlement.

Authorization Request Authorization Request Authorization

Settlement Message

Figure 1.2 - Bankcard payment processes. Source: Smart Card Alliance/Booz Allen Hamilton [7]

1.3 Direct Fare Payment with Contactless Bankcards

1.3.1 Earlier Attempts at Transit-Contactless Bankcard Integration

Existing electronic fare payment systems are expensive to maintain. This has motivated the

consideration of direct fare payment with contactless bankcards as an alternative to existing

proprietary, closed-loop systems. Direct fare payment with contactless bankcards is not to be

confused with the following similar, but indirect applications of contactless bankcards to fare

payment.

* Accepting contactless bankcards for fare product purchases - This means enabling

ticket vending machines and sales windows to accept contactless bankcards for fare

purchases. This is not a true contactless bankcard fare payment system as the existing fare

payment technology is still maintained. Under this scenario, a contactless bankcard is simply

used to buy a fare instrument, which in turn is used by the passenger to access the

transportation system. However, the increased speed of a contactless bankcard transaction

compared to conventional bankcard or cash transactions could alleviate crowding and lines

at ticket machines, a major source of delay for many customers.

* Co-branded multi-application contactless cards - These are specially designed

contactless cards that are compatible with both bankcard and fare card standards. While this

provides users with a comparable experience to true contactless bankcard fare payment, it

does nothing for the transit agency. The transit agency must still maintain its current system

and distribute contactless fare cards to users not equipped with a special multi-application

card. In effect, a co-branded multi-application card is the same result as a contactless

farecard and a contactless bankcard taped together back-to-back. An example of a co-

branded multi-application contactless card is the Barclaycard Onepulse product, which is a

combination of a standard Oyster card with a Visa PayWave card.

1.3.2 Benefits of Direct Fare Payment with Contactless Bankcards

A true contactless bankcard fare payment system offers users walk-up accessibility to transit services

using a standard contactless bankcard belonging to one of the major bankcard networks. Users have

the ability to enter a gated rail system by presenting their contactless bankcard at the fare gate, or

board a bus by presenting the bankcard to a reader on the bus. They are able to do so without first

purchasing a different fare medium and without obtaining a special 'transit enabled' bankcard. In

subsequent discussion we will assume any discussion of contactless bankcard fare payment refers to

direct fare payment with these features.

There are many benefits for both users and transit agencies if such a system could be effectively

implemented [7]:

* Customers would be able to use an existing contactless bankcard issued by the financial
institution which they already have an existing relationship. This means fewer pieces of
plastic to carry and manage.

* If support for contactless bankcard fare payment became widespread among agencies,
users would be able to use the same bankcard on different systems in different cities. De-
facto interoperability would be achieved without agencies having to collaborate on a
shared fare technology, an often cumbersome and rarely successful process.

* Transit agencies may no longer need to issue their own fare media to most or all of their

riders, depending on the ultimate solution for unbanked riders. This has the potential for

bringing significant cost savings to an agency, reducing cash handling, TVM

maintenance, customer service and other farecard lifecycle costs.

* Customers would treat their transit fare as any other purchase made with a bankcard.

Disputes, funds management, theft protection, initial issuance and reissuance of lost cards

would be dealt with by the bankcard issuer, not the transit agency.

* Card issuers would be able to participate in co-branding and other promotional programs

based on standard contactless bankcards, for example, in a similar fashion to airline

loyalty credit cards.

1.3.3 Issues and Challenges

The premise of contactless bankcard fare payment seems attractive enough. However, many

challenges, both institutional and technical stand in the way of seamless transit contactless bankcard

integration. Identifying and solving these challenges is an active area of research at this current point

in time. Some of these challenges are listed below:

Institutional Challenges

Fee structure for micropayments - Merchants are charged a per-transaction fee, known as

a discount rate. This discount rate includes an interchange fee charged by the payment

network, as well as processing fees levied by the merchant acquirer and the issuer. The

discount rate may contain a fixed component, making it uneconomical for transit agencies to

charge numerous small value transactions, or micropayments that correspond to single

journeys. Negotiating a favorable fee structure is one way this issue can be solved. Another

approach is a technological one. In a process called aggregation, the transit agency may opt

to buffer and combine multiple fares into a single lumped amount before presenting it to the

merchant acquirer. Negotiations between the bank card associations and transit agencies are

ongoing to determine the rules under which aggregation may be done, including the

resolution of the risks of nonpayment.

* Double-ended fares - Many transit agencies, such as TfL implement distance based or

zonal based fares where fares are charged depending on the entry and exit locations. These

are what we will call double-ended fares, as opposed to single ended fares which involve a

fixed charge at the point of entry. With double ended fares the system has no way of

knowing at the time of entry what the eventual fare will be. Whether it deals with this by not

authorizing at all until the actual fare is known upon exit, authorizing a zero-pound fare at

entry, authorizing a maximum fare at entry, or some other way is dependent entirely on the

transit agency's choice of policy. Each alternative carries with it a different risk that needs to

be assessed.

* Unbanked users - A significant portion of the population either does not have access to

bankcards or chooses not to use one from personal preference. For reasons of equity, public

transportation must be accessible to all. A transit agency implementing contactless bankcard

fare payment must also cater to these users. It may do so by maintaining an existing farecard

or cash payment system in parallel; however this would severely diminish the cost savings

of moving to a contactless bankcard system to begin with. Pre-paid bankcards have been

proposed as a means of tackling this problem; negotiations are ongoing in this arena also. If

third-party issued prepaid cards are used, a major issue is how the fees of the prepaid cards

are assessed, to the user or the agency. Alternatively, an agency could create its own prepaid

card program, using bankcard standards; the costs could be lower than a transit-specific card

because many services could be shared with the bank card payment stream or outsourced to

the payment industry.

Technical Challenges

1. Transaction speed - Existing farecard technologies are gauged against a 300ms litmus test
for performance. This has been found to be the threshold of allowable time for a farecard

transaction that does not hamper customer throughput [7]. This transaction speed

requirement means it would be difficult to authorize transactions online in real time.

Transactions could be authorized online subsequent to boarding or entry, but this carries risk

implications for the transit agency. Transactions could be undertaken in the offline mode of

the bankcard, if it is supported, as in the case of contactless EMV bankcards. However

offline contactless EMV processing carries additional complications with regard to a charge

floor and Chip-and-Pin re-enablement, as described in section 1.2.3. Double ended fares

must also be considered.

2. Lack of on-card scratch pad - Although this matter is still in negotiation, for a number of

reasons it is unlikely that transit agencies will gain the ability to write to contactless

bankcards presented to them. The lack of such writable space or scratch pad means a

contactless bankcard fare payment system cannot implement the decentralized stored-value

model used by most existing farecard and smartcard systems. Transactions must be

transmitted to a server and processed in a centralized fashion. The next three challenges

below are corollaries of this fact.

3. Bus-based transactions - A reliable communication link must be in place to allow bus

based transactions to be transmitted to the centralized server, if near-real time authorization

and fare processing is to be achieved. The need has to be met by existing radio and cellular

technologies.

4. Fare inspection - Fare inspection becomes an issue as fare inspectors are not able to

determine whether a passenger has validated their entry into the system by inspecting data

on their bankcard. Inspectors must have some means of determining whether the read-only

bankcard has been validated, for example, through access to a central server.

5. Fare processing engine - A system needs to be in place on a centralized server that takes

bankcard transactions transmitted from gates and validators throughout the system and

assembles them into chargeable fares in a fashion consistent with the fare structure of the

agency. This last point leads us to a discussion on the specific purpose of this thesis.

2 Research Question and Framework

2.1 Definitions

Before we can frame the research question, we will formalize two important definitions.

2.1.1 What is a Fare Collection System?

In the broadest sense, a system is an "assemblage or combination of elements or parts forming a

complex or unitary whole" [17]. Therefore we define a fare collection system as a collection of

components which allows revenue to be generated from passengers who pass through a public

transportation system in the form of collected fares. Note that when we refer to a fare collection

system, we are restricting ourselves to automatic fare collection systems which are self sufficient

with human interaction limited only to mechanical tasks, such as maintenance, cash handling and

replenishment of consumables.

A system for fare collection is composed of both tangible customer-facing hardware such as the fare

medium, devices that process the fare medium (e.g. gates, reader and vending machines), as well as

infrastructural elements such as communication links, distribution and sales networks, data servers

and databases. A high level sketch of a fare collection system is presented in Figure 2.1. A lower

level sketch of a very simple hypothetical magnetic stripe fare collection system will be discussed in

this chapter.

Figure 2.1 - Example of a fare collection system. [5]

2.1.2 What is a Fare Engine?

A fare engine is the part of an automatic fare collection system that physically implements the fare

structure of a transit agency. As such, the input and outputs of a fare engine are consistent with the

logical representation of a fare structure. The parallelism between a fare engine and a fare structure is

shown in the diagram below. In chapter 3 we will examine what constitutes a fare structure and

create a model for TfL's fare structure.

Fare
Description

Parameter Fare Fare Logical
Token Structure Domain

Journey Fare Fare Physical
Transaction Enine Transaction Domain

(e.g. tap from gate) ng item)

Figure 2.2 - Generic view of a fare engine as the physical manifestation of a fare structure within an
automatic fare collection system.

2.1.3 Example of a Simple Fare Collection System

Below is an example of a very simple bus-only agency which uses a magnetic-stripe based fare

collection system. The purpose of this example is to demonstrate the components of Figure 2.2 in a

concrete context and show how they fit together.

Fare Description

The fare description is a simple statement explaining fares and rules.

"Every boarding costs $1.50. There are no transfers or concessions."

Fare Structure

Following the model for fare structures defined in chapter 3.2.1, the fare structure is a matrix

with only one tier, labeled 'Fixed Fare'

Fixed Fare $1.50

Figure 2.3 - Fare structure for our very simple fare collection system.

Fare Collection System

The fare collection system is summarized in the diagram below.

Revenue account
reconciled with

vending machine
sales via memory

chip

Card loaded with card Card presented to
purchase amount fare box and value

purchase amount deducted is allowed

Figure 2.4 - Simple magnetic stripe fare collection system.

Fare Engine

Start (Accept Card)

ReadCardValue

[Value >= $1.50] [Value < $1.50]

Subtract $1.50 Card Value?
from Value Deduct Fare

Accept Boarding Reject Boarding

Green Light, Red Light,
Sound 'Ding' / Sound 'Beep'

Terminate

Figure 2.5 - UML activity diagram of a simple fare engine.

In this example, the fare engine resides in a fare box mounted inside each bus near the entrance

door. These fare boxes are electro-mechanical devices with a mechanism to ingest, read, write

and eject fare cards. The extreme simplicity of this example allows us to express the fare engine

as a simple activity diagram. However, in a real-world fare collection system with a more

complicated fare structure (no less TfL, which has an extremely complex fare structure), the fare

engine is itself a system and will in turn be composed of multiple functional elements.

2.2 Research Question

The research question addressed by this thesis is:

Is it feasible to develop afare engine capable of accepting and processing contactless

bankcards as a fare instrument on the TL network while satisfying current and future fare

structure and performance requirements?

Information infrastructure is a key component for TfL's Future Ticketing strategy of bringing

bankcards as a fare instrument to the London public transportation network. While contactless

bankcard technology is similar to the existing Oyster system in many respects, it also brings new data

paradigms, such as a centralized data model, as well as new features and limitations. A fare engine

capable of reconciling these differences with the business requirements inherent in TfL's complex

fare structure is a critical component in any future contactless bankcard based fare collection system.

2.3 Investigative Process

In this thesis we seek to produce a functional design of a fare engine for contactless bankcards. In the

course this design process, we will develop solutions for challenges arising from both the

characteristics of contactless bankcard technology and the complexity of TfL's fare requirements.

The sequential steps of this investigative process as it relates to the structure of the thesis are

summarized below.

1. Identify and formalize the existing TfL fare structure.

2. Formulate a set of system requirements for a contactless bankcards on the basis of the current

structure and future needs of TfL.

3. Design a system architecture for a fare engine which satisfies the established requirements.

4. Develop system design details, including data structures and algorithms with a view of

achieving performance requirements.

5. Consider issues surrounding the implementation of the system, or a subset as a demonstrative

prototype.

2.4 Development Considerations

Throughout the process of developing a fare engine, and particularly in the system design steps (steps

3 and 4) we are constantly mindful of the following considerations.

* How well can the system cope with expected features and demands of a future fare structure?

* Can the system handle high transaction volumes, tight transaction time limits and complex

journey, tap and fare rules?

* Can off-the-shelf software, such as a commercial rules engine, meet the requirements?

* If not, can custom software be designed and developed to meet the requirements at an

acceptable level of complexity?

* What are likely the system and hardware requirements of this software?

* Can existing TfL technology and investments be leveraged in this new fare engine?

3 Current TfL Fare Structure

3.1 Fare Description

We define a fare description to be documentation listing fares charged and a corresponding set of

rules that apply to these fares. A fare description may be published in any convenient form.

At TfL, fares are published periodically for public information in a series of pamphlets, such as the

TfL Guide to Fares and Tickets [1 & 2]. For the use of its staff, TfL publishes the same information

in greater detail as a manual, the Staff Guide to Fares. A simplified explanation of fares is also

provided on the TfL website [3]. Together, this body of documentation constitutes the de-factofare

description for TfL. It describes the fare products which are available to the public in the form of fare

tables, and elucidates the rules surrounding the application of these fares.

The fare description is augmented by an incomplete set of internal design documents for the Oyster

system. These documents have proven useful for clarifying lesser known rules and fare services,

however they are by no means definitive and can only be interpreted judiciously.

3.1.1 Lateral Consistency

TfL's fare description is thus operationally defined by pamphlets produced for passenger and staff

information. As such, the fare description is stated in terms of use cases for these different target

audiences. Although a use-case presentation is adequate for the purpose of user information, from an

analytical perspective, a property we will call lateral consistency is desirable.

To clarify what we mean by 'lateral consistency', let us consider the organization of the 2009 edition

of the Guide to Fares and Tickets, an outline of which is attached as Appendix 1. This document is

differentiated at the root level into 'Adult', 'Discount', 'Visitor', 'River Rover' and '3 Day

Travelcards'. It is not difficult to see that '3 Day Travelcard' does not belong in the root tier, and has

presumably been attached there only as an afterthought; this is an example of lateral inconsistency.

As another example, consider the Discount root branch. It is first broken down by ticket type (single

or period), and then by mode, and then by discount groups, and last by fare media. Contrast this with

'Adult' fares which are broken down by ticket type and mode, and then immediately by fare media.

The consequence of this discrepancy is that the same attribute, fare medium, is 4 levels deep in the

Adult branch but 5 levels deep in the Discount branch.

Note that some single products are available in peak and off-peak formats (e.g. Adult single), while

others come in only one variety (Child single). A similar observation is that some discount groups

enjoy I-Day products in both Travelcard and capping formats, while others (such as 16+) can only

access 1-Day products in the capping format.

Finally, longer-range period products are available as 'Travelcards' only. Capping does not exist for

periods longer than one day. Yet, longer duration Travelcards are frequently loaded onto an Oyster

card, something that is not possible to do with a 1 -Day Travelcard. The notion of a 'Travelcard' is a

blurred one and the term itself is overloaded with multiple meanings.

The above is a partial and informal survey of TfL fare documentation; however it already reveals

how the TfL fare description does not clearly indicate the factors that affect fare and how they

interrelate.

3.2 General Fare Structures

3.2.1 What is a Fare Structure?

Based on the examples above, we recognize that the current articulation of TfL's fare description is

difficult to apply systematically. In order to engineer a fare engine for contactless bankcards that

assesses fare accurately for trips made by its users, we must first develop a more consistent

understanding of how fares work at TfL, and synthesize this understanding into an applicable

framework. We call this framework a fare structure.

Let a fare structure be defined as a representation of fares that can applied systematically and

implemented programmatically. We want the fare structure to be a procedure into which we can

input known facts about a user's travel, and in turn obtain the price to charge. Examples that would

satisfy this requirement include trees, flow diagrams, lookup tables, and multi-dimensional matrices.

After a close reading of documents making up TfL's fare description, one could in fact construct a

tailor made flow chart (or software logic) that accurately models the fare description, with all its

peculiarities. By our definition so far, this would indeed constitute a legitimate fare structure in that

it can be applied systematically. However, such a piece of logic would contain all of the

inconsistencies listed in section 3.1.1, and suffer corresponding drawbacks. For example, a decision

tree with the same property represented at different levels would be hard to maintain against even a

minor reorganization of fare-impacting properties.

3.2.2 Fare structure Evolution

To refine the concept of a fare structure, let us first pose two fundamental questions relating to what

we want to achieve with a fare structure.

* What factors affect the fare?

* How do these factors affect the fare?

To answer these questions, let us lay out some essential nomenclature. This nomenclature is

necessary as we find the term fare structure easily overloaded with conflicting meanings in multiple

contexts.

3.2.2.1 Conceptual Fare Structure

Decision
Tiers

Fare Values

Figure 3.1 - Matrix and full tree representations of a conceptual fare structure.

Previously we stipulated a fare structure to be a procedure for fares that can be systematically applied

and programmatically implemented. Now we add an additional stipulation, that this fare structure is a

multi-dimensional matrix. We call this a conceptual fare structure. Note that conceptual fare

structure is simply the notion of describing fares in a multi-dimensional matrix. It does not specify

what this matrix should look like, how many dimensions there are in the matrix, or what these

dimensions should stand for. A conceptual fare structure can be equivalently represented as a matrix

or a full' tree, as shown in the figure below. In the matrix representation, the decision tiers are the
axes of the matrix while the fare values are the cells of the matrix. In the tree representation, the
decision tiers are the non-leaf nodes of the tree, while the fare values are the bottom leaf nodes.

3.2.2.2 Parameterized Fare Structure

The conceptual fare structure is extended into a parameterizedfare structure by specifying what the
decision tiers are. In the matrix representation, this means defining the number of dimensions there
are in the matrix and the names of these dimensions, or what they stand for. Under the full tree
representation, this means specifying the number of levels in the tree and the names of each of these
levels. We will call the set of names for the tiers of a parameterized fare structure the fare structure's
tier definition. Contextually, a parameterized fare structure describes what properties affect the fare,
but not the specific values these properties may take.

Fare
Medium

Discount
Group

Time
Band

Figure 3.2 - Matrix and full tree representations of a parameterized fare structure.

From now on, the terms tier and dimension will be used interchangeably. Note that although the
matrix structure implies no specific order in which dimensions are evaluated, we may nonetheless
specify a preferred customary order based on practical considerations.

3.2.2.3 Domain-defined Fare Structure

We define the set of possible values for each tier of a parameterized fare structure to be the tier's tier
domain. Furthermore the set of tier domains for the an entire parameterized fare structure is the

A full tree is one in all leaf (terminal) nodes are at the same depth and same level. Furthermore, all possible leaf
nodes are defined (the bottom level is complete and has no gaps).

structural domain of the parameterized fare structure. This is akin to defining the input domain of a

mathematical function. In a tree representation, these are the labels of the branches at each level. The

end result of assigning the structural domain of a parameterized fare structure is a domain-defined

fare structure.

When fare structure is spoken of without a qualifying adjective in the remainder of this chapter, a
domain-defined fare structure is assumed.

Oyster Cash
Child

Adult

Oyster Cash

Peak
Adult Child Adult Child

PO P0 O P0 P0 PO
Off-Peak

Figure 3.3 - Matrix and full tree representation of a domain-defined fare structure.

3.2.2.4 Initialized Fare Structure

A domain-defined fare structure gives us a lot of information about how fares work; however it is not
a complete specification of fares. The actual fare values need to be loaded into the structure. In the
matrix representation, this means filling in the body of the matrix. In a full tree representation, this

means populating the leaf or terminal nodes with fare values. We call the product of this step an

initialized fare structure. Now the fare structure is ready for direct application.

Oyster Cash
Child

Adult

Oyster Cash

Peak £2.20 £2.50
Adult Child Adult Child

Off-Peak £1.20 1.50 P
22 1.2 1.0 0.5 2.5 1 2.0 1.0

Figure 3.4 - Matrix and full tree representation of an initialized fare structure

3.2.3 Applying a Fare Structure

A fully initialized fare structure categorizes fares using a well defined set of parameters. These are

parameters that pertain to the properties of the user and the geographic and temporal aspects of the

user's journey. In the case of period products2, the parameters pertain to the nature of the ticket and

the geographic and temporal aspects of its validity. Parameters are presented to the fare structure as a

unit called a fare parameter token. The number of parameters in a token should be consistent with

the tier definition as described in section 3.2.2.2. The value of each parameter should be consistent

with the structural domain as described in section 3.2.2.3.

Tier Definition Structural Domain Fare values
(Names of Tiers) (Options at each Tier)

Conceptual Fare Parameterize Domain-Defined Initialized Fare

Structure Fr S c F Stuttrtur

FARE

Figure 3.5 - A fare structure is built up through successive definition with agency-specific information.

3.2.4 Normalization of Fare Variation

Different fares are charged for different journeys. These fares are chosen from a set of fare values

which are set arbitrarily. For example, the fare differential between a ticket for travel between

stations A and B and one for travel between stations A and C may be determined by economic and

operational factors of the agency. Similarly the amount of discount offered to certain subsections of

the population, such as children, the elderly or the unemployed may stem from political

considerations. This variation lies outside the scope of the fare structure to explain. From the

perspective of the fare structure, the values are set exogenously.

2 Examples of period products include daily, weekly and monthly tickets. The term period product is defined in

section 3.5.

As a guiding principle, the goal of a good fare structure is to explain all possible fares using the

smallest number of exogenously defined fare values. Consider the extreme case of a fare structure

where all fare variation is exogenous - an unmetered gypsy cab where every fare could be different.

The fare could vary based on the driver's perception of the passenger's willingness to pay or how

much he feels a particular trip is worth making for him at that given instant. In either case, any

apparent regularity would merely be coincidental.

Clearly, such a system is unsustainable for public transportation. We can inject order into this

structure by stipulating that the fare is a function of the passenger's demographic. Let us call this

'passenger class'. This is a 1 -tier definition, indicating that the fare structure can be represented by a

1-dimension matrix. Furthermore we stipulate which classes a passenger must belong to; for

example, PassengerClass e {Adult, Child, Handicapped}. This is our structural domain. Finally, we

instantiate the fare structure with fares for each passenger class. Note that we have now moved from

one extreme of supplying an infinite number of fare values exogenously (the gypsy cab example), to

the other extreme of supplying only 3 possible fares values. A single tier fare structure like this is in

fact an accurate fare structure for many transit agencies. However in other cases greater

sophistication is required.

3.2.5 Fare Structure Implementation

We note that the fare structure is a logical product which does not imply an implementation. The fare

structure can be implemented in many physical forms, for example, as a printed ticket guide (a fare

description). It can be implemented as a piece of software logic (a fare engine) inside a smartcard

reader or a ticket vending machine. To support contactless bankcards, we will need to implement the

fare structure as a fare engine on a central server. An implementation may only support a subset of

the fare structure; for example, an Oyster reader only needs to support the part of the fare structure

that pertains to Oyster based products.

Furthermore, an implementation of a fare structure need only provide functional equivalence, and

does not have to bear any data model resemblance to the fare structure on which it is based. Our fare

structure defined as a multi-dimensional matrix may in fact be evaluated in real-time from a smaller

set of data. For example, a fare structure may define adult and child fares as two distinct branches,

but in practice the child fare could simply be computed as one half of the adult fare, which is stored.

3.2.6 Limitations of a Matrix Based Fare Structure

Many intricacies of fare cannot be expressed fully using only the multidimensional structure

proposed here. For example, TfL fares between origins and destinations are largely distilled into a

system of fare zones. Yet there exist many exceptions to the zonal system that prevents the

straightforward use of a zonal origin-destination (OD) matrix. Likewise, out-of-station interchange

and capping are peculiarities that defy framing into a matrix. These features can only be described

algorithmically.

In this chapter we will explore how fare matrices can be augmented with helper logic and reference

tables in order to convey the full complexity of the TfL fare structure.

3.3 Organization of a TfL Fare Structure

Based on the above discussion of the properties of fare structures, we now construct a fare structure

for TfL that is consistent with its fare description.

Oyster
Based

- -- -- --- -- --- ------

Magnetic

Cash Single Extension Stripe
FaresBased

Single Products Period Products

Figure 3.6 - TfL fare structure overview. The two product spheres are shown.

3.3.1 Product Spheres

We define a product sphere to be a set of products or services that can be organized into one multi-

dimensional matrix. Using this definition, we can divide the TfL fare structure into two distinct

product spheres. These are single products and period products. Single products encompass Oyster

Pay-As-You-Go (PAYG), as well as cash single (one-way) fares. These are fares which are charged

on a trip-by-trip basis. On the other hand, period products represent those products which give

unlimited travel under a set of given restrictions. Separation of the fare structure into two spheres is

necessary because single products and period products are fundamentally different enough that they

cannot be selected using the same set of parameters.

3.3.2 Hybrid and Bridging Features

The Oyster daily cap is a feature that does not fit easily into this dichotomous structure. On the one

hand, the daily cap is an integral part of Oyster PAYG, which resides in the single products sphere.

On the other hand, it is functionally similar to a period product and has a pricing structure analogous

to that of a 1-Day Travelcard. For the latter reason we have classified the daily cap into the period

sphere, recognizing however that it is really a hybrid. This is illustrated in Figure 3.6. In the

remainder of this document the daily cap will be discussed as a period product.

The two main bridging mechanisms of Figure 3.6 are capping and extension fares. By a bridging

mechanism it is meant that these features provide a linkage between the two product spheres.

Capping, for example, is the mechanism that offers the period benefits of a daily cap to users of

PAYG. This feature is available only for PAYG (not cash singles) and applies only on a daily basis;

hence it is represented as an arrow connecting the internal boxes of PAYG and Daily Cap in the

diagram. The rules of capping will be discussed in greater detail.

Extension fares, the second bridging mechanism, allow holders of period products to travel outside

their zonal validity by purchasing a single product to extend their preexisting ticket. It is another

mechanism that connects the two product spheres. In this case, because extension fares can be

purchased both by holders of paper tickets, as well as by users of Oyster (in which case, it is applied

automatically), the arrow representing the feature bridges the outer boxes encapsulating an entire

sphere.

3.4 Single Products

The payment of single or one-way fares via a prepaid balance deposited on an Oyster card is known

as Pay-As-You-Go (PAYG). Individual trips can also be paid for via magnetic stripe based "cash

singles". As the fare structures for these two payment methods are very similar, they are considered

under the same umbrella sphere of single products.

3.4.1 Tier Definition and Structural Domain

One possible tier definition for the single products sphere is provided in Figure 3.7. The tiers that we

have assigned are fare medium, discount group, time band, origin station, and destination station.

Note that the two bottom levels of this tree are an origin-destination (OD) matrix of the TfL network,

consisting of approximately 307 x 307 = 94249 elements.

The expected size of the resulting matrix is 307 (origins) x 307 (destinations) x 2 (fare media) x 2

(time bands) x 6 (discounts), or 2.26 million rows

Although legitimate, this fare structure is unwieldy. Expressing origins and destinations as two

independent dimensions does not explain at all how OD fares are assigned. Recall the guiding

principle of explaining fare variation with the fewest exogenously defined fare values. We find that

OD fares are not arbitrarily assigned, but are designated on the basis of certain properties of the

origin and destination stations involved.

In the case of TfL, London has a system of concentric fare zones which is overlaid on the system

map. One could further normalize the fare structure by collapsing the dimensions for origin and

destination stations into origin and destination zones. Such a matrix would then be supplemented by

a reference table that provides a mapping of stations onto one of the nine zones. Let us consider the

size of the resulting matrix.

Dimension Name Multiplicity

Fare Medium 2

Discount Group 6

Time Band 2

Origin Station 307

Destination 307
Station

Total Rows: 2.26 million

Figure 3.7 - Possible fare matrix for single products. This matrix contains an OD matrix of the TfL
network.

2 (fare media) x 2 (time bands) x 6 (discounts) x 9 (origin zones) x 9 (destination zones) = 1944 rows

This approach indeed results in a more manageable matrix, yet it is inadequate for two reasons. First,

according to the TfL fare description, fare is not simply a function of the origin and destination

zones, but also of the zones travelled on the most likely route taken. Furthermore, there are special

cases that cannot be resolved in terms of zones travelled alone. Examples of these exceptions include

the special fare incurred by trips involving Watford Junction and the special day-ticket for DLR

travel within zones 2-3 only.

In order to accommodate these problems, we will adopt a two part solution. This solution is based on

a four-dimensional matrix, which we call the master matrix. Three of these dimensions represent the

three independent tiers - fare medium, time band and discounts. These independent tiers are

relatively straightforward. However, recognizing that the effect of the origin and destination on fare

cannot be captured purely within a matrix framework, we separate it from the master matrix

altogether, by introducing the charge code.

Dimension Name Multiplicity

Fare Medium 2

Discount Group 6

Time Band 2

15-
Charge Code 1

Total Rows: 360-4320
** The number of charge codes can be
significantly reduced by optimization of
the charge code lookup subsystem

Figure 3.8 - Master fare matrix. Three independent dimensions with charge code removing effect of
OD variation.

The charge code is a foreign key 3, or a value that captures the variation of fares as a function of OD

3 In the context of relational databases, a foreign key links rows of one table to uniquely defined primary keys in a

second reference table. For example, employees in a table of employees may each be assigned a department ID that

references a table of all departments. The department ID is a foreign key in the table of employees.

without explicitly enumerating the full OD matrix. It forms the fourth tier of the master matrix.

Figure 3.8 shows the four dimensions of the master fare matrix as well as the preferred order of

evaluation. We will call the first three tiers the independent tiers. Each combination of parameters

from the three independent tiers is called an independent combination. An independent combination

identifies a family of fares values that differ only by charge code. The charge code is not an

independent tier as it has dependence on the journey route. The charge code will be addressed below

in section 3.4.2.

3.4.1.1 Fare Medium

TfL currently supports two fare media, cash and Oyster. Under the TfL fare description, cash fares

are significantly higher than Oyster fares in order to discourage the purchase of paper tickets and to

lower cash handling costs. Fare medium is placed at the top of the hierarchy as the choice of fare

medium fundamentally controls the scope of fare structure implementation. For example, an Oyster

reader would only implement the Oyster branch of the fare structure, while, say, a magnetic stripe

ticket machine would implement only the cash branch.

3.4.1.2 Discount Group

At this time, TfL supports six discount groups in the context of one-way products:

1. Adult (no discount)

2. Child (5-15)

3. 16+

4. New Deal

5. Adult Privilege Rate

6. Child (5-15) Privilege Rate

New Deal refers to a social welfare benefits program in the UK. 16+ is a concession fare for eligible

secondary and tertiary students. Privilege rates apply to beneficiaries of employees, former

employees and other union sanctioned persons.

3.4.1.3 Time Band

The start time of a journey determines whether that journey falls within the Peak or Off-peak time

band. These time bands are currently defined as follows

Peak: 0630 - 0930, 1600-1900 Weekdays, excluding public holidays

Off-peak: All other times

0:00 6:30 9:30 16:00 19:00 23:59

Peak Weekdays

Off Peak Weekdays other times + AJll

Day Weekends and Holidays

Figure 3.9 - PAYG time bands

According to the TfL fare description, these time bands for single fares are different from those

defined in the context of period tickets. This is a confusing and easily missed distinction.

3.4.2 Charge Code

Previously we recognized that the relationship between the origin and destination stations and fare

may be described by some mechanism beyond an exhaustive OD matrix. Furthermore we found that

the relationship cannot be explained on the basis of the zones of the origin and destination stations

alone. These complications have led us to separate this sub-problem from the master matrix through

the use of charge codes.

UK.
Geographic
Parameters

Origin Station

Destination
Station

Fare Matrix

Figure 3.10 - The charge code is a strict function of the origin and destination stations.

The charge code is a foreign key that encapsulates the effect the OD stations have on the fare

charged. It is connected to the origin and destination stations via a procedure that performs this

mapping. Below we'll investigate the functionality of this procedure.

3.4.2.1 TL Zones

TfL has 9 zones arranged concentrically around central London. The innermost zone is zone 1, being
roughly coterminous with the common definition of 'Central London', while the outermost zone is
zone 9, covering the extremities of the Metropolitan Line. The bulk of TfL's services lie within zones
I to 6.

The inner and outer zones, which determine the far, of a given OD pair are determined by the fare
path of that journey. If we go from an origin to a destination following an assumedfare path,
enumerating each station along the path and recording the zone that it lies in, the lowest value
recorded becomes the inner zone. The outer zone is the highest value thus recorded. One subtlety is
that some stations lie on the border of two zones and can take the value of either zone based on
which choice will minimize the zonal span for the journey concerned.

Ambiguity in this procedure arises from the definition offare paths. TfL does not currently have
systematic criteria for determining fare paths other than by manual decision. However, Maciejewski
introduced a methodology for the automatic computation of fare paths by means of a shortest path
algorithm [4].

Figure 3.11 - Example of a fare path/zones travelled calculation. Richmond(zone 4) to
Wimbledon(zone 3). Inner zone 2, outer zone 4.

3.4.2.2 Zonal Pairs

Let us assume that we are provided with the inner and outer zones used for a given journey. We will

call this unordered pair {inner zone, outer zone} the zonal pair for that trip (It bears repeating that

these are not the origin and destination zones). Each such zonal pair corresponds to a charge code. If

we enumerate all possible zonal pairs, in the combinatorial case there are J'n, or 1 possible
2

zonal pairs. Substituting in actual numbers, there are 21 zonal pairs if we consider only the core 6

zones where the bulk of TfL services are located. If the full 9 zones are considered, there are 45 zonal

pairs, leading to the same number of unique charge codes.

Zonal pairs are undirected sets because fares are same in either direction (ignoring the Euston

Overground case below). Ordered zonal pairs can be used as a basis for charge codes (doubling the

number of charge codes) if support for asymmetrical fares is desired.

3.4.2.3 Special Cases

The ability to deal with special cases that do not fit neatly into a numeric zonal structure is the core

reason behind the use of charge codes. At the time of writing, three special cases are documented in

the TfL fare description. Special cases are inevitably subject to change and it is important that the

mechanism used can accommodate future changes to these special cases.

* DLR - DLR only travel within zones 2 and 3 has a discounted cash fare: DLR zones 2-3

have a cash fare of £1.60, contrasting with a standard zones 2-3 cash fare of £3.20.

* Watford Junction - Journeys to or from Watford Junction (zone 9) are charged higher peak

and off-peak fares compared the corresponding zone x-9 fares.

* Euston Overground - Overground journeys between Euston (zone 1) and Watford Junction

(and all intermediate stops) are charged higher fares compared to corresponding zone 1-x

fares. Furthermore the documentation notes that peak fares in this corridor are applied

directionally. Peak fares are to be applied for Overground trips toward Euston in the morning

peak and away from Euston in the evening peak only. However the documentation is

contradictory in describing what fare would be charged in the reverse commute direction

during the peak. Compounding the confusion, inspection of an internal fare table shows no

directionality in these special peak Euston fares. These problems are symptomatic of the

difficulties encountered in interpreting a fare description and reconciling parts of a fare

description with each other. We will assume no directionality in Euston fares.

3.4.2.4 Charge Code Lookup

The system outlined in Figure 3.12 is a possible implementation of charge code lookup logic. This

mechanism is suggested here to illustrate the operation of charge codes. This is not intended to be a

reflection of the actual implementation of charge codes in Oyster or in a future fare engine.

Our charge code logic can be broken down into two components. The first component is the zonal

pair resolver. This resolves a pair of OD stations into a zonal pair on the basis of the OD zones, using

either the Maciejewski method or a lookup table.

The second component detects exceptions that lie outside of the ability of a pure zonal system to

describe. This component triggers a set of charge code tables based on qualifying origin and/or

destination station inputs. Each such triggering case is known as a charge code case.

Origin Destination
Station Station

Zonal Pair Special Case Selector

Inner Outer
Zone Zone

DLR? Watford Euston Default

Zonal Pair Tabe Tal Tae

Charge
Code

Figure 3.12 - Example charge code logic consisting of a zonal pair resolver and a special case selector.

For our discussion we will assume 4 charge code cases - 3 special charge code cases and one default

charge code case. Each charge code case is associated with a charge code table that contains an

exhaustive enumeration of zonal pair combinations, as described in section 3.4.2.2. For 9 zones there

are 45 pairs. Multiplying 45 by 4 charge code cases results in 180 unique charge codes. There is one

fare value initialized for each charge code for each of the 24 combinations of the 3 independent tiers.

The total number of fares values initialized is therefore 24 x 180 = 4320. This is the upper bound

quoted in Figure 3.8. In enumerating charge codes as a matrix of zonal OD pairs and special cases we

have assumed that all special cases follow the default zone structure. It is possible that one or more of

the special cases does not follow the default zone structure.

3.4.2.5 Charge code Optimizations

Initializing 4320 fare values seems rather wasteful. We can look for strategies to reduce the number

of charge codes used, and hence the number of fare values exogenously initialized.

Tablea

TableDLR Watford Euston DefaultTable Jct Table Table

TableDLR Watford Euston Default

Table Jct Table Table

Table

Table

Original Case
Orange boxes - used charge codes.
Empty boxes - unused charge codes.

Type 1 Optimization
Unused charge codes removed.

Type 2 Optimization
Redundant charge codes collapsed
where allowable across independent
combinations.
Charge codes may represent multiple
zonal pairs.

Figure 3.13 - Charge code reduction strategies

3.4.2.5.1 Type 1 Optimization

We can individualize the charge code tables for each charge code case by removing unused charge

codes. Observe that some charge code cases are applicable only to certain zonal pairs. For example,

a journey that triggers the Watford Junction case must originate from or end in zone 7. All zonal

ranges that do not involve zone 7 can be removed from the Watford Junction charge code table. By

assigning charge codes only to zonal pairs that are relevant for the given case, the total number of

charge codes can be reduced. This will be demonstrated in an example below.

3.4.2.5.2 Type 2 Optimization

Up to now, we have assumed that charge codes correspond to one zonal pair each. However, by

relaxing this requirement, charge codes can also be collapsed to represent multiple zonal pairs. The

extent to which we can collapse charge codes is determined by our basis zonal set, or the set of sets

of zonal pairs that represent the lowest common denominator for expressing fares across all 24

independent combinations4. This is also demonstrated below.

3.4.2.6 Charge Code Example

In order to explain the concepts described in this section, we construct an optimized set of charge

codes as an example. For this exercise we only use the adult and child discount groups. Source data

for this exercise is excerpted from the TfL fare description and given in Table 3.1 and Table 3.2.

In this example, we consider only three charge code cases5 : the default case, the DLR case and the

Euston case. Restricting ourselves to zones 1-6 only, there are 21 possible zonal pairs6. We begin by

creating three charge code tables with 21 entries (21 zonal pairs). This is shown on the left hand side

of Table 3.3. Now we apply Type 1 optimization by removing all of the unused charge codes. Note

that unused charge codes are usually found within the special cases rather than the default case.

Finally we apply Type 2 optimization by collapsing zonal pairs that share the same price value into

the same shared charge code. The end result is shown on the right hand side of Table 3.3. The gray

shaded cells in the table represent unneeded charge codes which have been removed. Note that

charge codes 46 to 50 represent the special Euston fares in Table 3.2.

Recognizing that different independent combinations have to fit within the same common lookup

structure, we introduce the concept of a basis charge code set. The basis charge code set is the set of

charge codes that form the 'least common denominator' across all independent combinations,

including all special cases for each independent combination.

4 Recall an independent combination is a family of fares differentiated only by charge code. A single product

independent combination is parameterized by fare medium, discount group and time band.

5 For a definition of charge code case, see section 3.4.2.3.
6 For a definition of zonal pair, see section 3.4.2.2.

L1.00 £2.00

Cash

Child (I -15 years)

E3.20 E 1.60

Table 3.1 - Fare description excerpt for single fares. Left(a) : Adult. Right (b): Child. Zones 1-6 only.

Watford Jct. exceptions not shown. Note that there are no bus-only products for children. Other

discount groups (16+, New Deal, Privilege Rates) have been omitted. Children travel free on buses [1].

Origin-Destination Adult PAYG Adult PAYG Adult Cash Child PAYG Child Cash
Peak Off-Peak All-Day All-Day All-Day

Euston-Zone I (WJB)

Euston-Zone 2 (WJB) £2.25 £1.65 £3.25 £1.65 £0.55

Euston-Zone 3 (WJB) £2.75 £2.25 £4.05

Euston-Zone 4 (WJB) £2.85 £2.25 £4.05
£2.05 £0.55

Euston-Zone 5 (WJB) £3.25 £2.25 £4.05

Euston-Zone 6 (WJB) £3.55 £2.25 £4.05

Table 3.2 - Fares from Euston on the Watford Junction Branch. In the actual TfL fare description these

Euston fares deviate from the standard zone 1-n fares in only one case (Euston-Zone 2, Adult Cash All-

day). However for sake of illustration we will change the Euston fares so that they are all clearly

different from the standard zones 1-n fares (by 5 pence).

Zonal Pair Default DLR Euston Zonal Pair Default DLR Euston
case case case case case case

1-2 2 46 1-2 2 46
1-3 3 47 1-3 3 47

1-4 4 48 1-4 4 48
1-5 5 49 1-5 5 49

1-6 6 50 1-6 6 50

2-2 7 2-2 7

3-3 8 3-3

4-4 9 4-4

5-5 10 5-5

6-6 11 6-6

2-3 12 34 2-3 34

3-4 13 3-4

4-5 14 4-5

5-6 15 5-6

2-4 16 2-4 16

3-5 17 3-5

4-6 18 4-6

2-5 19 2-5

3-6 20 3-6

2-6 21 2-6

0-0 (Bus) 22 0-0 (Bus) 22

Table 3.3 - Charge code optimization process. Left (a): Type 1 Optimization; Unused charge codes are
removed. Right (b): Type 2 Optimization; charge codes assigned to multiple zonal pairs.

For example, [Oyster, Adult, Off-Peak] and [Cash, Child, All-day] are two independent

combinations. [Oyster, Adult, Off-Peak] can be expressed in a table that looks like Table 3.3b. [Cash,

Child, All-day] can also be expressed in a table that looks like Table 3.3b. When we require a basis

charge code set for these two independent combinations we are saying that we want these two tables

to be identical and have the same charge codes.

When we apply charge code optimizations we must bear this requirement in mind. Doing so is trivial

in this example because the following independent combinations [<any fare medium>, Adult, <any

time band>] can be expressed using the same charge codes. Furthermore, simply by finding an

optimized charge code set for [<any fare medium>, Adult, <any time band>], we would have found

the basis charge code set for [<any fare medium>, Child, <any time band>]. One may verify this by

inspecting Table 3.1 and Table 3.2.

The first row of Table 3.1 b (Child zones 1-6) is satisfied by charge codes 1-6, while the second row

(Child zones 2-6) is satisfied by charge codes 7 and 16. But imagine if the Table 3.1 b contained a

row for Child zones 2-3 - we would then be prohibited from spreading charge code 7 as broadly as

shown in Table 3.3b.

This example will be referenced below when we enumerate the master fare matrix' in section 3.4.5.

3.4.2.7 Charge Code Summary

To recap, the process of mapping of origin and destination stations to a charge code can be broken

down into the following steps.

1. Resolving the zonal pair ({inner zone, outer zone)) from origin and destination stations.

2. Detecting special cases and identifying which special case to use.

3. Selecting the correct charge code based on the zonal pair and the independent combination.

E.g., [Oyster, Adult, Peak] identifies one fare, [Cash, Adult, All-Day] identifies another.

The number of charge codes can be reduced through removing unused charge codes and collapsing

multiple zonal pairs into the same code. Either type of optimization requires us to implement custom

logic, in order to select the correct charge code for a given zonal pair. The cost of this additional

complexity must be weighed against the benefits of a lighter weight master matrix. In the CLBC fare

engine we will opt for a more general solution for fare resolution over the use of charge codes.

3.4.3 Bus Journeys

Under PAYG, the same flat fare is levied for any bus trip regardless of the distance of the journey,

location of boarding or time of day; however, fares do vary by passenger type and fare media.

Although we have not considered bus journeys in the above example, they can be implemented as

just another charge code. We may represent bus journeys as an additional row in Table 3.5 and

provide a charge code for it under the column for the default charge code case (charge code 22).

7 The masterfare matrix is where fare values are stored. See 3.4.1.

Bus fare variation due to different fare media, discount groups and time bands is naturally accounted

for by the independent tiers of the master fare matrix.

3.4.4 Matrix Utilization and Treatment of Null Fields

Table 3.4 illustrates the utilization of the three independent tiers as documented by the current TfL

fare description. At the time of writing, cash fares are not differentiated by time band. There is only

one cash fare with respect to time and this fare applies all day. However, we note that this fact stems

purely from the current fare description, and potentially the limitations of the magnetic stripe

ticketing system in use. There is no fundamental reason why off-peak cash singles cannot be

implemented. We therefore assume support for this hypothetical product in our TfL fare structure,

which treats time band and fare medium as independent axes. To maintain consistency with time-

band differentiated Oyster PAYG fares we have chosen to use the 'peak' time band to represent and

store values of 'all day' cash fares. If cash fares were to become time-band differentiated, it would

acquire the same time bands as defined for Oyster PAYG.

Discount Group Oyster Oyster Cash Cash
Peak Off-Peak Peak* Off-Peak

Adult

Child (5-15)

16+

New Deal

Adult Privileged

Child Privileged

Table 3.4 - Population of the independent tiers of the fare matrix. Unavailable products expressed as
empty cells (null values)
* There is only one cash fare and this is effectively an all-day cash fare.

In the table above we have represented unavailable products as null values. Representing undefined

products as null fields in the fare structure is not our only option. Alternatively, null fields may be

filled with the fare from the nearest corresponding product that we can defer to. This is shown in

Table 3.5, which has the same format as Table 3.4 except that null fields are now replaced by

deference indicators (shown in orange).

Bear in mind that each cell in the table represents an independent combination8. Each independent

combination has associated with it a full set of fare values (there are as many fare values in each

independent combination as there are charge codes). If we looking at a tree representation of the

master fare matrix, we are not simply cross-referencing tiers, but rather copying over individual fare

values at the leaf level. The structure remains a full tree. In other words, fares are cloned and not

merely symbolically linked 9.

An automated fare engine is an example of where this treatment would be relevant. In this case, the

fare engine is given a fare parameter token1o that describes the properties of the user and the trip, and

must automatically choose the appropriate fare where it is available, or defer to the correct next-best

product when no fare product is defined for the given parameters.

Discount Group Oyster Oyster Cash Cash
Peak Off-Peak Peak* Off-Peak

Adult Adult Cash Peak

Child (5-15) Child Oyster Peak Child Cash Peak

16+ 16+ Cash Peak

New Deal New Deal Cash Peak

Adult Privileged A t Priv. Cash Peak

Child Privilegedriv. Cash Peak

Table 3.5 - Fares for unavailable products replaced by fares deferred to.

3.4.5 Example Master Matrix

We will conclude this discussion of a fare structure for single products by presenting a master matrix

based on the limited example given in section 3.4.2.6. Recall that we have 3 independent tiers. The

structural domain is:

FareMedia = {Cash, Oyster)

Timerands = {Peak, OffPeak)

DiscountGroups = {Adldt, Chi A46ld, ,% a-: =.,Al" .. l -;' .L'&.]

8 The term Independent combination is defined at the end of section 3.4.1.

9 Symbolic linking means data is not duplicated, but a pointer is used to forward the seeker to the original copy.

10 See section 3.2.3.

Furthermore, we have defined a fourth tier, ChargeCodes, which represents a mapping defined as a

function of the origin station and the destination station of a journey. Each charge code is an integer

value which represents a unique pricing level within TfL's zonal price structure.

For the purpose of this example we will only consider two discount groups for brevity's sake - Adult

and Child. Together we have a total of 2 x 2 x 2, or 8 independent combinations. In section 3.4.2.6

we arrived at a charge code scheme that has 15 different charge codes (including one for bus). We

will therefore need to fill 8 x 15 = 120 cells exogenously in our master fare table.

Fare Media

Disc. Grp Ad

Charge Code Peak(AD)

1 4.00

2 4.00

3 4.00

4 4.00

5 4.00

6 4.00

7 3.20

16 3.20

22(Bus) 2.00

Cash Oyster
lult Child Adult

Off-Peak Peak(AD) Off-Peak

1.60 0.55

1.60 0.55

2.70 2.20 0.55

2.80 2.20 0.55

3.70 2.20 0.55

3.80 2.20 0.55

1.10 1.10 0.55

2.00 1.10 0.55

1.00 0.00

34(DLR) 1.60 0.80 1.10 1.10 0.55

46(Euston) 3.20 1.60 2.20 1.60 0.55

47(Euston) 4.05 2.00 2.70 2.20 0.55

48(Euston) 4.05 2.00 2.80 2.20 0.55

49(Euston) 4.05 2.00 3.70 2.20 0.55

50(Euston) 4.05 2.00 3.80 2.20 0.55

Table 3.6 - Example master fare matrix following on from charge codes constructed in 3.4.2.6. Rows in
this table represent charge codes, columns represent independent combinations. AD is short for All-
Day.

One should verify that Table 2.6 indeed follows from the framework described thus far. For

illustrative purposes we have used both approaches described for treating unavailable product

options. On the cash side, we have left unavailable values blank, simply as null fields. On the Oyster

side, we have populated the cells to enable automatic deferral to the next-best product.

Child

Off-Peak Peak(AD) Off-Peak

2.00

2.00

2.00

2.00

2.00

2.00

1.60

1.60

3.5 Period Products

Period products are the second umbrella sphere in the TfL fare structure. Contained within this

sphere are two classes of sub-products.

The first class is known as period tickets, or tickets in short. Period tickets give users unlimited use of

a certain part of the system, subject to conditions attached to the ticket purchased. Period tickets are

also known under the following names:

* Travelcard - Alternative name for any period ticket. Travelcards can be purchased as a

magnetic stripe ticket or loaded on an Oyster card. We will consider this term synonymous

with period ticket.

* Day Ticket - Refers to the I day or 3 day products.

* Season Ticket - A term usually used in conjunction with products with a validity period 7

days or longer.

Both day tickets and season tickets are a form of Travelcard.

The second class of products that make up the sphere of period products are caps. Caps will be

explained in section 3.7. Caps are generally not considered a type of period ticket; however they are

closely related. Capping prices have a corresponding, analogous day-ticket price. Due to this

relationship, we will consider caps in the same context as period tickets.

3.5.1 Tier Definition and Structural Arguments

The tiers illustrated in Figure 3.14 and their domains are described below.

3.5.1.1 Application Context

Compared to the single tier definitions, which were discussed in section 3.4.1, we have substituted

application context for fare medium as the initial decision tier. As it would be inaccurate to refer to a

cap as a type of fare medium, we have created a new term to describe the way a period product is

applied. This is the application context. The application context expresses whether a period product

is applied as a ticket which has been pre-purchased prior to travel, or whether it is applied

automatically as an Oyster PAYG cap. The application context can either take the value of ticket or

cap.

Dimension Name Multiplicity

2

8

5

2

22+*

Total Rows: 3520+
* Lowest common denominator zonal ranges across
all products.

Dimension Name Multiplicity

Fare Medium 2

Discount Group 6

Time Band 2

Charge Code 2

Total Rows: 360-5400

** The number of Jharge codes can be
significantly reduced by optimization of
the charge code lookup subsystem

Figure 3.14 - Tier definition for period products is on the left. The tier definition for single products is
provided on the right for reference. Note that application context is the period product analog of fare
medium for single products.

As Table 3.7 shows, some period tickets must be purchased in paper form, while others can only be

loaded onto an Oyster Card. TfL sells 1-Day Travelcards in paper form only. However, Oyster

PAYG users can also enjoy the benefits of daily period travel owing to the policy of Oyster capping.

To complicate the picture, the daily capping prices differ from the corresponding 1-Day Travelcard

prices. This is the reason we have introduced the application context decision tier.

Longer period products are available in either Oyster or in magnetic stripe form, but not both at the

same time when purchased from TfL. Capping is currently not available for validity periods longer

than one day. For one-day validity, capping is available for all discount groups and on both an all-day

and off-peak basis.

We accept that dedicating one whole decision tier to application context would result in large

swathes of unused cells in the master matrix where capping is not available. On the other hand, this

structure gives us the room to introduce longer-interval caps.

We have restricted our definition of application context to only caps and tickets because current TfL

fare description does not differentiate paper and Oyster tickets by price. However, the definition of

application context can be extended to encompass fare medium, if it becomes necessary. In this case,

accepted values for application context could be {Oyster ticket, Mag stripe ticket, Oyster cap}.

Validity Period Oyster Magnetic Stripe

1-Day No* (but capping applied Yes
automatically)

3-Day No Yes

Weekly Yes No** (Sold at NR stations only)

Monthly Yes No** (Sold at NR stations only)

Annual Yes No** (Sold at NR stations only)

Table 3.7 - Period product availability across fare media.

3.5.1.2 Discount Groups

In the context of period products there are 8 discount groups, compared to 6 for single products.

Although we have elected to keep them separate, there is also no reason why the tier domains for

these instances of discount groups cannot be reconciled and unified. Possible values for this tier are:

1. Adult (no discount)

2. Child (5-15)

3. 16+

4. 18+ (not in PAYG)

5. Railcard Holders (not in PAYG)

6. New Deal

7. Adult Privilege Rate

8. Child (5-15) Privilege Rate

3.5.1.3 Validity Periods

Each period product has a specific period of validity. This dimension segments products by validity

period. The tier domain for this dimension is:

1. 1 Day

2. 3 Day

3. Weekly

4. Monthly*

5. Annual

* Monthly tickets can be issued for any number of months, from one up to a limit of 11. Common

denominators are 3 and 6 months. However this peculiarity can be ignored as the same monthly rate

applies regardless of the number of months purchased. There is no discount beyond the convenience

of not having to renew a ticket. In effect multi-month tickets can be considered single monthly tickets

purchased back-to-back.

3.5.1.4 Time Bands

The definitions for Oyster PAYG and Travelcard time bands are not the same. Note how PAYG

observes a PM peak, but period products do not, and also that the Travelcard AM peak begins at

4:30AM while the PAYG peak begins at 6:30AM. Even more confusingly, Oyster capping, although

it is applied on Oyster PAYG fares, observes the Travelcard time bands. It appears that because

Oyster capping has a pricing structure analogous to that of a Travelcard's, Travelcard time bands are

also observed. Time band definitions are not relevant with respect to cash singles as cash singles are

not differentiated in price by time band.

Oyster PAYG Period Products

Peak/All-day 0630 - 0930, 1600-1900 Weekdays, Valid at all times (All-day)

excluding public holidays (Peak)

Off-Peak All other times (Off-peak) Valid outside of 0430-0930 on

weekdays. (Off-peak)

Figure 3.15 - Comparing single product and period product time bands.

More subtly, the Oyster PAYG time bands have a fundamentally different interpretation compared to

period product time bands. With Oyster PAYG time bands, what fare gets charged depends which

time band a journey falls in. Oyster PAYG time bands are therefore mutually exclusive - one is

either charged the peak fare or the off-peak fare.

With period products however, there is no notion of a 'peak' ticket or a 'peak' cap. Instead, there is

an all-day ticket or cap that allows travel at all times, and an off-peak ticket or cap which only allows

travel in the off-peak. The all-day and off-peak time bands for tickets and caps are not mutually

exclusive. Specifically, the off-peak time band is a subset of the all-day time band. A journey

occurring in the off-peak is covered by both the off-peak and all-day tickets or caps.

3.5.2 Charge Code

There are some subtle but important differences between charge codes for single products and charge

codes for period products. Single product charge codes are a function of the origin and destination

stations of a given trip. Period product charge codes, in contrast, represent the zonal validity of a

ticket or cap. The zonal validity of a ticket indicates the zones over which the user is entitled to travel

at no charge if they hold that ticket. Although not stated explicitly in the fare description, we assume

that the zonal validity of a period ticket pertains to the route of a journey and not just the zones of the

origin and destination stations. In other words, a user holding a zones 1-2 Travelcard is only entitled

to free journeys that do not exceed zones 1-2 at any point. From a fare inspection perspective a user

holding a zones 1-2 Travelcard is allowed to be onboard a service outside the zones 1 and 2 as long

as he has tapped in at the start of the journey. This is because travelling outside one's ticket's zonal

validity is allowed, although an extension fare would be incurred. A user holding a zones 1-2

Travelcard and travelling on a journey which begins and ends within zones 1-2 but takes a route that

ventures outsides of these two zones would likewise incur an extension fare. The amount of the

extension fare would be based on the outermost reach of the most likely route of his journey.

Recall that single product charge codes represent one or more zonalpairs, which have a non-trivial

relationship to the OD stations. As a result, special logic 11 is required to make the conversion. In the

case of period products, however, there is no need for such conversion here because charge codes in

a period context can be thought of less as criteria among which we must find a match for our

journeys, and more as the 'name' of a product which is either selected or not.

To put more clarity on this philosophical distinction, let us take look at example drawn from the TfL

fare description. Relevant excerpts of adult and child period prices for zones 1-6 only are given in

Table 3.8 and Table 3.9

" ZonalPair= {innerzone, outerzone}, see discussion in section 3.4.2.4.

I u ndta

Trae.6rd

1ube DL and L @6 0 1o.l.

n664

I E856

Z 2024
11296

Table 3.8 - Left(a): TfL fare description for adult 1-day Travelcard and Cap. Right(b): Adult 7-day,
monthly and annual Travelcards [1]. Note that 'Peak' is a misnomer.

Table 3.9 - Adult 3-day travelcard fare description.

DCA 1-Day Cap All-day
DCO 1-Day Cap Off-peak
DTA 1-Day Travelcard All-day
DTO 1-Day Travelcard Off-peak
3TA 3-Day Travelcard All-Day
3TO 3-Day Travelcard Off-peak
7TA 7-Day Travelcard All-day
MTA Monthly Travelcard All-day
ATA Annual Travelcard All-Day

Table 3.10 - Independent combination codes for Table 3.11.

The main difference between this example and the one from section 3.4.2.6 is that in the earlier
example we begin with a combinatorially exhaustive list of zonal pairs and then build a basis set of
charge codes by optimizing the list. In this example, charge codes do not come from an optimization
procedure, but rather they come directly as a consequence of the definition of the ticket products.

Bus nd ram asss I

Charge
Code

2 1-2

3 1-3

4 1-4

5 1-5

6 1-6

7 2

8 2-3

9 2-6

10 2-3

3-4

4-5

5-6

14 2-4

3-5

4-6

2-5

18 3-6

19 Bus

Zonal 1 2 3
Validity

Independent Combinations 12

DCA,DCO,DTA,DTO,3TA,7TA

DCA,DCO,DTA, 7TA

DCA,DCO,DTA,DTO,7TA

DCA,DCO,DTA,7TA

DCA,DCO,DTA,DTO,3TA,3TO

DCA,DCO

DCA,DCO

DCA,DCO,DTA,7TA,MTA,ATA

7TA,MTA,ATA

7TA,MTA,ATA

N/A

7TA,MTA,ATA

DCA,DTA,7TA,MTA,ATA

Table 3.11 - Example charge codes for period products. 14 charge codes are needed to cover all adult
products. Independent combination codes are listed in table Table 3.10.

For instance, take charge code 10 from Table 3.11. It has a zonal validity that encompasses the zonal

pairs {2-3, 3-4, 4-5, 5-6}. It has this zonal validity because such a Travelcard product covering these

zones is offered by TfL (see line 6 of Table 3.8b). If the Travelcard product offered according to the

fare description were to change, the zonal validity of the charge code would follow suit.

Recall that the term independent combination describes the set of parameters from all but the last tier

of a matrix fare structure. An independent combination for period products consists of the following

parameters: [<application context>,<discount group>,<validity period>,<time band>]. Each

independent combination identifies a family of ticket prices that differ only by charge code. In Table

3.11 we assume the discount group is Adult. For the other tiers we give independent combinations

three letter codes which are explained in Table 3.10.

12 Each independent combination identifies a family of ticket prices that differ only by charge code.

3.5.3 Matrix Utilization

Of the five dimensions in the period master matrix, three of these dimensions are featured in the

tables below. Rows represent the discount group and columns represent combinations of the validity

period and time band. Application context is separated by table. Table 3.12 represents tickets while

Table 3.13 represents caps

Discount Group

Adult

Child (5-15)

16+

IDTA DTOI3TA 3TO I7TA 7TO I MTA I MTOIATA I ATO

18+

New Deal

Adult Privileged

Child Privileged

Table 3.12 - Matrix utilization - Application
codes.

context = ticket. See above for independent combination

Discount Group DCA DCO 3CA 3CO 7CA 7CO MCA MCO ACA ACO

Adult

Child (5-15)

16+

18+

New Deal

Adult Privileged

Child Privileged

Table 3.13 - Matrix utilization - Application
codes.

context = cap. See above for independent combination

Off-peak tickets do not exist for the longer period products, hence the 7TO, MTO and ATO columns

are empty. However there is no reason why TfL could not offer, for example, a monthly off-peak

ticket. Such an offering would fill the gaps above. Currently TfL only supports a daily cap, therefore

only the first two columns in Table 3.13 are filled. Longer period caps can be supported by filling the

remaining columns as necessary.

I

3.6 Interchanges

An interchange, also known as a transfer describes moving from one vehicle to another within the

same logical journey. An interchange occurs when a user changes lines on an LUL service, for

example, from the District Line to the Victoria Line at Victoria Station. However these types of

platform-to-platform interchanges occur without any interaction with the fare collection system. In

the context of fare collection, we are particularly concerned with three types of interchanges which

leave a traceable mark. These are out-of-station interchange, bus-rail interchange and National Rail

interchange.

3.6.1 Out-of-Station Interchange

From To Interval

Bank Central/Northern/DLR Bank Waterloo & City 30

Bank Waterloo & City Bank Central/Northern/DLR 30

Canary Wharf (LUL) Heron Quays (DLR) 10

Heron Quays (DLR) Canary Wharf (LUL) 30

Euston Euston Square 30

Euston Square Euston 30

Hammersmith D&P Hammersmith H&C 30

Hammersmith H&C Hammersmith D&P 30

Hanger Lane Park Royal 25

Park Royal Hanger Lane 25

Table 3.14 - Example of OSI station pairs. Interval in minutes.

Separate OSI tables exist for Oyster and magnetic stripe tickets, with the magnetic stripe table being

a subset of a more extensive Oyster table. Oyster specifications support only a 2-leg OSI journey.

Additional interchanges will trigger a new fare, even if they would otherwise qualify for OSI.

Furthermore, OSI is not granted if a journey breaking transaction, such as the recharging of the

Oyster Card has occurred between the first exit and second entry. Many of these limitations of OSI

arise out of technological limitations of the Oyster system, such as limited storage on an Oyster card.

3.6.2 Bus-Rail Interchange

Bus-Rail interchange refers to a mode change from bus/tram to a rail mode (LUL/DLR) vice versa.

Oyster infrastructure explicitly supports this type of interchange and allows for a reduced/free fare

when an eligible bus/rail interchange occurs. However, this facility is not used by in the current TfL

fare description. On the other hand, holders of any Oyster or paper based Travelcard are entitled to

unconditional free access to all London buses.

3.6.3 National Rail Interchange

National Rail interchange describes the transition from a National Rail service to a TfL service (e.g.

LUL or Underground). There are two types of National Rail-TfL interchange users. \

The first group of users hold a paper ticket for National Rail and access TfL services via either

Oyster or their National Rail ticket. At stations where National Rail platforms are located outside of

the TfL gated area, these users may simply access the TfL service as if they had just arrived at the

station by any other means. At stations where National Rail services terminate within the gated area

of a TfL station, users wishing to access TfL services (e.g. Underground) with an Oyster card may

tap-in on a platform mounted validator. Those users who hold NR paper tickets with Underground

permissions may simply proceed to the underground service with no intervention required. They will

use their NR ticket to exit the system. The opposite interchange follows in similar fashion.

The second group of users use Oyster PAYG on both National Rail and their TfL (e.g. underground)

connection. Currently, Oyster PAYG is only supported on a limited selection of National Rail routes,

particularly those that parallel the London Overground. Users taking advantage of this capability

need only to tap in at the beginning of their trip and tap out at the end, assuming they enter and exit

through stations that support Oyster PAYG. No further action or intermediate validation is necessary.

3.7 PAYG Capping

TfL seeks to deliver on a concept of daily best value for its Oyster PAYG users, and implements it

through a system of PA YG capping. The concept behind capping is that a user's PAYG charges will

be capped at or slightly below the cost of a daily ticket that would cover the same zones that he has

used that day. As it will be seen, PAYG capping does not always result in true best value for the user.

A number of scenarios where best value does not result from the current capping implementation will

be discussed.

3.7.1 Peak and Off-peak Caps

One source of confusion is whether there is a peak cap and an off-peak cap, or an all-day cap and an

off-peak cap. The difference between these two can be seen in an example where a user travels many

times within zone 1 during the peak (before 9:30am), and also many times during off-peak (after

9:30am). In the case of there being peak/off-peak caps, the user would incur a total cost which is the

sum of the peak and off-peak caps. In the latter case, the all-day cap would override the off-peak cap,

and the total cost would equal the amount of the all-day cap.

Let us consult the TfL fare description on this issue. The first quote is stated in the TfL Guide to

Fares:

"The Oyster daily price cap is the most you pay in one day when you pay as you go

on bus, Tube, tram, DLR, London Overground and some National Rail services. The

appropriate Off-Peak daily price cap will apply for all journeys on the same day:

* Monday to Friday: from 0930 and any journey that starts before 0430 the following

day,

* Saturday, Sunday and public holidays: from 0430 and any journey that starts before

0430 the following day.

The appropriate Peak daily price cap will apply if you travel from 0430 and before

0930 Monday to Friday (excluding public holidays). If you only use buses and trams,

the bus and tram daily price cap will apply." [1]

The second quote is from the internal TfL staff manual:

"The all modes off-peak cap will apply if they make several journeys on the same day

during the (off-peak hours).

The all modes peak cap will apply if they travel (during the peak hours), irrespective

of mode.

A separate charge is made for journeys made (in the peak hours), plus the off-peak

cap, if the total cost of the journeys made is less than the peak cap." (1/09 Staff Guide

to Fares and Tickets)

These statements suggest that there is an all-day cap and an off-peak cap, and that the all-day cap

supersedes the off-peak cap in an event of mixed trips. We will assume that TfL has an all day cap,

not a peak cap. The use of the terms peak cap and all-day cap, if interchangeable, will always refer to

the latter concept.

Travel in off-peak No travel in off-peak

Travel in peak Min(all-day cap, off-peak cap + Min(all-day cap, Esingles)

Epeak singles, Esingles)

No travel in peak Min (off-peak cap, 2singles) £0

Table 3.15 - Capped fare under different daily travel patterns.

In reading the examples in this chapter one should note that PAYG fares are calculated using Oyster

PAYG (peak/off-peak) time bands which observe a PM peak, but capping is applied using an all-

day/off-peak system with no PM peak.

Oyster PAYG: Peak - 0630-0930, 1600-1900. Off-peak - 0930-1600, 1900-0630

Oyster capping: All-day - self explanatory. Off-peak - 0930-0430 (next day)

3.7.2 Oyster Implementation

In Oyster, capping is implemented using four running totals and a stretching window for each

running total.

The four running totals are:

* LUL Peak

* LUL Off-peak

* LTB (bus) Peak

* LTB (bus) Off-peak

Bus fares have been drastically simplified since the inception of Oyster. Buses used to have zonal

fares but this is no longer the case. Therefore we will consider only the two LUL running totals.

Running totals are reset at the beginning of each day. Each running total consists of three fields.

* Pound amount

* Inner zone

* Outer zone

Time Band Running Total Inner Zone Outer Zone

LUL Peak A C E

LUL Off Peak B D F

LUL All Day (imputed) A+B MIN(C,D) MAX(E,F)

Table 3.16 - Oyster implementation of capping showing imputed running total and stretching window

A third running LUL total, LUL All-Day is imputed from LUL Peak and LUL Off peak. This is

necessary as there is no peak cap, but there is an all-day cap.

3.7.3 Running Total Example

Here we will use a sequence of trips to illustrate the relationship between the peak, off-peak and the

imputed all-day running totals. In this particular example we will ignore for now the effect of

capping. The initial state has all running totals set to zero and all stretching windows uninitialized.

Note that for the purpose of examples in this chapter, 2008 fares are used. These fare amounts may

not correspond with examples cited elsewhere in this thesis constructed using the 2009 fare schedule.

Trip 1: 8am from zone 3 to 1 - This is a peak trip under both the PAYG and capping time band

definitions. A zones 1-3 peak fare of £2.50 is added to the LUL Peak running total. The peak window

becomes 1-3.

Running Total Pound Inner Zone Outer Zone
Amount

LUL Peak £2.50 1 3

LUL Off Peak £0.00 - -

LUL All Day (imputed) £2.50 1 3

Total charged £2.50

Table 3.17 - Running total example: AM Peak trip.

Trip 2: 3pm from zone 1 to 5 - This is an off-peak trip under both the PAYG and capping time band

definitions. A zones 1-5 off-peak fare of £2.00 is added to the LUL off-peak running total. The off-

peak window is stretched to 1-5. The imputed all-day total increases to £4.50 and the all-day window

is stretched to 1-5.

Running Total Pound Inner Zone Outer Zone
Amount

LUL Peak £2.50 1 3

LUL Off Peak £2.00 1 5

LUL All Day (imputed) £4.50 1 5

Total charged £4.50

Table 3.18 - Running total example: Off-peak trip.

3) Trip beginning at 5pm from zone 6 to 3 - This is a peak trip under the PAYG time band

definition but off-peak under the capping time band definition. A zones 3-6 peak fare of £1.80 is

added to the LUL off-peak running total. The off-peak window is now stretched to 1-6. The imputed

all-day total is now £6.30 and the all-day window is now 1-6.

Running Total Pound Inner Zone Outer Zone
Amount

LUL Peak £2.50 1 3

LUL Off Peak £3.80 1 6

LUL All Day (imputed) £6.30 1 6

Total charged £6.30

Table 3.19 - Running total example: PM peak trip.

3.7.4 Worked Example

The off-peak and all-day running totals are capped by an amount which is a function of the inner and

outer zones. There is no cap for the peak running total. However the peak running total is implicitly

capped as it constitutes a component of the imputed all-day total, which is capped. Now we will walk

through an example that illustrates the capping mechanism.

Running Total Pound Inner Zone Outer Zone
Amount

LUL Peak £2.00 1 2

LUL Off Peak £4.00 1 5

LUL All Day (imputed) £6.00 1 5

Total charged £6.00

Table 3.20 - Capping example: Initial state.

This example begins with the running total and stretching window registers in the state shown in

Table 3.20. A peak 1-2 trip (£2.00) and two off-peak 1-5 trips (£2.00 each) have put the registers in

this state. The user now makes two additional off-peak trips within zones 1-5. This should have

incurred two more £2.00 fares, raising the LUL off-peak running total to £8.00. However, the off-

peak total does not reach £8.00 as it is subject to a £6.50 off-peak zones 1-5 cap. The status now of

the running totals is shown in Table 3.21 below.

Running Total Pound Inner Outer Cap
Amount Zone Zone

LUL Peak £2.00 1 2 N/A

LUL Off-peak £6.50 1 5 £6.50 (OP 1-5)

LUL All Day (imputed) £8.50 1 5 £11.30 (AD 1-5)

Total Charged £8.50

Table 3.21 - Capping Example: Step 1. Off-peak cap reached after two additional off-peak zone 1-5
trips.

The TfL fare guide states:

"If the total cost for your journeys less than the all-day daily price cap, you will be charged

for each journey you make from 0430 to 0930, plus the cheaper of the Off-Peak Oyster single

fares/off-peak daily price cap for the remainder of your journeys". [1]

We can verify that this promise is indeed met in our scenario above. The total cost for all journeys

(£8.50) is less than the all-day price cap for zones 1-5 of £11.30. The total amount charged therefore

consists of the off-peak cap (£6.50) and a one-way peak 1-2 journey (£2.00).

The off-peak cap has now been reached. Any further off-peak trips between zones 1-5 will result in

no change to the running totals and no stored value deductions. However, additional peak trips

within zones 1-5 will increase the peak running total. This is not currently possible as there is no PM

capping peak. But we can assume there is and test this case by giving the user two zones 1-5 PM

peak trips (£3.50). The peak running total increases until the all-day cap of £11.30 is reached. As a

result of the all-day cap, the peak running total hits a ceiling of £4.80 rather than the individual trip

costs of £2 + £3.50 x 2 = £9.00.

At this point, no running total can be increased for any subsequent peak or off-peak travel between

zones 1-5. Consequently the user's Oyster balance will not be deducted any further for any peak or

off-peak travel between zones 1-5. (The user's stored value is deducted only when the running total

increases)

Running Total Pound Inner Outer Cap
Amount Zone Zone

LUL Peak £4.80 1 5 N/A

LUL Off-peak £6.50 1 5 £6.50 (Zones 1-5)

LUL All Day (imputed) £11.30 1 5 £11.30 (Zones 1-5)

Total charged £11.30

Table 3.22 - Capping Example: Step 2. Two more £2.00 peak zones 1-5 trips are made. This is only
possible with a hypothetical PM peak. The total charged is £11.30 rather than £12.50 without capping.

3.7.5 Capping Limitations

The capping scheme employed by Oyster fails to provide best value to users under the following

circumstances:

1. Zonal overextension

2. Cross-band zonal overextension

3. Non-contiguous zonal overextension

4. Capping with existing tickets

We will illustrate each case below with an example.

3.7.5.1 Zonal Overextension

Consider the following scenario:

Jrny Time From To Fare Inner Outer Cap Runnin Inner Outer Cap Running
No. Zone Zone Zone Zone g Total Zone Zone Total

1 7:30 5 1 £3.50 - - - £0.00 1 5 £11.30 £3.50

2 8:30 1 1 £1.50 - - - £0.00 1 5 £11.30 £5.00

3 8:40 1 1 £1.50 - - - £0.00 1 5 £11.30 £6.50

4 8:50 1 1 £1.50 - - - £0.00 1 5 £11.30 £8.00

5 9:00 1 1 £1.50 - - - £0.00 1 5 £11.30 £9.50

6 9:00 1 1 £1.50 - - - £0.00 1 5 £11.30 £11.00

Table 3.23 - Zonal overextension example: Oyster capping.

The first trip of the day from zone 5 to 1 extends the all-day zonal window to 1-5. This in turn raises

the all-day cap to £11.30 (the price of the zones 1-5 daily cap). The five subsequent trips within zone

1 are charged individually and the user is charged a total of £11.00 for the 5 journeys. However, this

does not represent best-value for the user. Best value for the user in this scenario is represented by

the application of a zone 1-2 daily price cap (£6.30) in conjunction with a peak extension fare for

zones 3-5 (£1.80), resulting in a total charge of £8.10.

Cost
All day cap - Zones 1-2 £6.30
Peak extension one-way - Zones 3-5 £1.80
Best Value £8.10

Table 3.24 - Zonal overextension example: True best value.

To highlight a quirk of the Oyster capping mechanism, we can also consider the same trips as above

but made in the opposite order (five zone 1 trips followed by a zone 1 to 5 trip). All trips still occur in

the peak. This results in a charge £9.80, still non-optimal, but less than the £11.00 charged in the first

example. We can see that the current Oyster capping rules, the same trips (occurring in the same time

band) but taken in a different order can result in a different total charge.

All-DayOff-Peak

Jrny Time From To Fare Inner Outer Cap Running Inner Outer Cap Running
No. Zone Zone Zone Zone Total Zone Zone Total
1 7:30 1 1 £1.50 - - - £0.00 1 1 £6.30 £1.50
2 8:30 1 1 £1.50 - - - £0.00 1 1 £6.30 £3.00
3 8:40 1 1 £1.50 - - - £0.00 1 1 £6.30 £4.50
4 8:50 1 1 £1.50 - - - £0.00 1 1 £6.30 £6.00
5 9:00 1 1 £1.50 - - - £0.00 1 1 £6.30 £6.30

6 9:00 1 5 £3.50 - - - £0.00 1 5 £11.30 £9.80

Table 3.25 - Zonal overextension example: Oyster capping with trips in reverse order.

3.7.5.2 Cross-band Zonal Interference

Zonal window overextension can reach across pricing time-bands. Because the all-day window is

imputed from the peak and off-peak windows, off-peak travel will stretch not only the off-peak

window, but also the all-day window.

Off-Peak All-Day
Jrny Time From To Fare Inner Outer Cap Running Inner Outer Cap Running
No. Zone Zone Zone Zone Total Zone Zone Total
1 11:00 5 1 £2.00 1 5 £6.50 £2.00 1 5 £11.30 £2.00
2 16:30 1 1 £1.50 1 5 £6.50 £2.00 1 5 £11.30 £3.50
3 16:50 1 1 £1.50 1 5 £6.50 £2.00 1 5 £11.30 £5.00
4 17:10 1 1 £1.50 1 5 £6.50 £2.00 1 5 £11.30 £6.50
5 17:20 1 1 £1.50 1 5 £6.50 £2.00 1 5 £11.30 £8.00
6 17:30 1 1 £1.50 1 5 £6.50 £2.00 1 5 £11.30 £9.50

Table 3.26 - Cross-band zonal interference: Oyster capping.

Cost
All-day Cap - Zones 1-2 £6.30
Peak extension one-way - Zones 3-5 £0.90
Total Charge £7.20

Table 3.27 - Cross-band zonal interference: True best value.

The first trip is an off-peak trip from zone 5 to 1 (£2.00). It stretches not only the off-peak window,

but also the all-day window. Subsequently a series of five PM-peak zone I trips (£1.50) are made.

Again, under the current fare description capping does not use a PM peak, making it impossible to

incur a peak trip once the morning peak is over. However, we can assume for the sake of this

1
Off-Peak All-Day

example that a PM peak exists between 1600 and 1900 (same as the Oyster PAYG PM peak). The

resulting charge of £9.00 is not best value. Best value is represented by the charges in Table 3.27.

A trend emerging from these examples is that extension fares are often utilized in true best-value

scenarios. The inability of the existing mechanism to incorporate extension fares results in sub-

optimal charges, belying the spirit of 'best value' promised to customers as stated below:

"During a 24 hour period from 0430 to before 0430 the following day, you will pay 50p less

than the equivalent Day Travelcard (or One Day Bus & Tram pass) price for all your Oyster

single fare journeys or we will refund the difference." (pp 45, 1/09 Staff Guide to Fares and

Tickets)

On the other hand, if we consider the TfL's fare description at face value (reprinted from 3.7.4

above), it appears the fare description is not violated.

"If the total cost for your journeys less than the all-day daily price cap, you will be charged

for each journey you make from 0430 to 0930, plus the cheaper of the Off-Peak Oyster single

fares/off-peak daily price cap for the remainder of your journeys." [1]

In both examples above (3.7.5.2 and 3.7.5.3), the total cost ofjourneys is less than an all-day daily

price cap for zones 1-5. Therefore all 5 peak journeys are charged individually, and for the remainder

(journey 1) the single fare is also charged as it is cheaper than the corresponding off-peak cap.

3.7.5.3 Non-contiguous Zonal Overextension

The zonal window is defined only in terms of its inner and outer limits. Non-contiguous windows are

not supported. Consequently, zonal window overextension occurs when the system is confronted by a

usage pattern that involves discontinuous zones. Such a usage pattern can arise when a user first

travels within certain outer zones, then gets transported via alternative means, and finally resumes

travel within a non-adjacent set of inner zones.

In the example below, four peak zone 1-2 (£2.00) trips are interrupted by a single zone 6-6 (£1.00)

trip. This is a highly unlikely itinerary in real-world usage, but nonetheless a possible one. The zone

6-6 trip (Journey 4) extends the zonal window to 1-6, causing subsequent to zones 1-2 trips to not be

capped. Best value in this example is given by an all-day zone 1-2 cap (£6.30), and a single zone 6-6

one way fare (£1.00), for a total of £7.30. Oyster capping gives a much higher charge of £13.00.

Off-Peak All-Day
Jrny Time From To Fare Inner Outer Cap Running Inner Outer Cap Running
No. Zone Zone Zone Zone Total Zone Zone Total
1 4:30 1 2 £2.00 - - - £0.00 1 2 £6.30 £2.00
2 5:00 2 1 £2.00 - - - £0.00 1 2 £6.30 £4.00
3 5:20 1 2 £2.00 - - - £0.00 1 2 £6.30 £6.00
4 6:20 6 6 £1.00 - - - £0.00 1 6 £13.30 £7.00
5 7:20 1 2 £2.00 - - - £0.00 1 6 £13.30 £9.00
6 9:00 2 1 £2.00 - - - £0.00 1 6 £13.30 £11.00
7 9:15 1 2 £2.00 - - - £0.00 1 6 £13.30 £13.00

Table 3.28 - Non contiguous zonal overextension: Oyster capping.

We can also see that cross-band non-contiguous zonal window overextension is also possible (if we

have an afternoon peak). Again we assume a 16:00-19:00 afternoon peak. If Journey 4 in the table

above were to occur during the off-peak at 13:00, it would stretch out the all-day window to 1-6.

Subsequent journeys in the PM peak within zones 1-2 would fail to be capped.

3.7.5.4 Capping with Pre-existing Tickets

If the user holds a pre-existing period ticket, extension fares may be charged instead of the full single

fare. Any extension fare charged is subject to the Oyster PAYG cap. In other words, contributions to

the running totals may have already been reduced by a pre-purchased ticket. In this case, each

contribution to the running total is no longer simply the one-way fare, but rather, the lesser of the raw

one-way fare and the extension fare given the user's ticket holding. Under these circumstances, best

value may not result. We will illustrate this with an example below.

Here we assume that the user is in possession of a valid zones 1-2 monthly ticket. The first peak zone

1-1 trip incurs no charge as it is fully covered by the user's monthly ticket. However the peak (not

shown) and all-day zonal windows are still affected. The subsequent sequence of zone 1-6 trips

(however unlikely in the real world) each incur a peak zone 3-6 extension fare of £1.80, until the 1-6

peak cap of £13.30 is reached

However, again this does not represent best value. In fact we can easily see that best value in this

scenario is attained by applying the zones 2-6 daily cap, which is £7.90.

Jrny Time From To Fare Inner Outer Cap Running Inner Outer Cap Running
No. Zone Zone Zone Zone Total Zone Zone Total
1 4:30 1 1 £0.00 - - - £0.00 1 1 £6.30 £0.00

2 4:40 1 6 £1.80 - - - £0.00 1 6 £13.30 £1.80

3 5:10 6 1 £1.80 - - - £0.00 1 6 £13.30 £3.60

4 5:40 1 6 £1.80 - - - £0.00 1 6 £13.30 £5.40

5 6:10 6 1 £1.80 - - - £0.00 1 6 £13.30 £7.20

6 6:40 1 6 £1.80 - - - £0.00 1 6 £13.30 £9.00

7 7:10 6 1 £1.80 - - - £0.00 1 6 £13.30 £10.80

8 7:40 1 6 £1.80 - - - £0.00 1 6 £13.30 £12.60

9 8:10 6 1 £0.70 - - - £0.00 1 6 £13.30 £13.30

10 8:40 1 6 £0.00 - - - £0.00 1 6 £13.30 £13.30

Table 3.29 - Capping with a zone 1-2 ticket.

3.7.6 Capping and Buses

The PAYG Oyster caps are 'all-modes' caps and include journeys buses. At the same time, an all-day

bus daily price cap of £3.00 is in effect concurrently. Bus capping is implemented via an LTB (bus)

running total which is also accounted for by the all-day imputed total. The store value deduced is

actually computed from an 'all-day all-modes' total which is itself a minimum of the 'all-day LUL'

and 'all-day LTB' totals. We have glossed over this point previously to avoid confusion.

For example, an Oyster user travelling during the peak LUL within Zones 1-2 as well as on London

buses would be charged the lesser of £6.70 for all her trips (the all-modes zones 1-2 peak cap) or

£3.00. This is consistent with the fact that a user who purchases a Zone 1-2 all-day Travelcard for

£7.20 enjoys the use of all London buses in addition to TfL rail services within Zones 1-2.

3.8 Other Services

We will briefly summarize a number of other services currently offered by TfL's fare collection

system. These services primarily pertain to fraud prevention, error correction and contingency

operations. This discussion focuses on Oyster only.

Unfinished and Unstarted Journeys - TfL implements a series of checks for unexpected

behavior. Consecutive entries and exits at gated stations are detected and flagged. Normally

this means a previous journey had not been exited properly (unfinished journey), or the

Off-Peak All-Day

current journey had not been entered into properly (unstarted journey). In these cases a

penalty fare is charged.

* Continuation Rail Exit - An exception to the above rule is if the user has to pass through

two sets of gates to enter or exit a station. TfL nomenclature describes this as a continuation

rail exit.

* Passback - If two entry or exit transactions are detected within a short interval at the same

gate line, a condition known as passback is assumed to have occurred. Passback describes a

possible attempt to exploit the system by using the same card to let two people through a gate

line. When a passback event is detected the second tap results in denied passage (rather than

a penalty fare).

* Maximum Trip Length - The interval between successive taps in a PAYG journey is

bounded by a maximum time. If a user remains in the system for longer than this amount of

time he will be charged a penalty fare. In a qualifying OSI journey, the trip timer is activated

separately for each of the two legs. If we assume the maximum trip length is 2 hr, the

maximum trip interval for an OSI journey would be 2 hr + (Interchange interval for given

OSI pair) + 2 hr.

* U-Turn Rail Journey - The user enters and exits at the same station without having traveled

anywhere. If this occurs in a short succession the user is assumed to have changed her mind

about travelling, in this case she is charged a single zone fare. If this occurs over a longer

time span, a fraud attempt is suspected (e.g. using two cards to manipulate the system). In

this case a penalty fare is charged.

* Automatic Resolution of Incomplete Journeys - It is important to resolve uncompleted

journeys in situations where passengers may get their Oyster card into an invalid state

through no fault of their own. Overcharging customers a penalty fare where responsibility

lies with TfL is clearly unacceptable. The detection and resolution of these circumstances is

helped by a number of automatic processes.

o Auto Continuation - If a passenger is evacuated from the station due to an emergency

circumstance, the auto-continuation flag is set on his card so that when he re-enters the

system at a later point the earlier journey allowed to be continued (rather than treated as an

unfinished journey). In auto continuation the exit-entry is pair is assumed to never have

happened.

o Auto Completion - Auto-completion is closely associated with auto continuation. The

difference between the two is that with the auto-completion flag set, when the user re-

enters the system after being let out (due to overcrowding or emergency), the re-entry

location is extrapolated to become the destination of the earlier (still open) journey, causing

a fare to be charged.

Aliasing - Aliasing is a service aimed at reducing the inconvenience to users and TfL of

closed stations. Stations near a closed station are treated as if they are the closed station

providing this treatment benefits the passenger. The closed station is the 'aliasing' station.

The alternative stations are the 'aliased' stations. When a user enters or exits through an

aliased station that results in a longer trip (and therefore more expensive fare) than had the

aliasing station been used, Oyster gives him the benefit of the doubt and charges him the

original lower fare.

3.9 Motivationsfor a Fare Structure

3.9.1 Motivation vis a vis Oyster

A large part of TfL's fare description is already implemented in Oyster. In fact, many of the issues

discussed above would no doubt have been considered at length during the development of Oyster.

This fact appears to stand in awkward juxtaposition with our search for a fare structure. One would

not be unreasonable to question why we are attempting to reinvent the wheel, and what motivates us

to explain something that has already been implemented in Oyster.

We will preface our answer with a clarification of what we are not doing.

This is not an investigation of just Oyster. Oyster only implements a subset of TfL's fare description.

We seek to define a fare structure which accounts holistically for all fares supported by TTL. Other

than Oyster, there are also magnetic stripe cash singles and Travelcards.

This is not an attempt to faithfully document the implementation of Oyster. While we do try to

understand and document how Oyster works, as well as its limitations, ours is primarily an effort to

develop a foundation of assumptions for a contactless bankcard fare engine. Structures proposed may

differ markedly from how Oyster operates. In many cases we have not been able to gather sufficient

information about how certain aspects Oyster works to be able to claim a basis on it. In these cases,

new interpretations, structures and methods have been created.

Finally, this is not black-box reverse engineering. We are not attempting to replicate the functionality

of Oyster without reference. Despite some missing elements, there is access to a degree of internal

technical documentation for Oyster. For example, the content and organization of data storage on the

Oyster smartcard card is known. When it makes sense, what is known about Oyster is actively

referenced and incorporated into the fare structure we propose.

This chapter draws on TfL's institutional knowledge about Oyster, as well as the Oyster Card Travel

Analyzer (OCTA), the agency's own internal reverse-engineered version of Oyster. Ultimately,

instead of being in conflict with our own development of a fare structure, Oyster's existence provides

us with an additional motivation - to produce as a side product a concise summary of a system which

is immensely complex and for which comprehensive documentation is not readily available.

3.9.2 The User Experience Motivation

A coherent fare structure can assist users in determining which cash single (should they want one), or

period ticket to purchase, by helping them narrow down their choices in a systematic manner. One

venue where this can be done is the design of selection screens on a ticket vending machine. Another

potential application is the TfL website. A systematic and consistent framework can help guide users

in purchasing the correct period ticket product based on their needs and the characteristics of their

travel.

The large array of fare and ticket offerings can be confusing for new users of the TfL system (and

even some frequent users). The current fare description is difficult to articulate at the point of sale,

whether at a ticket vending machine or the ticket window. A more structured framework may assist

in the future evolution of the fare system.

3.9.3 The Next Generation Fare Engine Motivation

A fare engine can, if desired by TfL, remove the entire burden of product (fare and ticket) choice

from the user. With the computational power available on a central server, and with good algorithm

design and implementation, it appears possible to offer the traveler the best value across all available

ticket options. Understanding the fare structure is the first step in enabling this level of automation.

4 Fare Engine Requirements

In this section we describe the scope and requirements for our fare engine for TfL. Requirements are

separated into two categories, general requirements and prototype requirements. General

requirements represent requirements and features that would allow for maximum flexibility in a

production fare engine.

On the other hand prototype requirements represent a limited scope which is suitable for a

demonstration prototype. These are a subset of the general requirements and take into account the

time and resource constraints in building a prototype.

4.1 Travel Services

The fare engine will provide users with the following general travel services

1. One-card passage through system - Users should be able to use the same contactless

bankcard for passage through the entire TfL network, by means of tapping the bankcard on

gates or validators encountered along the way. Upon the completion of a journey, a fare will

be computed and posted to the account associated with the bankcard. Fare will be aggregated

and the bankcard will be charged in due course.

2. Direct interaction with gates and validators - Users should be able to interact directly with

station fixtures which they encounter in the course of their journey, such as gates and

validators. Users should not be required to purchase any other fare instrument with their

contactless bankcard, or be asked to initialize their travel at a kiosk or similar machine.

3. Intuitive interaction at stations and aboard vehicles - Users should be able to complete a

journey legally by interacting with devices found along the quickest or any common sense

path through a station or vehicle. Users should not be required to undertake any critical

transactions which are non-intuitive, easy to forget or require a detour, the omission of which

would result in the levying of a penalty fare.

4.2 Product Spheres

The fare engine should support single fare products as described in section 3.4. These are products

which allow users to pay for their travel through the TfL system on a trip-by-trip basis.

The fare engine should support periodproducts as described in section 3.5. These are products which

allow users travel on an unlimited basis through the TfL system within the constraints of the period

product.

4.3 Fare Media

The fare engine should accommodate only contactless bankcards on the TfL network. While Oyster

and magnetic stripe fare media are expected to remain in concurrent use with contactless bankcards,

they will be supported via parallel and independent fare collection systems.

4.4 User Identification

Users are identified by unique user account numbers. If a new, previously unseen contactless

bankcard is presented to the system, a new user account linked to this card may be created. User

accounts may be associated with one or more contactless bankcard number. Account numbers may

correspond with bankcard numbers or be separately generated.

The contactless bankcards associated with each account may be changed by the user. The fare engine

may safely assume that only one bankcard is presented unambiguously at a time. If multiple

bankcards are presented to the reader simultaneously, RFID anti-collision standards will cause the

transaction to be rejected.

4.5 Modes Supported

There are two general classes of modes. Station Based and On-board. Station-based modes involve

travel between geographically defined stations. Station based journeys have a well defined origin and

destination. On-board modes are modes where validators are installed aboard vehicles. An on-board

journey is identified by service number.

General Requirements Prototype Requirements

Station Based Station Based

* Underground * Underground

* Overground * Overground

* DLR * DLR

* National Rail

* River Boats On-Board

On-Board * Buses

* Buses

* Trams (Tramlink)

4.6 Single Products

4.6.1 Fare Calculation

General Requirements Prototype Requirements

Station Based Station Based

The calculation of fare for a given journey may Fares are computed in terms of the zonal reach of

be based upon any fare calculation logic module the journey path (Zonal fares) and a zonal fare

which satisfies a standardized interface. Such a matrix. The fare engine supports the TfL fare

model will use the origin and destination (OD) as zone system as described in sections 3.4.2.1.

well as any intermediate validation signature

available (see 4.8.5 below). Such a module Fares from a given origin station to a given

destination station are calculated on the basis ofshould be deployable on a plug-and-play basis.
the inner most and outer most zone traversed

Fares may be computed based on some arbitrary following a predetermined 'most likely case'

fare function (Non-zonal fares) of the OD and path as described in section 3.4.2.2. Any IV

intermediate validation (IV) signature. signature given will be taken into account.

Fares may be computed in terms of the zones

travelled of the journey path (zonal fares) and a

zona fae marix On-oar

The fare engine should support the TfL fare zone

system as described in sections 3.4.2.1.

Concentric zones are defined centered around

central London. Stations may either reside fully

within one zone or straddle two zones. Border

stations may be assigned to whichever zone

results in the lower fare for the journey.

Zonal fare special cases as described in section

3.4.2.3 should be supported.

Fares may be computed in terms of both zonal

and arbitrary (non-zonal) contributions.

On-Board

Fares are generally calculated on a fixed rate

basis depending on the service used.

Fares may be calculated with an optional

dependence on the boarding and alighting

location data. (e.g. distance of travel, zones

spanned)

Where location data is used, an arbitrary fare

matrix or calculation regime may be deployed on

a plug-and-play basis.

Fares are calculated on a fixed rate basis. The

same bus fare is charged for all bus journeys.

4.6.2 Time Bands

We define time bands to be labels that are associated with their own fare brackets. E.g. Peak, Off-

peak, Late-night, Weekend, etc. Time bands determine what fare a journey should incur based on

when it took place. An arbitrary number of time bands is supported by the fare engine.

zonal fare matrix. On-Board

Time band intervals are intervals of time for which a given time band applies for that OD pair. Time

band intervals may be defined differently for each OD pair or in general for all journeys.

We define timeline as an unbounded, non repeating time axis.

We define complete operational coverage to mean that every time instance along the timeline during

which the system is operating must be assigned to one and only one time band.

General Requirements

For each OD pair, the timeline must be given

complete operation coverage by mutually

exclusive time band intervals.

Time band intervals may have a pattern that

recurs on a daily cycle basis (e.g. 7-9am every

weekday), a weekly cycle (e.g. weekdays and

weekends) or they may be non-repeating and

arbitrarily defined (e.g. irregular bank holidays

which occur at different times each year).

Time band intervals for different OD pairs may

be distilled down to a finite number of time band

patterns. For example, 'inbound' (AM peak),

'outbound' (PM peak) or 'bidirectional' (both

peaks)

Prototype Requirements

Two time bands are supported by the fare engine,

Peak and Off-Peak.

These time bands apply to all journeys. In other

words, the time band intervals are identically

defined for ODs. These are:

Peak: 4:30am - 9:30am weekdays

Off-peak: After 9:30am weekdays and

weekends

No bank holidays implemented.

4.6.3 Discount Groups

We define discount groups to be labels that are associated with their own fare brackets. Every user

must belong to discount group fare bracket. Which discount group a user belongs to depends on his

eligibility to receive a discount. Discount group is a property of the user account and does not vary

from trip to trip.

General Requirements Prototype Requirements

The default discount group for an unrecognized The default discount group for an unrecognized

contactless bankcard number is Adult. contactless bankcard number is Adult.

An arbitrary number of independent discount * Adult

groups is supported by the fare engine. * Child

* New Deal

4.7 Journey Properties

Journeys may consist of travel on station-based modes, on-board modes, or a combination of both.

Stations may use fare gates to define fare paid area, or they may be open access, equipped with only

validators. Stations which are gated at some entrances but ungated at other entrances (relying on

validators at those entrances) are considered open access.

General Requirements

Station Based

Users must validate at both the start station and

end station by touching the contactless smartcard

on a fare gate or a validator at each station. Such

an entry-exit pair constitutes a journey and incurs

one farel3

A journey begun with a tap at a station must end

with a tap at a station. Likewise a journey ending

with a tap at a station must have begun with a tap

at a station.

All stations are equipped with functioning

validators or fare gates. Malfunctioning or

Prototype Requirements

Station Based

Same as general requirements

On-Board

User validates only at time of boarding.

Validations are associated with service

identifying data (e.g. bus route and direction)

13 Unless preempted by journey linking, see section 4.8.

disabled equipment will lead to a penalty fare

being charged.

There is no requirement for a journey begun at a

gate to end at a gate. A journey may be started at

a gate and end at a validator, or vice versa.

On-Board

User may validate at time of boarding, at the

time of alighting, or both.

Validations are associated with service

identifying data (e.g. bus route and direction)

Validations may be associated with location

identifying data (e.g. fare zone, milepost or GPS

coordinates).

4.8 Journey Linking

4.8.1 Definition of a Linked Journey

A linked journey is defined as a movement through the TfL system from an origin to a destination

represented by a single fare. A journey may involve travel on only one type of vehicle, multiple

vehicles of the same mode, or multiple vehicles of different modes.

We will outline the requirements for a journey below. Note our definition of a journey is a fare-

centric one. A journey is only considered such when the criteria below for a single fare are met. If a

user's travels incur two fares by the requirements below, they are considered two journeys regardless

of whether it is his intention or not. Conversely, consider a user who travels from A to C making a

stop at station B to meet a friend briefly. Even though the user's intention here is to make two

journeys, the fact that his travels incur only one fare by application of rules below means we consider

them to be one single journey.

4.8.2 Journey Segments

A journey segment is defined as the smallest unit of measurable travel. A journey is composed of one

or more journey segments. Note that the exact same journey may be composed of different journey

segments. For example, if a user taps in at Station A and taps out at Station C, we can deduce from

the available information that the user has travelled from A to C. However we do not know what

route he may have taken. Here the smallest unit of measurable travel is from A to C, which

incidentally also constitutes the linked journey itself. Now consider another user who travels from

Station A to C, and performs an intermediate validation (see below) at Station B. From the given

information we now know that the user has travelled from Station A to C via station B. The smallest

units of measurable travel here are trips from A to B and B to C. The linked journey is still from A to

C, however this linked journey is now composed of two journey segments, A->B and B->C.

Note also that journey segments have no immediate correlation with physical lines or vehicles. It is

incorrect to equate a journey segment with a one ride on a bus or underground railcar. To see why

this is, consider the straightforward example of a user who travelled from Putney Bridge to Vauxhall

by way of the District Line and the Victoria Line. He used two distinct underground lines and up to

three different trains for this journey. However, he only had two interactions with fare devices; he

tapped in at Putney Bridge and tapped out at Vauxhall. There are no validators on underground

platforms and no way to physically register interchanges within the underground. For this reason, the

user's entire trip is the smallest measurable block, and it constitutes one journey segment. Because he

is charged one fare for this trip, his linked journey is also coterminous with the journey segment.

4.8.3 Journey Linking Criteria

Under certain conditions the fare engine must link journey segments into linked journeys so that

users are charged one fare for the journey rather than separately for the constituent segments. These

requirements ensure that users whose journeys require multiple interchanges between modes that

each consist of a measurable journey are not disadvantaged.

The fare engine will support three journey linking scenarios: out-of-station interchanges,

intermediate validation and cross-mode interchange.

4.8.4 Out-of-station interchange (OSI)

Out-of-station interchanges allow users to change lines on the Underground (or more generally,

interchange between any two gate-line controlled station-based services) at closely located but

physically disjoint stations. As these stations are not connected, users must tap out of the first station

and tap into the second station. Without OSI this would be considered two journeys and incur two

fares. OSI allows these station pairs to serve as interchange points without a fare disadvantage

compared to purpose-built interchange stations that allow behind-fare-gate interchanges. Existing

TfL fare description regarding OSI is described in section 3.6.1.

General Requirements

The fare engine should support an arbitrary number

of OSI station pairs. OSI station pairs are ordered

pairs and are defined uni-directionally such that an

interchange from station A to B is represented

separately from an interchange from station B to A

(see section 3.6.1).

Each OSI station pair is associated with an

interchange interval within which an interchange

must be completed. Interchange intervals may differ

between OSI station pairs and between the two

opposite OSI pairs of the same two stations.

A user who taps out of the first station in an OSI pair

and taps in at the 2nd OSI station within associated

interchange interval will have made only one journey

and incur one fare.

Any number of OSI journey segments may be

chained together to form one merged journey. An

upper bound on the number of OSI journey segments

that can be merged into one journey may be set.

Prototype Requirements

Same as general requirements with no upper

bound on the number of consecutive or non-

consecutive OSI journey segments which

may be accepted into one journey.

In other words, 3 consecutive OSI's, or an

OSI followed by an intermediate validation

followed by another OSI are both acceptable

scenarios.

General

Requirements

4.8.5 Intermediate Validation

We saw in section 3.4.2.2 how path choice indirectly affects the fare by dictating the inner and outer

zones. Currently, the actual path chosen by the user cannot be known. Path choice on TfL is assigned

either manually or by algorithm on a 'most likely case' basis.

The fare engine will support National Rail services and stations. This requirement makes explicit

path choice an important consideration for two reasons. First, it may be a business requirement to

charge fares as a function of journey path rather than levy a standard 'most likely case' fare. Second,

even where fares are levied on a 'most likely case' basis, knowledge of the path chosen by each user

will allow more accurate allocation of revenue among the Train Operating Companies (TOCs).

Intermediate validation is a technique which allows users to indicate mid-journey waypoints by

means of interaction with validator devices. This allows a journey which was previously one

measurable unit of travel to be broken up into two or more measurable units of travel. Such a journey

has gone from being composed of one single journey segment to being composed multiple journey

segments.

Note that intermediate validation affects the waypoints of a journey but preserves the origin and

destination.

General Requirements

The fare engine should support intermediate

validation at stations equipped with platform

validators.

Users should be able to perform intermediate

validation by tapping on validators on the

platform or within stations as they interchange

between services.

Intermediate validation may be performed at

validators specifically installed for the purpose of

intermediate validation (e.g. within the paid area

Prototype Requirements

The fare engine should support intermediate

validation at stations equipped with platform

validators.

Users should be able to perform intermediate

validation by tapping on validators on the

platform or within stations as they interchange

between services.

Intermediate validation is performed at standard

entry-exit validators (such as at DLR stations)

Intermediate validation is optional. Users may be

of a gated station) or it may be performed at

standard entry-exit validators (such as at DLR

stations)

Intermediate validation should be optional. Users

may be charged a higher default fare for failing

to intermediate validate but should not be unduly

penalized by the application of penalty fare.

For each given OD, a list of accepted

intermediate validation stations may be specified.

If such a list is provided then only validations at

legitimate IV stations are processed, otherwise

the transaction is considered illegal.

Alternatively, as a less rigorous constraint, a

global list of intermediate stations may be

provided such that only intermediate validations

at these stations will be accepted. No

consideration is given to the OD of the wider

journey.

An upper bound on the number of intermediate

validation transactions may be imposed. This

limit may be imposed on a global basis or on the

basis of individual OD pairs.

charged a higher default fare for failing to

intermediate validate at intermediate points but

should not be unduly penalized by the

application of a penalty fare.

There is no restriction on which stations may

serve as an IV station.

There is no upper bound on the number of valid

intermediate validation points. Intermediate

validations may occur consecutively or non-

consecutively (punctuated by OSIs).

4.8.6 Cross-mode Interchange

A cross-mode interchange is an interchange involving non-rail/underground modes, for example

between station based and on-board validation modes. An example of a cross-mode interchange is a

bus-rail interchange. Although it does not strictly involve a change of mode, we will also classify

interchange between buses as a cross-mode interchange. When a cross-mode interchange is applied

the user is considered to have made one continuous journey and is charged one fare for that journey

composing of multiple bus or rail legs.

General Requirements Prototype Requirements

Bus-rail interchanges may be allowed at all

times, or restrictions may be in place such that

each station is associated with a fixed set of

services (e.g. bus lines) for which bus-rail

interchange is allowed. This means, for example,

that a user can only claim the interchange

discount if he boards a bus that is known to stop

at or near the station which he exited from.

Similarly bus-bus interchanges may be allowed

between buses at all times, or restrictions may be

in place such that for each bus line, interchange

is permitted only to a given set of intersecting

bus lines.

Bus-rail and bus-bus interchanges may be free or

may result in an interchange surcharge. The

interchange surcharge may be a fixed cost that

depends on the type of interchange only (e.g.

bus-bus or bus-rail). The interchange surcharge

may optionally be dependent on the bus line

used.

The interchange surcharge may optionally be

dependent on the boarding or alighting location

on the bus leg of the combined journey (e.g. zone

as determined by GPS coordinates, fare stage)

An interchange interval is defined. This is time

limit within which an interchange must occur in

order to qualify.

An upper bound on the number of consecutive

The fare engine defines bus-rail interchanges so

that users changing from bus to rail and vice

versa will be considered to have made one

continuous journey and be charged one fare.

No bus-bus interchange is defined or allowed.

Bus-rail interchanges incur a fixed cost with no

dependence on the bus line.

An interchange interval is defined. This is time

limit within which an interchange must occur in

order to qualify.

A limit of 1 bus-rail interchange is permitted per

linked journey. In other words, a bus journey

segment followed by an underground segment

and a second bus segment would not be a valid

linked journey. In this case the first bus journey

segment would be admitted into a linked journey

alongside the underground journey. The second

bus journey would constitute its own linked

journey and incur a single bus fare.

bus-bus and bus-rail interchanges in one journey

may be imposed. This limit may be imposed

globally.

4.9 Period Products

Period products give users unlimited use of a certain part of the system, subject to conditions

attached to the product purchased. Period products as currently available at TfL are described in

section 3.5.

TfL currently offers two types of period products - tickets and caps. The contactless bankcard fare

engine will only support tickets. The best value functionality currently fulfilled by caps will be met

using standard tickets.

General Requirements Prototype Requirements

Users may hold any number of period tickets. Users may hold only one period product at a

time.
Any number of period products could be

simultaneously applied to a journey (if Only one period ticket maybe applied to a

applicable) journey at a time.

4.9.1 Best Value

Best value is defined as a guarantee to users that they will not be charged more in single fares than it

would have cost them to purchase the most cost-effective period ticket for their usage scenario.

General Requirements Prototype Requirements

Best value should be an option for all period Best value is implemented only for daily tickets.

products.

4.9.2 Modes

General Requirements Prototype Requirements

The fare engine should support tickets for all

station-based modes and on-board validation

modes for which single fares are supported.

The fare engine should

to any individual mode

combination of modes.

support tickets that apply

as well as any

The fare engine should fall back to single fares

when the product held is not valid for the mode

the user is attempting to use. E.g. user holding a

bus-only period ticket tapping in at an

underground station.

Where it is not possible to unambiguously

identify the mode being used from information

provided by contactless bankcard transactions,

the fare engine should assume eligibility and

leave enforcement to fare inspection. E.g. User

with a (hypothetical) DLR only ticket tapping in

at a shared underground/DLR station.

The prototype will focus on tickets for TfL

station-based modes only. Specifically, LUL and

DLR.

4.9.3 Time bands

General Requirements Prototype Requirements

A ticket may exist for any number of arbitrarily Same as current TfL period product time bands.

defined time bands. These time bands do not * Peak: 4:30am - 9:30am weekdays

have to be the same as single product bands. * Off-peak: After 9:30am weekdays and

weekends

4.9.4 Discount Groups

General Requirements Prototype Requirements

Tickets should be available for any arbitrary Tickets support the same discount groups as

number of discount groups, including custom supported by single fares.

group fares. * Adult

* Child

* New Deal

4.9.5 Zonal Validity

The notion of zonal validity in period products is discussed in section 3.5.2. To review, the user is

granted unlimited travel within the zonal validity of a ticket he holds.

General Requirements Prototype Requirements

Any number of fare zones and the full The 8 zonal validities defined in the current TL

combinatorial set of zonal validities, fare structure for zones 1-6.

* Zone 1-2

* Zone 1-3

* Zone 1-4

* Zone 1-5

* Zone 1-6

* Zone 2

* Zone 2-3

* Zone 2-6

4.10 Other Services

As a detailed security analysis lies outside the scope of this thesis, we will stop at restating the more

important measures currently found in Oyster. These services are described in section 3.8.

General Requirements Prototype Requirements

* Incomplete Journeys * Incomplete Journeys

o Unfinished Journeys o Unfinished Journeys

o Unstarted Journeys o Unstarted Journeys

* Passback * Maximum Trip Length

* Continuation Rail Exit

* Maximum Trip Length

* U-Turn Rail Journey

* Automatic resolution of incomplete

journeys

o Auto Continuation

o Auto Completion

* Aliasing

5 TfL Future Ticketing Architecture

Figure 5.1 highlights the high-level design of the fare engine proposed in this thesis, and its role

within the context of TfL's contactless bankcard fare collection ("Future Ticketing") system. The

architecture of the fare collection system as a whole is under ongoing development by TfL's Future

Ticketing group and the representation shown below is a only a general, conceptual representation of

TfL's plans.

Figure 5.1 Fare Engine System Diagram

As a detailed description of the unified fare collection-bankcard payment processing system lies

outside of the scope of this thesis, the components of Figure 5.1 outside of thefare engine box will

only be cursorily examined.

This system can be divided into the financial entities, customer interfaces and internal subsystems.

* Financial Entities - These are organizations, networks or instruments external to TfL which

are involved in the payment processing. One of the major motivations for the adoption of

contactless bankcards is to insulate TfL from the cash handling and financial services it must

currently provide to support the Oyster system.

* Customer Interfaces - These are customer facing aspects of the system that form a gateway

between what the user (rider) sees and the internal complexity of the underlying system. If

we apply the model-view-controller (MVC) framework to our fare collection system, these

customer interfaces constitute the 'view' of the system. This view consists of both physical

infrastructure (e.g. gates, validators and kiosks) as well as services such as a website or ticket

booth agents. Customer interfaces are distinguished from internal aspects of the system in

being a presentation layer, that is, they do not themselves implement any business logic or

processes.

* Business Subsystems - These are the internal components of a fare collection system which

are not visible to the user. Within the MVC framework, these constitute the 'models' and

'controllers' of the fare collection system. Specifically, the models consist of account

information stored in the account manager and journey history stored in the transaction

database of the billing engine, while the controllers consist of the business logic inside the

engines and managers that describe fare processes. Note that this is a logical division only,

and not necessarily a representation physical implementation. A business subsystem could

take the form of multiple physical servers. It could be comprised of different pieces of

software operating on the same machine, or multiple components of one software application.

Parts of a subsystem may even be delegated to devices in-field.

5.1 Financial Entities

5.1.1 Contactless Bankcard

A contactless bankcard is a standardized bank card taking the form of an RFID smartcard.

Contactless bankcards are now supported by international electronic payment networks such as Visa

(PayWave), Mastercard (PayPass), and American Express (ExpressPay). Within North America,

contactless bankcards provide a direct replacement for the de-facto standard of magnetic stripe credit

and debit cards. Within continental Europe and the UK, where EMV (Chip and Pin) bank cards are

universally adopted, contactless bankcards will function within the security framework and

restrictions of the EMV standards. A more detailed discussion is found in section 1.2.

5.1.2 Merchant Acquirer

The merchant acquirer is a vendor which acts as an agent to the bankcard network for the merchant

(in this case, TfL) and takes care of converting bankcard transactions into monetary payment. From

TfL's perspective, sales are transmitted to the merchant acquirer on a periodic basis, and funds are

deposited for those transactions into TfL's bank account. The merchant acquirer also handles the

verification of cards and authorization of purchases. Bankcard transactions are discussed in section

1.2.4.

5.1.3 Card Issuer

This is the bank or other financial institution underwriting the contactless bankcard. Issuers have no

direct relationship with the merchant (TfL), except as a possible source of risk management data.

5.2 Customer Interfaces

5.2.1 Point of service

This encompasses all physical infrastructure which directly interacts with contactless bankcards, such

as fare gates and validators. In retail terms, such devices are also referred to as point of sale (POS)

devices. A fare gate is a mechanical barrier taking the form of a turnstile or pneumatic or

electromechanical paddles which permits passage of individual passengers only when presented with

acceptable authentication/authorization, such as a valid ticket, stored value smart card or contactless

bankcard. A validator, in contrast, allows for the validation of tickets or smart cards without the

ability to deny access. Note that a reader refers to the pad-shaped electronic sensor that

communicates with the bank card, and is found on both fare gates and validators. In particular, a

smartcard reader is distinguished from a fare validator in that the reader is only one component of the

validator, which also contains other systems for communications, card validation and visual and aural

feedback, etc.

5.2.2 Website/Kiosk

Under future ticketing, user information kiosks at stations will replace the classes of fare vending

devices currently known as ticket vending machines (TVM) and multi-fare machines (MFM). Users

will be able to purchase period products and inspect the past usage of their account as well as

estimated and final charges.

This functionality will also be available on a website which users can access at their own leisure. In

fact, station kiosks, the card management website and the internal customer relationship management

system can be driven by variations of the same software.

5.3 Internal Subsystems

5.3.1 Device Manager

The role of the device manager is as follows.

1. To collect and pre-process taps - Gates and validators at fixed stations may communicate

with the fare collection center using a combination of dedicated copper and fiber links as well

as public IP networks, while vehicle mounted validators may use a combination of wireless

communications such as 3G or GPRS and manual transfer at depots using data keys. Even

over the same type of physical network, data from stations may be transmitted using a variety

of data protocols and formats depending on the equipment used. Furthermore devices may

communicate as a solitary unit or through a station-based intermediate server which bundles

transactions from all gates and validators at the station.

2. To provide a uniform interface to other services - The device manager insulates the fare

engine from having to deal with the different physical implementations of station equipment

and station-center communications. To do so device manager provides a normalized feed of

bankcard interactions (taps) through an application programming interface (API). By

communicating with the account manager, taps can be defined in terms of user accounts

rather than raw bankcard numbers.

3. To configure and maintain gates and validators - The device manager distributes

firmware upgrades to in-field devices. Configuration and settings can be uploaded from a

centralized location. The implementation of certain business functions, such as hotlists or

blacklist may be delegated to individual validators and gates, and the updates to these

functions may also be dispensed through the device manager. The device manager monitors

the health of readers, and possibly gates, fare boxes and validators, reporting alarms and

failures to a central monitoring system.

5.3.2 Risk Manager

The risk manager is responsible for maintaining the integrity of the fare collection system by

restricting the acceptance of high-risk bankcards. It implements a deny list through information

collected from a wealth of sources. These may include the billing engine (representing cards which

TfL has had difficulty obtaining authorization for in its own experience) as well as higher level

'known fraudulent' card lists obtained from the merchant acquirer, the bankcard networks, or from

individual issuing banks themselves.

5.3.3 Account Manager

User Acct# 1234
Registered Bank Cards:
Card A (Visa)
Card B (Mastercard) - payment candidate

User touches reader

User touches reader
on fare gate with

End of day

Entry

Billing Exit
Engine

£9.10- J £ 9.10
Billing Merchant Bank Acct.
Engine Acquirer B

Figure 5.2 - Multiple bankcards associated with the same user account.

Conversely, the risk manager may hasten the processing of known reliable bankcards by compiling

an 'accept list' of trusted cards based on user pre-registration and individual account histories. The

100

User touches
reader

exact scope and capabilities of the risk manager remains under development and negotiation by TfL

with its vendors and financial stakeholders.

The account manager is responsible for maintaining user accounts. This includes the creation, editing

and deletion of accounts. An example of sophisticated capabilities that an account manager can

provide, beyond basic account management, is shown in Figure 5.2.

By permitting the assignment of multiple bankcards to one user account, the transactions as shown in

Figure 5.2 become possible. Here, the user enters the system by tapping on the gate with bank card

A, and leaves the system by tapping out with bank card B. However because taps are pre-processed

in consultation with the account manager, only the account number is presented to the fare engine.

This enables an otherwise invalid transaction sequence involving two different bankcards to be

accepted and processed. At the end of the day, billing engine charges the final amount incurred to the

appointed payment candidate, in this case Card B.

5.3.4 Billing Engine

The contactless bankcard purchase process involves the following steps:

1. Authentication - This occurs between the contactless bank card and the reader at the time a

bankcard is presented and does not involve either the Merchant Acquirer or the Billing

Engine. This option is available only for European (EMV) contactless bankcards. In North

America, in the absence of EMV, authentication is done online by querying an acquirer or

bank card association server and is usually considered part of the authorization process.

2. Authorization - Contactless bank cards which cannot be authenticated (such as the North

American variety) or for which authentication has been temporarily disabled (EMV cards

which have seen sustained use in contactless mode) require authorization. This process is

performed against the merchant acquirer. During authorization the validity of the bank card

and the availability of funds are assured and a given amount may be set aside for a future

transaction, without the amount being charged. Authorization is a contract for payment up to

the amount authorized for, although the eventual sale does not have to utilize the full amount.

101

3. Aggregation - Billing items may be aggregated over a day, or even many days resulting in a

larger amount which is charged as one single purchase. Depending on contractual terms this

could result in lower processing fees for TfL.

4. Capture and Settlement - The capture and settlement process also occurs between the

billing engine and the merchant acquirer. Final sale amounts are transmitted to the merchant

acquirer in exchange for funds being deposited in TfL's bank accounts.

The role of the billing engine is to buffer and aggregate 'billing items' until settlement with the

merchant acquirer can occur. The billing engine acts as the fare engine's exclusive interface to

Merchant Acquirer, who, in turn, acts on TfL's behalf in transacting with the bankcard payment

networks.

The fare engine will notify the billing engine of each billing item as soon as it becomes known.

Immediate authorization for these items may be necessary depending on circumstances as dictated by

transaction rules. At other times, billing items may be left to sit in the billing engine until they are

authorized in a batch prior to settlement. Regardless of whether billing items have been authorized

they should be available to users and staff for viewing immediately after being received by the billing

history. Entries in the transaction database of the billing engine is what the user sees when he looks

up his journey history on a website or at a kiosk.

5.3.5 Fare Engine

The role of the fare engine is to convert bank card-reader interactions in the form of 'taps' collected

from throughout the system into 'billing items' which can be charged to a user account. The fare

engine obtains its input taps from the device manager. The fare engine is informed of the ticket

holding status of a user either through querying the account manager or through a publish-and-

subscribe interface where the account manager posts or notifies the fare engine of account status,
rather than requiring a query each time. Once a fare has been computed, a billing item is generated

and dispatched to the billing manager in a 'charge-and-forget' operation. This means that as far as the

fare engine is concerned, a journey has been 'paid for' as soon as it is sent to the billing engine. It

does not matter to the fare engine how long it takes before the billing item is formally authorized,

charged or settled.

102

6 Fare Engine Design

The design and development of the fare engine is the main thrust of this thesis and will be elaborated

to greater detail in the sections below.

6.1 Design Criteria

This is a reiteration of the main design requirements and criteria for the contactless bankcard fare

engine.

1. Input in the form of 'taps'. Each tap contains information such as the identification of the

user (through his bank card and the account manager) and the circumstances of the

transaction (e.g. timestamp, location, direction).

2. Output in the form of 'Billing Items' consisting of a pound amount to be charged to the

user's account and a description of the charges.

3. Support for directional zonal fares and route-dependent zonal fare calculation, possibly

varying by time, as well as flat fares, possibly varying by time. Support for period passes of

varying lengths, with possible time restrictions. Support for best value calculations.

4. Support for trip linking, including intermediate validation, out-of-station interchanges and

cross-mode interchanges.

5. Efficient, real-time conversion of taps to billing items while allowing for out-of-sequence

arrival and reinterpretation of taps

6.2 Fare Engine Organization

With reference to the bottom of Figure 5.2, the fare engine can be broken down into two sub-

components.

Journey Processor - The journey processor converts taps into linked journeys in a manner

consistent with zonal and journey linking rules, without consideration of any fare or ticketing

aspects.

103

Fare Processor - The fare processor assigns a fare for a given journey on the basis of

applicable fare and ticketing rules.

Tap Linked
Journey

Fe

Billing
Item

Figure 6.1 - Fare engine data flow.

Subcomponents are organized as black boxes such that the internal operation of the journey

processor is invisible to fare processor, and vice versa. To complete this encapsulation, data is

exchanged between subsystems in a self-contained data flow. These objects are defined below.

6.3 Fare Engine Data Flows

The fare engine has three main data flows. Each is represented by a Java object class.

* Tap - Transactions from the point of sale (stations and buses) are collected, pre-

processed and introduced to the fare engine as Tap objects. The component of the fare

engine that deals specifically with Taps is the journey processor.

* LinkedJourney - Linked journeys are the output of the journey processor and the

input of the fare processor. The LinkedJourney object represents this flow between the

two modules of the fare engine. A linked journey represents a complete and billable

unit of travel. Linked journeys are described in requirements section 4.8.1.

* BillingItem - Billing items are the output of the fare processor and of the fare engine

as a whole. This data flow conveys the final charge to be made to a user account in

response to a journey made. The Billingltem object represents this data flow.

All three fare engine data flow classes described above are immutable. This means that once created,

their contents cannot be changed. They can only be abandoned and recycled. Two layers of

protection are used to enforce the objects' immutability. First, all fields are declared final so they can

104

Joune

only be initialized at creation by the construction. Second, all fields are declared private1 4 and

accessed through accessor methods (getters).

6.3.1 Tap

Tap objects are relatively short-lived. The journey processor readily clones any Tap object it receives

into an internal representation.

Java offers multiple sizes of integer primitives, including short (16 bit), int (32 bit) and long (64 bits).

Where a data type of 'Integer' is specified in the tables below, it may be a short, regular or a long

integer, depending on need.

Field Data Type Description

UserID Integer Unique identifier of user account. Accounts may

correspond to one or more contactless bankcards. If an

unregistered bankcard is presented, the account manager

will create an account ID before the Tap is passed to the

fare engine.

TransactionTime Timestamp Timestamp of the transaction, precise to the nearest

second with respect to the local clock. Gates and

validators will have clocks which are synchronized on a

regular basis. The standard Java library has no

'Timestamp' class, and although a Date class is provided,

timestamps are most efficiently stored in Java simply as

long primitive.

LocationlD Integer Unique identifier of a transaction location. For station-

based transactions this ID will identify the station, or part

of a station where a station consists of disjoint gated

areas. For on-board transactions this will identify the bus

14 In Java, private fields are hidden from all external objects not of the same class, including subclasses.

105

TransactionType Integer

route.

Note that the transmission from the device may pinpoint

location with greater specificity (e.g. the specific gate or

validator device the transaction occurred at). However

this specific information is not visible to the fare engine.

It is removed by the device manager and mapped to

station level identification.

For station based transactions, this is a code identifying

the direction of travel through a fare gate. For undirected

validator transaction, this identifies whether the validator

is located inside the secured paid area of a station (if any)

or located in a freely accessible location.

For on-board transactions, this field may be used to

identify whether the transaction occurred at boarding or

exit. In the prototype boarding transactions are always

assumed. Current TfL operation practice provides no

mechanism for distinguishing boardings from alightings.

Values: ENTRY (entry through gate)

EXIT (exit through gate)

IPVAL (internal validator)

EPVAL (external validator)

BUS (on-board validation)

GPSLocation Location This field identifies the transaction location by means of

A VL. Location may either be GPS coordinates or a stop

ID. It is not implemented in the prototype.

Table 6.1 - Fare engine data flow - Tap.

106

r I

6.3.2 Linkedourney

The LinkedJourney object is a physical representation of a linked journey as defined in requirement

section 4.8.1. Logically, linked journeys are defined as a sequence ofjourney segments that

constitute a notional trip. LinkedJourney objects are merely a parent container for JourneySegment

objects. A LinkedJourney cannot be viewed independently of its JourneySegment children.

Field Data Type Description

UserlD Integer Unique identifier of user account. Copied

directly from UserID of Tap objects used

to create this LinkedJourney.

NodeList ArrayList<JourneySegments> This is a collection of JourneySegments

that make up this linked journey. An

ArrayList, which is a relatively efficient

implementation of dynamic list, is used to

maintain the sequence of journey

segments. ArrayList is part of the Java

collections library.

Table 6.2 - Fare engine data flow - LinkedJourney.

6.3.2.1 JourneySegment

A JoumeySegment object represents one journey segment in a linked journey. JourneySegment

objects are self-contained. In other words, they carry their own location and timestamp values as

primitives and do not reference any tap objects.

JourneySegment objects must be visible to users of LinkedJourney. Therefore JourneySegment

cannot be an inner class of LinkedJourney. However it is only intended to be instantiated from inside

the LinkedJourney class.

JourneySegment objects are immutable. Note that JourneySegment objects are exclusively owned by

their parent LinkedJourneys and not shared. Therefore there is no need to store UserID.

107

Field Name Data Type Description

StartTime Timestamp Start time of journey segment. This is the

timestamp of the first (or only) tap used in

building the journey segment.

EndTime Timestamp End time ofjourney segment. This is the

timestamp of the last tap used in building

the journey segment. Where a journey

segment is an bus segment the EndTime is

undefined.

StartLocation Integer Start location of journey segment. This is

the location of the first tap used in building

the journey segment. For a bus segment

StartLocation is a route.

EndLocation Integer End location of journey segment. This is

the location of the last tap used in building

the journey segment. For a bus segment

EndLocation is undefined.

Type Integer The JourneySegment type. Accepted

values are the constants:

* ONBOARD

* STATIONBASED

Table 6.3 - Fare engine data flow - JourneySegment (only
standalone)

referenced by LinkedJourney, not

Note that given two back-to-back JourneySegments we can easily infer the type of interchange that

links them. There is no need to store this information separately.

108

* If either one of the two journey segments is of type ONBOARD, the interchange

linking them must be a cross-mode interchange, also known as a bus-rail interchange.

* If both billing segments are STATIONBASED and the two StationLocations at the

junction (BillingSegmentl .EndLocation and BillingSegment2.StartLocation) are the

same station, then the interchange must be an intermediate validation (IV).

* If both billing segments are STATIONBASED and the two StationLocations at the

junction are not the same, the interchange must be an out-of-station interchange.

6.3.3 BillingItem

The BillingItem object represents the cost associated with a linked journey. The originating linked

journey is included with the BillingItem.

Field Data Type Description

UserID Integer Unique identifier of user account.

Copied directly from UserID of the

originating LinkedJourney.

NodeList ArrayList<JourneySegments> The NodeList and its children

JourneySegments are not modified when

a LinkedJourney is converted into a

BillingItem. The NodeList of the input

LinkedJourney is reused directly (passed

by reference to the output BillingItem.)

This eliminates the need to clone and

recreate the NodeList (an ArrayList) and

its JourneySegments.

Fare Integer Billable charge for this journey in pence.

This charge accounts for any period

tickets held by the user as well as

109

automatically assigned by the fare

processor.

RevenueAllocationCode Integer Identifies revenue allocation particulars

for this linked journey. See section 8.4.2

for a discussion of revenue allocation.

DiscountGroup Integer Code for single product discount group

that was used to determine the fare for

this billing item. The discount group of a

user account may change over time (a

student may graduate, or a former

beneficiary may lose his status). The

discount group used to calculate the

price of each specific billing item is

recorded for later auditing.

Note also that this is the single product

discount group and it may be different

from the discount group of any tickets

used in conjunction with the fare. For

example, the holder of an 18+ ticket

would incur extension fares charged at

the adult rate. The discount group of any

ticket used is folded into the TicketID

fields.

TimeBand Integer The single-product time band used for

this particular billing item.

PrePurchaseTicketID Integer If a user pre-purchased has been applied

to this linked journey to reduce or

eliminate the fare, it is identified here. If

110

no ticket has been applied for this trip,

this field takes a null value.

Recall that each period ticket is

identified by the following properties

(decision tiers). The multiplicity of each

tier in the context of the fare engine

prototype is enclosed in parentheses.

Discount Group (3)

Validity Period (5)

Zonal Validity (8)

AutoSelectTicketlD Integer If an automatically selected ticket has

been applied to this linked journey to

reduce or eliminate the fare, it is

identified here. If an automatically

selected ticket is not used, this field

takes a null value.

Table 6.4- Fare engine data flow - billing item.

6.4 Fare Engine Models

6.4.1 Oyster Card - Stateless Fare Engine

The existing Oyster smart card fare collection system can be seen as a stateless fare engine acting on

a small set of state bearing registers. A stateless system does not remember past inputs and executes

its actions depend strictly on the inputs presented to it at a given instant. In this framework, the

stateless fare engine is manifested in the gate and validator devices, while the state bearing registers

take the form of an Oyster smart card which is freely readable and writeable by gates and validators.

Note that statelessness applies with respect to the fare engine only. The fare collection system as a

whole is stateful; however state information is carried on Oyster cards which are an external input to

the fare engine. The use of discrete state variables in this way is suited to the limited storage

available on each Oyster card.

111

One consequence of the decentralized, stateless architecture of the Oyster fare engine is that

transactions are guaranteed to be processed in the order they are made. The fact that fare is calculated

and deducted directly from the smart card at the point of interaction, and that the smart card follows

the user as he travels ensure sequential synchronization between the occurrence and processing of

transactions.

This model of processing does not use a data link in real-time for the processing of normal

transactions. However a data link is needed for maintenance operations. This includes auditing of

transactions, transfer of hotlists and the distribution of firmware and data table updates.

6.4.1.1 Transaction Sequencing

In contrast, synchronization between event and processing is lost in a contactless bankcard fare

collection system. Here, bank cards are little more than an identifying token, and the fare engine has

been physically relocated from the gate/validator to a centralized site. Under these circumstances, the

time of processing is dependent on the latency and reliability of the communication link between

each site and the fare management center (FMC). Temporary outages may cause a transaction to be

delayed. By the time it arrives at the FMC, a transaction that took place after the delayed transaction

may already have arrived. This poses a challenge, as the core principle of fare computation in a fare

engine is to assemble a sequential series of taps into billable journeys. That taps are presented in

sequence is an assumption that must be met if the current Oyster journey forming methodology is to

be adopted.

One approach to maintaining the correct sequencing of transactions is to use a tracking number

physically written on the contactless bankcard which is incremented after each transaction. Gaps in

sequence numbers accompanying each incoming tap allow taps delayed in transmission to be

distinguished from those that were never made. With the knowledge of which taps have been

delayed, appropriate gaps are left in the sequential table of taps and the processing of journeys

containing gaps is delayed until the gaps are filled. This approach mirrors the mechanism currently

used to maintain the integrity of the Oyster audit database, which is a database of transactions

maintained by TfL for auditing and research purposes. However this solution is not practicable under

our assumption of no writeable registers on the contactless bankcard.

112

6.4.2 Contactless Bankcard - Batch processing

In Table 6.5, two alternatives for addressing transaction sequencing without writeable bankcards are

presented, alongside the status quo of Oyster. The simpler approach, called batch processing,

involves buffering transactions (Taps) as they arrive throughout the day in an unsorted, stream based

data store, with no further action until batched processing is initiated at the end of a day. During

batched processing, all received taps for a given user are sorted in the order of their timestamps. This

process restores the correct sequencing of any out-of-order and delayed taps. At this point, the sorted

taps can be processed sequentially using user state variables and a stateless fare engine, in the same

fashion as the Oyster fare engine. Advantages of this approach include simplicity, ability to reuse

existing logic (such as parts of the Oyster Central System), and efficiency. The average case running

time of sorting small, nearly-sorted lists items approaches linear time O(n). The chief disadvantage is

the unavailability of real-time usage information. Under a strict batch processing system there is no

way for users or TfL view charges as they accrue during the day. This limitation also precludes the

option of requesting authorization for high-value trips to limit the financial risk stemming from

fraudulent or over-limit cards.

One possible compromise to strict batch processing is to perform preliminary journey calculations

using a stateless engine based on taps as they arrive at the server, disregarding any Taps which fall

out of sequence (as evidenced by incongruent timestamps). Batch processing is then performed to

obtain final billable journeys and at this point out-of-sequence taps are reincorporated in place and

accounted for. While this approach will bring some level of real-time information to the user and

TfL, the fact that missing taps are not reincorporated until batched processing means that displaced

taps will cause erroneous information to be displayed for the remainder of the day, or longer. The

prolonged presentation of inaccurate and confusing information is undesirable. Another compromise

is to re-sort transactions and re-run the sequential stateless fare computation each time an out of order

tap is detected. Such an approach introduces additional complexity and more importantly, is clearly

inefficient as each instance of an unsorted tap would require a complete recalculation of the current

day's journeys and fares.

6.4.3 Contactless Bankcard - Dynamic Object Oriented Data Structure

In a second, significantly different approach, we dispense with the Oyster model of applying a

stateless fare engine on a limited set of user state variables. Instead, a new fare engine is designed

113

from ground up with built-in support for out-of-order transactions. All recent transactions are

retained in memory in a dynamic, object oriented data structure. As taps arrive they are dynamically

incorporated into the data structure. No notion of tap sequence is maintained; therefore out-of-

sequence taps are given the same treatment as those which arrive in sequence. Performance is

optimized for insertion of new taps as well as the detection of linked journeys.

Taps are interpreted into linked journeys in real time. As additional taps arrive (in sequence or

otherwise), this interpretation may change. This capability is accomplished by a data structure which

reconfigures itself with incoming taps to maintain consistency with tap linking and journey linking

rules defined in accordance with the fare description.

Under this regime, the fare engine maintains state in the form of a dynamic data structure of recent

trips. This structure represents the best interpretation of journeys undertaking, as derived from

information known at a particular point in time. While incorrect estimates may still be displayed to

the user as a result of delayed transactions, the dynamic data structure ensures that corrections are

posted without further delay as soon as the missing information comes to the server's knowledge.

This real time capability also provides TfL with the option of obtaining near-real time authorization

for the exact price of journeys as soon as they're completed. While this option may not be exercised

in the event that authorization for some larger amount has already been obtained at the start of a

journey (for example, authorizing the daily maximum on tap-in), it could prove useful in the case of

high-value national rail journeys, as well as cases where the pre-authorization of a larger-than-

necessary amount is objectionable on an argument of equity.

Operations on this dynamic data structure can be divided into two broad classes:

* Bottom up - Taps are inserted at the bottom of the stack reflecting real-time activity. These taps

are sequenced, and their implications for journey identification and linking are propagated

upward.

* Top down - Linked journeys are identified at the top of the stack and sent to the fare processor

for fare calculation and conversion into billing items. At the end of the day when billing items go

into settlement (and are therefore finalized), linked journeys are withdrawn from the data

structure, again from the top down. When a linked journey is removed, corresponding journey

114

segments and taps must also be extracted. This mechanism prevents the memory from being

consumed without bound.

The structure and operation of this dynamic object oriented fare engine will be explored in greater

detail in the remaining sections of thesis.

6.4.4 Comparison of Fare Engine Models

Oyster Card Contactless Bankcard Contactless Bankcard
(Batch processing) (Dynamic processing)

Processing paradigm Decentralized - Centralized - transactions transmitted to a central

transaction processed server where processing occurs.

directly at the fare gate

or validator against the

presented smart card.

Funding model Stored-value on card. Fares billed to bankcard. Funds may be

Funds topped up at authorized at the time of travel however final

user's convenience. settlement occurs in bulk at some prescribed

Maximum fare deducted interval (e.g. at the end of each day).

on entry and difference

refunded upon exit.

Card storage Smart card constitutes Contactless bankcard used only as identifying

fare instrument in and of token. No account or balance information is

itself. Monetary value is stored on card.

stored on the smartcard

(stored value) and

deducted during use.

Transaction records Limited history stored on Server stored transaction record used directly for

and trip history card. Transactions billing.

archived for auditing and

research purposes only.

115

Processing

expediency

Sequential

transaction ordering

Transaction database not

used immediately in

direct operations.

Fares are charged and

deducted immediately at

the fare gate or validator.

Users may inspect smart

card balance and recent

usage history at any time

by presenting the

smartcard at a MFM.

Sequential ordering of

transactions is required

and guaranteed as a

necessary consequence

of system design.

Decentralized fare

calculation on each

smartcard at the point of

contact ensures that

transactions are

processed in the order of

travel.

Fares are not calculated

until time of processing.

Charges and trip history

cannot be viewed until

processing has been

completed (e.g. the next

day).

Sequential ordering of

transactions is required

and is provided through

time-sorting of

transaction records

during batched

processing. In other

words, taps are numbered

sequentially before

batched processing.

Journeys and fares

are calculated in real-

time with available

information.

Tentative trip history

and charges may be

disclosed to the user

at kiosks and over the

internet, however

these may be

inaccurate and are

subject to changes

due to delayed arrival

of transactions.

Sequential ordering

not required.

Dynamic data

structure accepts and

incorporates out-of-

sequence transactions

seamlessly as they

arrive. Journey

interpretation and

charges may change

as a consequence.

116

I ,

Missing taps are closed

out on the next

transaction. Delayed but

not missing transactions

are not possible under

the decentralized model.

Delayed taps can be

collected up to time of

batched processing.

Those still not received at

the time of processing

(never made) are

declared missing.

* i t

Data link

requirements

Low integrity and

latency requirements.

Transactions transmitted

for auditing and research

purposes only.

Transaction data not

required until time of

batched processing. High

integrity and low latency

requirements.

Delayed taps are

incorporated into the

dynamic data

structure as long as

its context remains in

memory.

Delays prevent the

provision of accurate

real-time usage

information and fare

estimates. High

integrity and medium

latency requirements.

Intermediate No support Full support

validation

Out of station Yes Full flexible support

interchange

Period tickets Ticket products stored Ticket products stored on user accounts on server.

on smartcard

Consumer best value Best value implemented Automatic ticket selection provides a flexible

via capping with mechanism for merging single fares with period

limitations products.

Table 6.5 - Comparing fare engine design paradigms.

117

Missing taps

7 Journey Processor

As illustrated in Figure 5.1 and Figure 6.1, the journey processor forms the first stage of a fare

engine. This journey processor is underpinned by a three-tiered data structure motivated by the three

successive logical representations of a journey. Each tier is represented as an object class. The three

classes are:

1. Tap

2. Journey Segment

3. Linked Journey

Journey Segment takes the role of an intermediate class which isolates taps from linked journeys. In

other words, as far as taps are concerned, linked journeys do not exist, and as far as linked journeys

are concerned, taps do not exist. This vertical abstraction reduces the complex problem of producing

billable linked journeys from individual taps into two smaller, independent problems.

7.1 InternalJourney Processor Objects

Only data fields are included in the description of the three journey processor object classes below.

Class methods are described in detail in subsequent discussions.

Internal journey processor classes are visible only in the journey processor package. Owing to the

internal nature of these classes, we have elected to allow direct access of member values, rather than

formal encapsulation with getters. Immutability will be enforced only through the use of the final

keyword.

7.1.1 JPTap

The internal journey processor tap is structurally identical to the external fare engine tap as

described in section 6.3.1, with the addition of some references fields. To differentiate this internal

tap, which is not visible from outside the journey processor black box from the external tap, which is

visible outside, we will call this tap the JPTap.

11R

Field Data Type

UserID final Integer

TransactionTime final Timestamp

LocationlD final Integer

Type final Integert

LeftSegment *JPJoumeySegment 15

RightSegment *JPJoumeySegment

Next *JPTap

Prev *JPTap

Table 7.1 - JPTap data and reference fields. tFor tap types constants see sec. 7.1.1.1.

JPTap objects are linked laterally it to each other in a doubly linked list to allow traversal and the

inspection of adjacent elements. This is achieved by means of the Next and Prev references, and will

be discussed in further in section 7.4.1.

JPTap JPTap

Single Journey Shared Tap
Segment Tap

Figure 7.1 - A JPTap may be linked to one JPJourneySegment or shared amongst two

JPJourneySegments. A JPJourneySegment must link to two station-based taps.

LeftSegment and RightSegment are reverse references to the JPJourneySegments that reference a

given JPTap. LeftSegment refers to a JPJourneySegment that claims this tap as its EndTap, while

RightSegment refers to a JPJourneySegment that claims this tap as its StartTap. Either or both

LeftSegment and RightSegment may be assigned depending on whether this tap is claimed by one or

two JPJourneySegments. If a JPTap is not claimed by any JPJoumeySegment, then both fields would

be null. If a BUS tap is claimed by a JPJourneySegment, both back-references will point to the same

JPJoumeySegment.

15An asterisk predicating a data type indicates a reference to an object of the specified class.

119

Invariant 6.: If TransitionType==BUS, LeftSegment=RightSegment

The data of JPTap objects are immutable, however references may be changed.

7.1.1.1 Station Areas

Before describing the available type constants we will first establish the nomenclature of secured and

unsecured areas. Secured area refers stations and services that cannot be reached from the street

without passing through a fare gate, with some caveats. Conversely, unsecured area refers to stations

and services which users may enter freely from the street without passing through any access control

device, again with some caveats.

One of these caveats involves National Rail or DLR (NR/DLR) services which are typically ungated

but bring users directly inside the paid area of interchange stations, such as West Brompton or

Stratford. Users may arrive inside the paid area without going through a fare gate on board one of

these services. Such users are said to be injected into the secured area. Similarly, users are said to be

extracted from the secured area when they depart aboard a NR/DLR service which leaves from

within the secured area, and alight at an ungated station. For the purpose of the ongoing discussion,

NR encompasses London Overground services as well as Train Operating Company (TOC) services

for which contactless bankcard payment is accepted.

The other caveat involves stations which are partially gated. That is, some entrances to the station

have gates installed while others are ungated and equipped with validators. In this case, whether the

station (and corresponding service) is gated or not varies for each user and depends on his or her

method of access.

7.1.1.2 Tap Types

ENTRY and EXIT

These are taps at a fare gate. Tap type is either ENTRY or EXIT depending on the direction of

passage through the gate. Fare gates are installed in a fixed physical configuration and therefore

gate passages can always be assigned a direction.

16 An invariant is a condition which must hold true as an inherent consequence of the system design.

Invariants may be asserted in code as an automatic mechanism to detect programming errors.

120

ENTRY and EXIT taps are terminal taps because they must be at either end of a linked journey.

EPVAL

EPVAL stands for external validator. These are undirected validator devices located outside of

the secured area. Differentiating between whether a validator is located within or outside of the

secured area provides us with an additional means of filtering out invalid journey segments. For

example, an IPVAL followed by an ENTRY tap cannot constitute a valid journey segment.

EPVAL is a dual use tap as it can start or end a linked journey, as well as be used in the middle

of one (for intermediate validation).

IPVAL

IPVAL stands for internal validator. These are undirected validator devices located within the

secured area. IPVAL is an interior tap as it must occur in the middle of a linked journey (not the

beginning or end)

An important point to note regarding IPVALs is that they are provided primarily for users that

enter the system from National Rail holding a paper ticket. Such users emerge inside the secured

area without having had any interaction at all with the fare collection system. It is therefore

mandatory for them indicate their presence on an IPVAL.

On the other hand, IPVAL usage is optional for users who arrive on NR services having

previously validated at an EPVAL. This is in contrast to the Oyster indications for validator

usage, which stipulates that all trips begun at a validator must be ended at an validator.

* Oyster - Westferry (EPVAL) -- Putney Bridge (EXIT) is an invalid trip. A valid trip going

from Westferry to Putney bridge would be: Westferry (EPVAL) - Bank(IPVAL) -+ Putney

Bridge (EXIT)

* Contactless Bankcard - Westferry (EPVAL) -> Putney Bridge (EXIT) is a valid journey

segment. The interchange at Bank is implied and does not need to be indicated explicitly.

Although not required for pre-validated trips where the user is injected from an ungated station

into a gated station by a NR/DLR service, the fare engine will not be confused by an extraneous

121

IPVAL validation. An IPVAL validation under these circumstances would be treated as an

intermediate validation, resulting in two journey segments being produced.

BUS (On-board)

BUS taps take place on bus mounted validators. As a form of on-board validation, these taps

have special properties:

1. BUS taps have a one-to-one correspondence with journey segments. They cannot be shared

across journey segments and nor can a journey segment accommodate any other tap once it is

associated with a BUS tap.

2. The location property refers to a route identifier and not a station.

7.1.2 JPJourneySegment

Journey segments, as defined in requirement section 4.8.2, represent the smallest measurable unit of

travel. Journey segments do not duplicate any data, but rather contain references to JPTap objects.

Maintaining consistency of notation we will call this class JPJourneySegment. For a

JPJourneySegment to exist both StartTap and EndTap must be assigned.

Field Data Type

StartTap final *JPTap

EndTap final *JPTap

ParentLinkedJourney *JPLinkedJourney

Table 7.2 - JPJourneySegment data and reference fields.

Invariants: StartTap !.= NULL AND EndTap !.= NULL AND ParentLinkedJourney !.= NULL

The StartTap and EndTap references cannot be changed after initialization. Note that all three fields

must take on non-null values.

ParentLinkedJourney is a reference to the JPLinkedJourney that has claimed this JPJourneySegment.

ParentLinkedJourney must be non-null because every JPJourneySegment must be claimed by one

and only one JPLinkedJourney.

122

7.1.3 JPLinkedJourney

While external fare engine linked journeys 17 always represent billable units of travel, the same is not

true for the internal journey processor version. The internal linked journey is a top-level unit of travel

which is subject to lateral merging. They are potentially, but not always billable entities. To

distinguish internal linked journeys from external linked journeys we will call this class

JPLinkedJourney. For a JPLinkedJourney to exist both StartSegment and EndSegment must be

assigned.

Field Data Type

StartSegment *JPJoumeySegment

EndSegment *JPJoumeySegment

Posted Boolean

Fare Integer

Table 7.3 - JPLinkediourney data and reference fields

Invariant: StartSegment ! = NULL AND EndSegment ! = NULL

JPLinkedJourney can, and often will contain only one JPJourneySegment. In an JPLinkedJourney

that contains multiple JPJourneySegments, references are maintained only to the first and last

JPJoumeySegments in the chain.

Within this prototype there is no upper bound on the number of station-based journey segments in

each linked journey. In the general model our structure allows for multiple on-board validation

segments. However, the logic to implement bus-bus interchange while preventing abuse could

become complex. Therefore we have imposed a maximum of only one on-board validation journey

segment in the prototype and it must either be the first or last journey segment within the linked

journey.

The Posted flag indicates whether the linked journey has been sent to the fare processor for pricing

and billing. The Fare field is the billed fare in pence.

123

17 See section 6.3.2.

7.1.4 Example configurations

Figure 7.2 - Two 'standard' unlinked underground trips, e.g. trip to work in the morning and to return

home in the evening. ENTRY and EXIT are JPTap objects.

We will illustrate the relationship between journey processor objects using a series of examples. In

Figure 7.2, note that all of the JPTaps are claimed by only one JPJourneySegment. Which of a JPTap

object's LeftSegment or RightSegment is filled depends on whether a tap is a StartTap or an EndTap.

In this case, LeftSegment is unused in an ENTRY JPTap, while RightSegment is unused in an EXIT

JPTap.

The following four examples show a JPLinkedJourney associated with multiple JPJourneySegments.

ENTRY T ENTRY* ENTRY IPVAL I EXIT

Figure 7.3 (left) - Configuration representing an instance of out-of-station interchange. * = Tap at OSI

station. (right) - Configuration representing standard gate entry and exit with an intermediate

validation at an internal validator.

Figure 7.3 (left) shows an intermediate validation. In Figure 7.3 (right) observe that validator taps

(IPVAL and EPVAL) may have both LeftSegment and RightSegment occupied.

Figure 7.4 illustrates a composite journey representing a DLR journey followed by validation at Bank

(by means of an internal validator), and an OSI before a final station exit. In particular, note the uni-

directional pointer from the center JPJourneySegment to the JPLinkedJourney. Although each

124

JPJoumeySegment has a pointer to the JPLinkedJourney to which it is claimed by, JPLinkedJourneys

reference only the initial and final JPJourneySegments in the chain.

Westferry Bank Paddington Paddington
(H&C)

Figure 7.4 - A composite example. * = Tap at OSI station

White City

The reason we only keep the first and last segment in each linked journey is to avoid the need for a

dynamic list container, such an ArrayList in order to keep track of the journey segments. Remember

that linked journeys may have any number of segments. There is no convincing case for such a list.

The only time we would need to examine a linked journey systematically is to dispatch it for delivery

(conversion into an external LinkedJourney object). When we do so we would simply iterate through

the journey segments sequentially by means of an adjacent operator (see 7.5.1.1).

Figure 7.5 - A cross-mode (bus-rail) interchange.

Note that a bus JPJourneySegment consists of only one BUS JPTap and that both its StartTap and

EndTap point to the same BUS JPTap. Conversely, both LeftSegment and RightSegment of a BUS

JPTap point toward the JPJourneySegment that claims the Tap.

For sake of brevity, in subsequent discussion within this chapter we will assume the journey

processor is our namespace. The JP prefix will be omitted and we will refer to JPTaps,

125

JPJourneySegments and JPLinkedJourneys as taps, journey segments and linked

journeysrespectively.

7.2 User Management

An instance of the data structure described above in section 7.1 is created for each unique user. A
JPUser object is the gateway to each user's own data structure, and allows his journey history to be
manipulated independently of anyone else's. The JPUserManager object acts as a switchboard to
direct Taps to the correct JPUser by means of a lookup mechanism. In the prototype implementation,
a hashtable can be used to perform this lookup.

JPTap inserted into
Suser structure

Tail

Tap
(fare engine

level) JPUserD

Manager

Hashtable

Figure 7.6 - User management in the journey processor.

7.2.1 Implications for Load Balancing

We noted previously that each user's data structure can be manipulated independently. This property

provides a natural opening for load balancing. In load balancing we seek to equitably distribute the

burden of fare processing (in terms of both memory requirements and CPU time) over two or more

servers.

126

Within our architecture, this can be accomplished by maintaining one instance of the fare engine with

its own journey processor on each processing server. A load balancing server assigns taps to the

correct processing server based on the User ID of the tap and some arbitrary load balancing heuristic.

The only requirement for this heuristic is that taps belonging to the same user must be load balanced

to the same server consistently. Such a heuristic should account for differences in usage level

between users. For example, a frequently used account with many trips in one day will be associated

with a larger data structure, and therefore consume more memory than a seldom used account.

Treating these two accounts equivalently would create an imbalanced load.

7.3 Journey Processor Workflow

The diagram below illustrates the workflow of the journey processor; this is the sequence of events

that happen starting from the time a tap is inserted into the data structure. It shows the propagation of

method calls up through the three layers. This process allows the insertion of a simple tap to cascade

into a complete reconfiguration of linked journeys. Arrows represent method calls. Dashed arrows

leading from object methods to static methods denote sequence of execution. For example,

segmentCreatedo is called after a new journey segment object is created, when the

JourneySegmento constructor returns. Note that no destroyTapo methods exists as Taps cannot be

destroyed in the context ofjourney linking. Taps are removed by the cleanup process, which is not

shown here.

A notable feature is the use of static functions 18 to execute logic leading to the creation and

destruction of objects (linking logic) at both the journey segment and linked journey levels. We

clearly cannot express such logic inside methods of the objects affected, as those objects need to

themselves be created first. Linking logic must be implemented in a context external to the objects

being affected.

One possibility is to define linking logic within methods of the triggering objects. For example, the

logic for creating linked journeys could be defined within JourneySegmento and destroySegment(),

rather than in segmentCreatedo and segmentDestroyedo as shown. However this approach puts

18 A static function, or static method is a function which is not tied to any specific instance of the class it belongs to

and can be executed without an object instance first being created.

127

business logic pertaining to the control of linked journeys within a journey segment. This breaks the

principle of encapsulation and results in fragmented code which would be difficult to maintain.

Linked
Journeys

Journey
Segments

Taps

Object
operators

Static linking
control

Existence
control

Figure 7.7 - Journey processor workflow.

Static functions provide the solution to this problem. Static functions are well suited for linking logic

because they execute independently of data objects which they manipulate. In our particular

implementation, these static functions are implemented as methods of singleton classes. The

singleton pattern is an object creation design pattern described by Gamma et al. [18]. Use of

singleton classes eases the plug-and-play replacement of critical linking logic and reserves flexibility

for access control in future multi-threaded design compared to the use of static class methods.

128

7.4 Tap Operations

In Java and other common object oriented languages, objects cannot be intentionally destroyed on

demand. We can only remove all handles to an object so that the garbage collector' 9 will detect it as a

redundant object and remove it. In light of this, taps, journey segments and linked journeys have

destructor methods which perform the manipulations necessary to correctly detach the concerned

object.

Below is a schematic view of the sequence of events that follows the insertion of a tap. This diagram

is consistent with the lower part of Figure 7.7 and shows the internal operations of the taplnsertedO

method.

Propagate up

New tap object created Destroy segment segmentDestoryed()

Tap, Inseion- rnew Tap (if needed)110
Linking eligibility

Propagate up

Create journey segmentCreated
segment (if eligible)

Call to taplnserted()

Figure 7.8 - Sequence of tap operations.

Tap processing begins with the calling of insertTapo by the user manager. An external tap is

translated into the equivalent internal tap (JPTap in 7.1.1) and inserted into the correct position

within the linked list. The newly created tap object is then passed to the tapInsertedo method, which

destroys and forms journey segments in response to the new tap.

7.4.1 Tap Insertion

Taps maintain constant references to their neighbors as a mechanism for enforcing sequential

integrity and quickly determining adjacency. A doubly-linked list is used for this purpose. Such a

19 In computer science, garbage collection refers to the background process which recycles the memory space

occupied by abandoned data objects.

129

data structure permits the efficient insertion of out-of-sequence taps.

As shown in Figure 7.6, JPUser maintains a tail pointer (as well as the head pointer) to the doubly

linked list of JPTap objects. Taps are inserted into linked list at the appropriate position (as

determined by its timestamp) by walking backward from the rear of the linked list. The amortized

time complexity of this operation in practice approximates to constant time 0(1), as one would

expect the vast majority of real-world taps to arrive in order or only out of order by a few positions.

The insertion of a randomly timed out-of-order tap is of complexity O(n), where n is the number of

taps in memory for the given user.

7.4.2 Eligibility Test

The eligibility test is implemented as an instance method of tap objects - eligible(). When invoked,

eligible() tests whether the current tap could form a journey segment with the next adjacent tap in

time (tap on the right hand side). The default return value where an adjacent tap does not exist to the

right is false.

Tap linking eligibility describes the conditions which enable two station based taps to be connected

by a journey segment. The test consists of the following components, all of which must be satisfied

for the test to pass.

* Maximum Journey Segment time - The two journey segments must be separated by less

than a set period. In the prototype this period may be set at 2 hours universally.

Optional: An OD->Journey Time mapping table of journey segments customizing the

maximum journey segment time may be employed. The table can be populated arbitrarily or

using a schedule or performance based metric.

* Location - Prototype implementation has no specific limits on tap location. Any two station

based taps anywhere in the system (whether gate or validator based) can qualify for linking

given other necessary conditions are satisfied. Note that same-station entry-exit is considered

legitimate and will result in a dummy journey segment.

Optional: An OD->Eligibility mapping table ofjourney segment eligibility may be employed

130

to determine whether a given pair of taps can be linked at all (notwithstanding other

constraints). This table may be merged with the OD->Journey Time mapping table described

above.

* Sequential Adjacency - Taps must be immediately adjacent to each other in order to be

considered for linking. The doubly-linked list structure allows adjacency to be detected

rapidly. When an out-of-sequence tap is inserted into its correct place between two already-

linked taps, the adjacency relationship between those taps is broken and that journey segment

must be deconstructed.

* Syntactic Pattern - The type value of the leading and trailing taps of a journey segment must

conform to a set of predefined syntactic patterns. For example, a journey segment can be

formed from an entry tap followed by an exit tap, but not vice versa. These patterns

correspond to legitimate travel behavior through the system, and are described in greater

detail in the sections below.

7.4.2.1 Syntactic and Semantic Patterns

Journey segments can be viewed from two perspectives. A syntactic pattern is the view of a journey

segment from the perspective of the fare engine. In contrast, a semantic pattern is the view of a

journey segments from the user's perspective.

* Syntactic Pattern - A syntactic pattern is uniquely identifiable by a combination of entry

and exit tap types. This is what the journey processor sees and has the ability to differentiate

by inspecting taps.

* Semantic Pattern - The semantic pattern describes the physical travel behavior which would

result in a certain syntactic pattern being produced. Each syntactic pattern may correspond to

one or more semantic patterns. The fare engine is incapable of differentiating between

different semantic patterns which produce the same syntactic pattern.

7.4.2.2 Semantic Pattern Variability

If intermediate validation is made compulsory, in other words, any time a user passes a platform

validator he is required to perform intermediate validation, a journey segment with an ENTRY-

131

>EXIT syntactic pattern can only be produced by the following two semantic patterns (travel

behaviors):

* A single underground journey without interchanges

* Two or more underground journeys with interchanges within the secured area which cannot

be recorded.

However, in our contactless bankcard fare engine we have adopted an open policy with regard to

intermediate validations. Every intermediate validation is considered optional. Under this relaxed

condition, the same ENTRY->EXIT syntactic pattern above can be produced by numerous semantic

pattern variations. One such variation is given in the below example:

1. User enters secured area at LUL station A through fare gate (ENTRY tap).

2. User travels via LUL services I and 2 to intermediate station C changing underground lines

en route within the secured area of station B.

3. User proceeds to NR/DLR platform at station C and boards an extracting service 3 without

validating on the platform.

4. User gets off service 3 at ungated station D and boards another NR/DLR service 4, without

validating.

5. User injected into the secured area of interchange station E via service 4 and boards

extracting NR/DLR service 5. He does not validate on platform.

6. User arrives via service 5 into the secured area of interchange station F. Although service 5 is

an extracting service, because the user began in the secured area of station E and alighted in

the secured area of station F, he has not left the secured area at all. This is not considered an

extraction and reinsertion.

7. User leaves the NR/DLR platform without validating and proceeds directly the LUL

platforms of station F (all within the secured area). He boards LUL service 6.

132

8. User arrives at destination station H and exits via fare gate (EXIT tap).

Despite its complexity, this journey is visible to the fare engine as a single journey segment. Without

compulsory intermediate validation it is evidently impossible to enumerate every semantic pattern

associated with a given syntactic pattern.

7.4.2.3 Typical Semantic Patterns

In the notation used in the table below, syntactic patterns are assigned numeric identifiers while

semantic variations for each syntactic pattern are assigned an alphabetical postfix. As discussed

previously it is impractical to enumerate every possible semantic pattern. Some typical patterns are

shown.

Pattern Syntactic Pattern Semantic Pattern and Remarks TfL Example

1 ENTRY -- EXIT Standard Underground entry-exit Putney Bridge --

scenario. Travel fully within secured St James's Park

area.

2a ENTRY -- IPVAL User enters through a fare gate and Putney Bridge --

(diff. stations) validates at a validator within the paid Stratford (where user

area at a different station. This occurs proceeds to NR

when the user makes an interchange to platform behind fare

an ungated mode (NR or LUL) at a gates)

station where the ungated service is Putney Bridge -+ Bank

brought directly inside the secured
(platform validator on

area. DLR platform)

2b ENTRY -> IPVAL User enters the secured area through a Bank (gate entry) ->

(same station) gate line at interchange station A. He Bank (platform

proceeds to the NR/LUL platforms validator)

and taps on the platform internal

validator before boarding an

extracting NR/LUL service. This

creates a dummy journey within

133

interchange station A.

3a IPVAL -4- EXIT This is the converse case to 2a above. West Brompton (Mag

(diff. stations) In this scenario the user is injected stripe ticket holder

into a gated area aboard an ungated arriving on Overground

service which penetrates the security platform) -- Putney

boundary by stopping behind fare Bridge

gates.

3b IPVAL -- EXIT User is injected into the secured area Bank (platform

(same station) of an interchange station and taps on validator) -- Bank

validator at the platform before (gate exit)

proceeding to the gate exit at the same

station. This effectively creates a

dummy journey segment travelling

from and to the same station.

4a IPVAL -+ IPVAL User injected into paid area by West Brompton (arrive

ungated service A, travels to a by Overground) --

different NR/DLR interchange station (LUL) -+ Stratford

within the secured area, and extracted (depart by NR)

through security boundary by ungated West Brompton (arrive

service B without passing through by Overground) -+

either entry or exit gates. (LUL) -- Bank (depart

by DLR)

4b IPVAL - IPVAL User is extracted from the secured West Brompton (arrive

area by an ungated service, and by LUL) -+

injected into the secured area at a (Overground or NR) -

second station. The bulk of this Stratford (NR

journey segment is completed on an platforms)

ungated service.

5 EPVAL -> EPVAL User taps in at an external validator at Heron Quays --

an ungated station, travels via Westferry

134

NR/DLR to a second ungated station,

and taps out.

6 EPVAL -- IPVAL User taps at an external validator at an Westferry -* Bank

ungated station, and injected inside (platform validator)

secured area aboard a NR/DLR

service. Taps on internal validator on

platform upon arrival.

7 IPVAL - EPVAL User extracted from secured area Bank (platform

aboard a NR/DLR service, in that validator) - Westferry

process tapping at internal validator

on the platform from within the

secured area. User taps out at an

external validator at the destination.

8a EPVAL -> EXIT User taps at external validator at an Westferry -- Bank

(exit at interchange ungated station and is injected inside (gate exit)

station) paid area aboard a NR/DLR service.

User bypasses the internal validator on

platform and proceeds directly to the

gate line through which he exits the

gated area.

8b EPVAL - EXIT User taps at an external validator at Westferry -+ Bank (no

(exit not at ungated station A and is injected interaction) -+ Putney

interchange station) inside the paid area of station B Bridge (gate exit)

aboard a NR/DLR service. User then

bypasses the internal validator on

platform and proceeds to take an LUL

service to LUL station C where he

exits via the gate line.

9a ENTRY - EPVAL User enters the secured area through a Bank (gate entry) -

(entry at interchange gate line and, without tapping on a Westferry

135

station) platform internal validator, proceeds

directly onto a NR/DLR service which

extracts him from the secured area. He

taps out at an external validator at the

destination station.

9b ENTRY - EPVAL User enters the secured area through a Putney Bridge (gate

(entry not at gate line at station A, where he takes entry) -- Bank (no

interchange station) an LUL service to interchange station interaction) -*

B. There he proceeds to a NR/DLR Westferry

service located within the secured area

without any interaction with the

platform internal validator, and is

extracted by this service to ungated

destination station C, where he taps

out at a platform validator.

Table 7.4 - Common semantic patterns for acceptable journey segments.

The accepted syntactic patterns can be described in matrix form as shown in the table below. Cells

marked with a dash indicate Tap permutations which cannot form a journey segment.

- 1 2 8

- 3 4 7

-9 6 5

Table 7.5 - Matrix form of acceptable syntactic patterns. Note that an EXIT tap could never be a
leading tap and an ENTRY tap could never be a trailing tap.

136

Gate Line
Internal PVal
S (IPVal) Paid Area I

EBoundary
A External PVal B
E (EPVal)

Pattern 1: Entry->Exit
Station

LUL Rail
Service

LUL Used Rail
Service

I I

I I

t NrDLR I- A

Pattern 5: EPVaI->EPVal

- ----- 1

I LUL

LUL NR/DLR

-II

Pattern 2a: Entry->IPVal -
Pattern 2b: Entry->IPVal
(same station)

t

- - - -- - - -

Pattern 3a: IPVal->Exi
O t
z

NR/DLR

Pattern 6: EPVal->IPVal

LUL

NR/DLR I

Pattern 3b: IPVal->Exit
(same station)

-- - - - - I - - - - -

LUL

w attern 4a: IPVal->IPVal
o ecured area) 0

LUL

NR/DLR

Pattern 4b: IPVal->IPVal
(open area)

LUL NR/DLR

Pattern 7: IPVal->EPVal

A

Pattern 8a: EPVal->Exit (1)

NR/DL LUL

Figure 8b: EPVal->Exit (2)

Pattern 9a: Entry->EPVal Figure 9b: EPVal->Exit (2)

Figure 7.9 - Common semantic patterns. This diagram accompanies Table 7.4.

137

7.5 Journey Segment Operations

7.5.1 Journey Segment Operators

Journey segment operators are methods ofjourney segment objects which return a piece of
information (e.g. a true/false value or another journey segment object) based on the properties of the
child taps of the current journey segment as well as the properties of their neighbors. The purpose of
these operators is primarily to supply information to the journey segment linking control unit 20.

7.5.1.1 Adjacency

Recall that journey segments are not linked and carry no data. Operators on journey segment objects
function by querying the underlying taps. These operators are implemented as stateless methods and
are evaluated on-the-fly.

The following operators allow journey segments to detect their own neighbors and enable traversal
from one journey segment to the next. These operators utilize the linkage between the underlying
taps to find the neighbor journey segment.

* Next Journey Segment - next()

* Previous Journey Segment - prevo

Journey Journey
Segment Segment

Case A Next

ENTRY EXIT ENTRY EXIT

Case C

Journey Journey Joumey Jou
rney

Segment Ne Segment Segment Segment

case B ENTRY IPVAL EXIT ENT RY EXIT IP L ENTRY EXIT

Figure 7.10 - Journey Segment Traversal. Case C illustrates the Journey Segment Adjacency Rule.

Figure 7.10 illustrates the operation of the next() operator. Two journey segments are considered
adjacent if they a) end and start at taps that are adjacent, or b) a) share a tap. The next() operator will

20 The Journey Segment Linking Control is described in section 7.5.2.

138

not return a subsequent journey segment if c) the current segment is separated from the subsequent

journey segment by one or more taps. We will call this the Journey Segment Adjacency Rule. The

journey segment adjacency rule is important as it allows orphaned taps to break apart an existing

linked journey. This rule will be invoked again subsequent discussion.

7.5.1.2 Linking

There are three linking operators, representing the three ways that journeys linking can occur at TfL.

1. Intermediate validation at a passenger validator

2. Out-of-station interchange

3. Bus-Rail/Bus-Rail interchange

A linking operator detects whether a journey segment can be linked with its immediate subsequent

neighbor, as determined by the next() adjacency operator described in 7.5.2. Each linking operator

tests one linking condition and returns true if the journey is linkable by that reason.

If two journey segments are not adjacent (per the Journey Segment Adjacency Rule), the linking

operator returns a default value of false. Journey segment linking operators can be implemented in

the following equivalent contexts

* Parameterless object method - linkable():The operator is implemented as a method of a

journey segment object and implicitly tests for linkability against its next segment, if

found. If none is found then the default false value is returned.

* Single parameter object method - linkable(otherSegment): The operator is

implemented as a method of a journey segment object and accepts a parameter which is

the adjacent segment to test against. This operator is bidirectional will function

correctly whether otherSegment precedes or comes subsequent to the current segment.

If otherSegment is not adjacent to the current segment false will be returned.

* Two parameter static method - linkable(segmentA, segmentB): This operator is

implemented as a static method taking two parameters, representing the two segments

to be tested for linkability. This operator is bidirectional and will function regardless of

139

which segment precedes the other, assuming they are adjacent. If segmentA and

segmentB are not adjacent to each other than false will be returned.

We will describe our three linking operators in the simplest context, which is the parameterless

object method context.

Intermediate Validation - IVLinkableo

Return true if (EndTap.Type == IPVAL OR EPVAL) AND EndTap==next().StartTap

Intermediate validation is indicated if and only if the two journey segments share the same

IPVAL or EPVAL. There is no test for interchange time. Intermediate validation interchanges are

instantaneous by definition.

IV linking always returns false if one of the taps is a BUS tap.

Out of station interchange - OSILinkable()

Return true if

(EndTap.Type == EXIT) AND

(next().StartTap.Type == ENTRY) AND

(OSIlnterval(EndTap.locationlD, next().StartTap.locationID != null) AND

(next().StartTap.timestamp - EndTap.timestamp < OSllnterval(EndTap.locationlD,

next().StartTap.locationID))

In other words, the EndTap of the current journey segment must be of type EXIT and the

StartTap of the next journey segment must be of the type ENTRY. Furthermore, we require that

this EXIT-ENTRY pair be defined in the OSI table and that the time separation between the two

is less than the required time interval.

OSI linking always returns false if one of the taps is a BUS tap.

Cross-mode interchange

BusRailLinkable - Return true if

140

((EndTap.Type == BUS) AND

next().StartTap.Type is one of {ENTRY, EPVAL} AND

next.StartTap.timestamp - EndTap.timestamp < BusRailInterchangelnterval

RailBusLinkable - Return true if

(EndTap.Type is one of {EXIT, EPVAL}) AND

(next().StartTap.Type == BUS) AND

next.StartTap.timestamp - EndTap.timestamp < RailBusInterchangeInterval)

Here we require an interface of a BUS tap with either an ENTRY or EPVAL tap. An operator is

provided for each direction of interchange. These operators are always applied from the context

of the current journey segment being the one on the left which is being tested for linkability

against its immediately subsequent neighbor on the right.

The cross-mode interchange interval must be observed. This is the interval of time which the user

has to perform the interchange if he wants to take advantage of the interchange credit. This value

is asymmetrical because we can determine when a user has left the rail system based on his

interaction with station-based gates and validators, but we do not know when a user has off-

boarded a bus. The reference timepoint in this case is the boarding of the bus. To compensate we

generally allow a longer period for bus-rail interchange, adding a maximum allowable travel time

component to the raw interchange time.

The test will always return false if the interface of the two segments being tested consists of two

BUS taps or two station-based taps.

7.5.1.3 Terminator

The end terminator operators exist to support the Billable operator on a linked journey (see 7.6.1.2).

These operators are necessary as we do not allow taps to be directly visible to linked journeys. There

are two end terminator operators:

StartTerminatorO

Return false if StartTap. Type= =IPVAL

Return false if StartTap. Type = =EP VAL AND StartTap. LeftSegment! =null

141

else return true

StartTap being an IPVAL always disqualifies a journey segment from being a startTerminator. If

StartTap is an EPVAL, then it must not be shared with anotherjourney segment. (i.e. not

intermediate validation).

EndTerminatoro

Return false if EndTap. Type= =IP VAL

Return false if EndTap. Type= =EPVAL AND StartTap.RightSegment! =null

else return true

EndTap being an IPVAL always disqualifies a journey segment from being a endTerminator. If

EndTap is an EPVAL, then it must not be shared with another journey segment. (i.e. not

intermediate validation).

7.5.1.4 Type

Journey segments have a getTypeo operator, again motivated by the desire to isolate taps from

linked journeys. Journey segments can be classified into two types.

* ONBOARD - detected by StartTap.Type=BUS. Note that BUS taps are always attached to

both StartTap and EndTap or neither. We only need to test one.

* STATIONBASED - all other case.

7.5.2 Journey Segment Linking Control

The journey segment linking control unit effects the creation and destruction of journey segments in

response to the creation of a new tap. This unit is embodied in the taplnserted() static function.

This process of linking adjacent taps to form journey segments should not be confused with the

linking of taps to form a time-sequence using a doubly linked list as described in section 7.4.1. A

sequential linkage exists between all adjacent taps regardless of the relationship between them. The

formation of journey segments, however, is predicated on the properties of the tap(s) concerned.

One of the following scenarios will apply to a tap that has just been inserted into the sequence.

* The inserted tap is an on-board validation tap (BUS tap).

142

* Tap is inserted at the start or end of the sequence. Inserted tap does not split existingjourney

segment.

* Tap B is inserted into the middle of the sequence, between taps A and C. Taps A and C are

not claimed by the same journey segment. Inserted tap does not split existing journey

segment.

* Tap B is inserted into the middle of the sequence, between taps A and C. Taps A and C are

claimed by the same journey segment. Inserted tap splits existing journey segment.

Inserted tap is an on-board validation (BUS) tap

An encapsulating journey segment linking claiming the BUS tap is automatically created (see

example in Figure 7.5). StartTap and EndTap of the new journey segment point to the BUS tap.

LeftSegment and RightSegment of the BUS tap reciprocate.

Inserted tap does not split existing journey segment

The insertion of a station-based tap which does not split an existing journey segment triggers an

eligibility test between the inserted tap and its two adjacent taps (where available). The eligibility

test is defined in section 7.4.2.

New tap tested against taps on left
and right. Journey segment created
where eligible. (In this case, a new

journey segment is created with the
New tap to be inserted between tap to the right of the inserted tap).
taps which are not claimed by

the same journey segment

Figure 7.11 - Insertion of a tap which does not split an existing journey segment.

For each test passed, a new journey segment is created. The created journey segment claims the

newly added tap and the tap against which the test has passed (by setting StartTap and EndTap).

References are reciprocated by the claimed tap (via LeftSegment or RightSegment). If both tests

143

fail, no journey segment object is created. The inserted tap remains untouched and is not

removed.

In summary, if an inserted tap does not split an existing journey segment, zero, one or two new

journey segments will be created as a result. No journey segments will be destroyed. Note that

the creation of each new journey segment in turn leads to changes at the linked journey level

(propagating upward). This response is discussed in section 7.6.2 below.

Inserted tap splits existing journey segment

When a new tap is inserted between two taps claimed by same existing journey segment, the

following sequence of events takes place:

1. Existing journey segment being split by incoming tap is destroyed.

2. The inserted tap is tested against adjacent taps to the left and right.

description of eligibility test)

(See section 7.4.2 for

3. Zero, one or two new journey segments may be created depending on which tests pass.

Journey Segment destroyed.
Destruction propagated upward

New Journey Segments created (if
eligible). Creation propagated upward

IPVAL

New Tap to be inserted
between taps referenced by

existing journey segment

Figure 7.12 - Insertion of a tap that splits an existing journey segment.

It may seem paradoxical but additional information could disrupt and remove a previously

legitimate journey segment. This occurs when an existing journey segment is removed but not

replaced by anything. For example, if an EPVAL tap was inserted between previously claimed

ENTRY and EXIT taps, the existing journey segment between the ENTRY and EXIT would be

destroyed. None of the tests would pass in an ENTRY->EPVAL->EXIT sequence, so no new

144

journey segments would be created. This can occur if there were network outages; once all taps

are received, valid segments are constructed.

7.6 LinkedJourney Operations

7.6.1 Linked Journey Operators

First we will introduce some notation for describing linked journeys. A linked journey containing

only one journey segment is called a unitary linked journey. A linked journey containing more than

one journey segment is called a chained linked journey.

7.6.1.1 Adjacency

Linked journeys have the following traversal operators:

* Next Linked Journey: next() - Implemented as

EndSegment.nexto.ParentLinkedJourney

* Previous Linked Journey: prev() - Implemented as

StartSegment.prev().ParentLinkedJourney

Next
Linked
Journey

Journey J
Next Journey ParentinkedJoumey

ENTRY EXIT ENTRY EXIT

Scenario impossible.
Every journey segment

has an associated

Linked linked journey Linked
Journey Journey

Journey Journey Journey
Segment Segment Segment

4 ----------- -------- ------

Figure 7.13 - Linked Journey Traversal.

Linked journey traversal operators are implemented using the next() and prev() operators for journey

segments defined in section 7.5.1.1. The Journey Segment Adjacency Rule described above is

observed. Note that journey segments can never be unclaimed. ParentLinkedJourney is always a non-

null value.

7.6.1.2 Billability

A linked journey is only billable if it is properly terminated. A linked journey is properly terminated

145

if it does not begin or end in an IPVAL. The billability operator - Billable() is defined in terms of

the journey segment terminator operators.

BillableO = StartSegment.StartTerminatorO AND EndSegment.EndTerminatorO

A linked journey is considered billable only if the first segment has a terminated front-end and the

last segment has a terminated rear-end.

7.6.2 Linked Journey Linking Control

The linked journey linking control unit is the piece of logic responsible for the creation, destruction,

reconfiguration or amalgamation of linked journey objects. For the same reasons discussed above in

section 7.3, this unit is implemented as a static function (more accurately, a singleton method). This

unit is embodied in the segmentCreatedo and segmentDestroyedo functions.

When a journey segment is created or destroyed, one of the above functions is called. In either case,

we first evaluate the environment of the concerned journey segment. The term environment is defined

very specifically here to mean whether the journey segment appears in a position where it 'splits' an

existing linked journey or not.

After evaluating the environment, we apply the general linkability test (described below) on the

concerned journey segment and its partners. Finally, based on the evaluated environment and the

outcome of the general linkability test we perform the necessary manipulations on linked journey

objects.

The resulting manipulations vary. A new journey segment could either be wrapped in its own unitary

linked journey, or it could be incorporated into an existing linked journey. In some cases, a new

journey segment could even form the keystone that completes two previously separate linked

journeys, causing them to be merged into one, bridged by the new journey segment. Similarly, a

destroyed journey segment could either result in no action, or the splitting of an existing linked

journey.

7.6.2.1 General Linkability Test

Figure 7.14 describes the general linkability test. In the discussion below a 'test for linkability'

refers to the application of this general linkability test. The test is composed of the three decision

146

boxes in the flow chart below. We will elaborate on each of these boxes.

Figure 7.14 - The general linkability test. *The 'OSI or IV interchange' box is a direct application of
those journey segment operators. However, cross mode interchange must also take not account the
current constitution of the linked journey with relation to ONBOARD journeys.

1. Out-of-station interchange and intermediate validation

Station-based journey segments can be linked together either by out-of-station interchange or by

intermediate validation. This test is a direct application of the OSI and IV linking operators as

described in section 7.5.1.2. If we imagine that journey segments are linear jigsaw pieces, the

linking operators describe whether their edges mesh together or not.

In pseudo code, the decision is given as.

IVLinkableO OR OSILinkableO

Remember that parameterless operators test for linkability against the next adjacent segment to

the right. Thus to apply this test between adjacent journey segments A and B, we could simply

call the linkable operators on object A.

2. Cross-mode interchange

Cross mode interchanges are governed by a condition that we must pay special attention to. In

addition to a positive result in the cross-mode linkability test, we also require that a linked

147

journey contain only one bus segment (ONBOARD), and that this bus segment be positioned

either at the front or the rear of the linked journey. The following logic enforces this condition.

Again recall that linking operators are described in terms of the current segment being located on

the left and a test is automatically implied against its next subsequent neighbor on the right. This

is the parameterless method context. If the operator was implemented in a different context, the

pseudo code below must be translated correspondingly.

segment. BusRailLinkable 0 AND segment. next().parentLinkedJourney.startSegment

= =segment. next(AND segment. nextO.parentLinkedlourney. endSegment.getTypeO !=

ONBOARD

OR

segment.RailBusLinkable 0 AND segment.parentLinkedJourney.endSegment == segment AND

segment.parentLinkedJourney.startSegment.getTypeo != ONBOARD

There is no need to scan a journey segment to determine whether it already contains a bus

segment. The inclusion of a first bus segment into a linked journey will automatically 'cap' that

linked journey such that future tests for cross-mode interchange will automatically fail.

3. Global linked journey duration limit

We have discussed various time intervals. The creation of journey segments is governed by the

maximum journey segment duration. OSI and cross-mode interchanges have their respective

interchange intervals. Neither of these is to be confused with the global linked journey duration.

The global linked journey duration describes the total length of a linked journey. This is the sum

of the durations of all constituent journey segments and any interchange intervals separating

them. The global linked journey duration sets the ultimate upper bound on the length of a

journey. In effect, many short journey segments may be linked together, but the presence of one

or few lengthy segments would use up the global quota and restrict further chaining.

The global linked journey duration limit is one of the stated requirements of the fare engine. It is

motivated by variations in semantic patterns. Because intermediate validation is optional under

our regime, a single journey segment could, in one case, represent small units of travel in a

148

journey made by a user who intermediate validates duly and frequently. However, when a user

shuns intermediate validation, a single journey segment could end up representing a lengthy and

circuitous journey with many unrecorded interchanges.

The first case above would be represented by one linked journey spanning the multiple

intermediate segments. The second case above would be represented by one linked journey,

encapsulating the lone journey segment. The enforcement of global linked journey duration

levels the playing field between these two use cases. The two cases above would use up the exact

same amount of the global linked journey duration cap.

7.6.2.2 Environment Scenarios

Having described the general linkability test, we can now describe the environment scenarios that

make use of this test, and the actions taken upon each test outcome in these scenarios. A journey

segment having just been created or being deleted is referred to as the triggeringjourney segment.

Note that any time we manipulate linked journeys, reverse references on the affected journey

segments must be adjusted to remain consistent with the new linked journey configuration. For

brevity this step may not be explicitly mentioned.

Scenario A: A journey segment is created and its neighboring journey segments are claimed by

the same linked journey.

This scenario results in the 'splitting' of an existing linked journey. The linked journey being

split will be called 'the original linked journey'.

First, we de-posted the original linked journey, if its posted flag is set. Then the triggering

journey segment (B) is tested for linkability against its two neighbors (A & C), if A & B exist.

Linkability test outcomes are as follows:

Neither AB nor BC linkable - The original linked journey is shrunk so that it claims only the

journey segments lying to the left of the triggering journey segment. A new unitary linked

journey is created for the triggering journey segment, and a second new linked journey is

created for all the journey segments claimed by the original linked journey that lie to the right

of the triggering journey segment.

149

AB linkable, BC not linkable - The original linked journey is shrunk so that it claims only the

journey segments lying to the left of, and including the triggering journey segment. A new

linked journey is created for all of the journey segments claimed by the original linked

journey that lie to the right of the triggering journey segment.

AB not linkable, BC linkable - The original linked journey is shrunk so that it claims only the

journey segments to the left of the triggering journey segment. A new linked journey is

created for the triggering journey segment as well as any journey segment claimed by the

original linked journey that lies to the right of the triggering journey segment.

AB and BC both linkable - The original linked journey is not modified. We only need to adjust

the reverse reference on the triggering journey segment to point to the original linked

journey.

Linked Journey

Joumney
Segment A

De-post if posted flag set

Linked Joumrney

Journey Joumey Journey
Segment A Segment B Segment C

AB Linkable? BC Linkable?

Journey
Segment 13

Linked Journey

Journey Joumey
Segment A Segment 13

Linked Journey

Journey
Segment A

1. Neither AB nor
BC Linkable

Journey
Segment C

2. AB Linkable, BC
Not Linkable

Segment C

Post linked journeys
individually if billable

3. AB Not Linkable,
SNotC BC Linkable

Journey Jouey 4. AB and BC both
Segment A Segment c Linkable

Figure 7.15 - Scenario A: New journey segment splitting existing linked journey. In this scenario, the

triggering journey segment is a new journey segment and its neighboring journey segments are

claimed by the same linked journey.

Whichever outcome is the end result, we test the resulting linked journeys for billability and post

150

them if billable, on an individual basis.

Scenario B: A journey segment is created whose neighboring journey segments are not claimed

by the same linked journey

This scenario does not split an existing linked journey. As above, we test the triggering journey

segment against its adjacent neighbors for linkability and four outcomes are possible. In this

scenario, we do not de-post the original linked journeys by default, but only conditionally based

on the outcome of the linkability test.

Cases where the triggering journey segment is missing one or both of its neighbors are a special

subset of the general scenario described here. For example, the triggering journey segment could

sit at either extreme of the data structure. Or the triggering journey segment could be insulated

from successive or previous journey segments by an orphaned tap (the application of the Journey

Segment Adjacency Rule ensures that segments are not considered adjacent where an intervening

tap exists). In these cases, the linkability test would fail by default and the resulting outcome

would still fall under either outcome 1, 2 or 3.

Neither AB nor BC linkable - A unitary linked journey is created, encapsulating the triggering

journey segment. The new linked journey is then posted to the fare engine if billable. No

changes are made to existing linked journeys.

AB linkable, BC not linkable - The existing linked journey claiming journey segments located

to the left of the triggering journey segment is first de-posted if its posted flag is set. It is then

extended to cover the newly created journey segment and re-posted, if billable.

AB not linkable, BC linkable - The existing linked journey claiming journey segments located

to the right of the triggering journey segment is first de-posted if its posted flag is set. It is

then extended to cover the newly created journey segment and re-posted, if billable.

AB and BC both linkable - The existing linked journeys claiming journey segments located on

both sides of the triggering journey segment are first de-posted if their billable flags are set.

The linked journey on the left (#1 above) is then modified to cover both the triggering

journey segment and the journey segments located on its right, up to the rightmost extent of

151

the now obsolete linked journey 2. Linked journey 1 is re-posted if billable. Linked journey 2

is removed.

Linked Journey I

Journey
Segment A

Journey
Segment B

1. Neither AB nor
Linked Jounmy 2 BC Linkable

Post LJ3 if
ebillableSemnt C

Linked Journey 2

Journey
Segment CLinked Journey I Linked Journey 2

Journey Jouney Jourey
Segment A Segment Segment C

AB Linkable? BC Linkable?

Journey
Segment A

Linked Journey 1

Journey
Segment B

Journey
Segment C

2. AB Linkable, BC
Not Linkable

De-post LJ1 if
posted flag set.
Post modified LJ1
if billable.

3. AB Not Linkable,
BC Linkable

De-post LJ2 if
posted flag set.
Post modified LJ2
if billable.

4. AB and BC both
Linkable

De-post LJ2 if
posted flag set.
Destroy LJ2.
Post modified
LJ1 if billable.

Figure 7.16 - Scenario B: Triggering journey segment is a new journey segment that does not split an
existing linked journey.

Scenario C: A journey segment claimed by a unitary linked journey is destroyed

The deletion of an unencumbered journey segment is very straightforward scenario and leads to

only one outcome. An unencumbered journey segment is one encapsulated by a unitary linked

journey.

1. If unitary linked journey has the posted flag set, de-post with fare processor.

2. Destroy unitary linked journey.

One might wonder why we do not have to test the two remaining journey segments (A & C) for

linkability, and merge their respective linked journeys if necessary. The answer is that this

152

_ I

, , , , , , , , , 1 , ,

operation, although logically necessary, is guaranteed to always return a negative result. We note

that:

* Excluding cleanup, taps can only be added to the data structure, not deleted.

* The Journey Segment Adjacency Rule21 states that journey segments can never be linked

if separated by one or more taps.

The destruction of a journey segment must have been triggered by the insertion of a new tap,

which would always prevent the remaining journey segments (i.e. A and C) from being

conjoined.

Having said this, the insertion of a tap which leads to the destruction of a first journey segment

and the creation of its replacement can still result in the union of existing linked journeys. A two-

stage mechanism is in play here. The tap induces the deletion of the first journey segment, which

is bubbled upward and triggers either scenario C or D. Then, the second journey segment is

created. This in turn triggers either scenario A or B, creating a conjoined linked journey. At this

point the structure finally stabilizes.

Linked Journey n Linked Journey Linked Jouey Linked Journey

JouJouey Jouey Journey Journey
Segment A Segment C Segment A Segment Segment C

Figure 7.17 - Scenario C: Unencumbered journey segment deleted.

Scenario D - A journey segment claimed by a chained linked journey is destroyed.

This scenario describes the removal of a journey segment which 'splits' an existing linked

journey. The triggering journey segment here refers to the journey segment being deleted.

1. If the linked journey being split has its posted flag set, de-post with fare processor.

153

21 See section 7.5.1.1.

2. Shrink linked journey being split to cover only journey segments located to the left of the
triggering journey segment, if there are any.

3. Create a new linked journey for remaining journey segments located to the right of the
triggering journey segment. An exception to this rule occurs if the triggering journey segment
is the leftmost element in a linked journey. In this case, the existing linked journey can be re-
tasked for the journey segments on the right of the triggering segment.

4. Linked journeys are posted to the fare processor individually, if billable.

Again, the journey segments adjoining to the deleted segments do not have to be tested for
linkability due to Journey Segment Adjacency Rule.

Existing linked journey New linked journey.
Linked Journey de-posted if posted flag set. reconfigured. Posted if billable. Posted if billable.

Linked Journey Linked Journey Linked Journey

Journey r Journey J Jourey Journey
Segment t Segment Segment Segment Segment

Trigger event: Journey
Segment Destroyed Existing linked journey

assigned to the right hand side.
Posted if billable.

Linked Journey Linked Journey

Journey Journey Journey
Segment t Seg ment S

Figure 7.18 - Scenario D: Destruction of a journey segment claimed by a chained linked journey. The
special case for deleting a left-most journey segment is shown.

7.6.3 Alternative Approach

Linked Journey Linked ourney

Figure 7.19 - Create and merge, an alternative journey linking paradigm.

154

Liiked Journey

In the examples above, we recognize that any action on linked journeys must be triggered by changes

to journey segments. The reconfiguration of linked journeys takes place during a function call made

upon creation or deletion of journey segments. We'll call this journey linking paradigm trigger-and-

reconfigure.

An alternative approach to journey linking would be to wrap a unitary linked journey around any

new journey segment. The unitary linked journey is then merged laterally with its neighbors in what

we'll call a create-and-merge process. The advantage of this approach over trigger-and-reconfigure

is that we would only need to implement one set of lateral merging logic, as opposed to the numerous

tailor-made case handlers above. This results in a simpler and more general design. However, as a

consequence, we trade performance for complexity.

In trigger-and-reconfigure we strive to reuse existing linked journey objects as much as possible and

avoid the creation of new objects where they are not needed. On the other hand, create-and-merge is

a wasteful approach. The lateral merging process leads to the creation and rapid abandonment of

short-lived linked journey objects. In comparison to modifying an existing object, creating a new

object in memory is a costly operation [19]. Ephemeral objects incur a penalty not only in the

memory space that they use, and the cost of creation, but in increased garbage collection activity to

remove them once they become redundant.

7.6.4 Posting and De-posting

Post() and De-posto are functions of the fare processor. Post() exists to furnish the fare processor

with a description of the linked journey to be billed, including the location and timestamp of all its

intermediate segments. The parameters of this call will be described in depth in our later discussion

of the fare processor.

Conceptually, De-post() is an instruction to completely reverse the charges for a linked journey. This

operation is necessary when new information (i.e. taps) arrive that results in a reinterpretation of

existing, already-billed linked journeys. Rather than computing the difference in cost between the old

and new interpretations, de-posto allows the old interpretation to simply be retracted, so that the new

interpretation can be posted as if it had never been seen before.

155

The journey processor has internal versions post and de-post(). The purpose of these internal versions

is twofold. Internal linked journey objects (JPLinkedJourneys) sit at the top of the now ubiquitous

multi-tiered data structure and contain no actual data themselves. External linked journeys, on the

other hand, are fully contained java beans with real data fields. The internal post and de-post

functions exist to convert internal linked journeys into external linked journeys. In addition, they

manipulate the posted flag.

The postedflag is a binary state variable which tracks whether a journey segment has been posted

successfully or not. It is important to keep track of the posted state for two reasons. A linked journey

that has been posted needs to be de-posted any time it is changed or removed in the future (except

during cleanup). At cleanup time, linked journeys which do not have their posted flag set are

assumed to be incomplete or problem journeys. These are sent to a bad-journey processor (a part of

the fare processor) for additional analysis and processing.

* Post() - The linked journey is submitted to the fare processor for fare calculation and

billing. If posting is successful, the posted flag is set to true, and the billed amount is

recorded. The posted flag must not be set at the time of posting. Posting a linked journey

which has a posted flag set causes an exception. Note that the journey processor is

generally unconcerned with the billed amount of a journey. It is only recorded so that if a

linked journey were to be de-posted, the amount to de-post could be found immediately

without having to feed the linked journey through the fare processor a second time.

Having said this, reprocessing a linked journey through the fare processor during de-

posting in order to find out how much should be deducted from the bill is a legitimate

operation. The fare processor is completely stateless with regard to each input linked

journey. In other words, the buffering of the posted amount is purely a performance

optimization.

* De-Post() - A linked journey can only be de-posted if its posted flag is set. De-posting a

journey which has not been posted causes an exception. Otherwise a de-post call to the

fare processor is made with the details of this linked journey, particularly the buffered

posted amount. The fare processor fast-tracks de-post calls carrying a fare amount by

completely bypassing the fare calculation routine and immediately sending the call to the

billing engine. After a successful de-post operation the posted flag is reset.

156

7.7 Cleanup Routine

Previously we have mentioned that taps can only be inserted, and cannot ordinarily be removed

except via cleanup. Without a cleanup process, taps would continuously be inserted and corollary

journey segments and linked journeys would continuously be created. This would result in growth in

memory usage without bound, a clearly unsustainable outcome.

The cleanup process follows a few simple rules:

* Cleanup begins with the tap at the left-most end of the data structure (the head tap). This

is the oldest tap in the system.

* If the head tap is an orphaned tap (no journey segment), it is dispatched to the orphaned-

tap department of the fare processor. The tap is removed and the next successive tap now

becomes the head tap. The cleanup process is restarted with the new head tap.

* If the head tap is not an orphaned tap, then it must have one (and only one) associated

journey segment, and that, in turn must have an associated linked journey. It is an

invariant that the head tap cannot be claimed by two journey segments. Also recall that a

journey segment must be claimed by one and only one linked journey. The identified

linked journey is our target linked journey.

* If the target linked journey has been posted, no action is taken on this step. If the target

linked journey has not been posted, it is dispatched to the incomplete linked journey

department of the fare processor.

* The target linked journey is systematically dismantled, and its constituent journey

segments are deconstructed from left to right. Taps are removed only when they are not

claimed by any journey segment.

* After the last tap associated with the target linked journey has been removed, the next

successive tap becomes the head tap. The target linked journey is itself removed.

* The cleanup process begins again with the new head tap.

157

One complication arises when a linked journey finishes on an EPVAL. This is a very rare

condition that can only occur if the subsequent taps have been disqualified from the

linked journey on some ground (e.g. global linked journey duration exceeded). In this

case, the last tap is not removed during the iteration. When the iteration finishes, this

residual tap rather than the next tap in sequence is assigned as the head tap.

Cleanup Escalate to find linked journey
progresses from associated with the first tap
the left-most tap

Dismantle linked

Linked Journey journey from left to
right, erasing journey
segments and taps

- ENTRY

Tap not removed unless
free of all references

Linked Journey

Journey
Segment

Journey
Segment

ENTRY
Next tap in sequence

now becomes left-most
tap. Process repeated.

Figure 7.20 - Cleanup process.

As discussed previously, objects cannot be actively removed in modern object oriented languages

such as Java. When we deconstruct or remove an object (whether it is a tap, journey segment or

linked journey), we are simply eliminating references to the object so that it will eventually be

recycled by the garbage collector.

158

d 1 4- R i 04 * H _ 'W(h

i'

Cleanup runs until the timestamp of the head tap encountered has a timestamp which is equal to or

later than the specified cleanup threshold, or until the data structure is completely empty. Cleanup for

this particular user is then complete.

Cleanup
progresses from
the left-most tap

Escalate to find linked journey
associated with the first tap

Dismantle linked
journey from left to

right, erasing journey
segments and taps

ENTRY

Tap not removed unless
free of other references

Linked Journey

Journey
Segment

Journey
Segment

F N-TFYI IPn\ A SEPVAL

Remaining Tap now
becomes left-most tap.

Process repeated.

Figure 7.21 - Cleanup case where the last tap cannot be removed. This is a rare complication. The
process is largely similar to the previously described standard case.

159

i

7.7.1 Cleanup Cycle

We will first lay out some groundwork in our discussion of cleanup cycles. If an out of order (late

arriving) tap cannot be accommodated into the data structure because it is too old (it has a timestamp

dated earlier than the cleanup threshold), it is sent to the un-accommodated tap department of the

fare processor. In effect such taps are discarded. The discarding of over-late taps is undesirable and

so we try to preserve objects in memory for long enough so that when late taps arrive they can still be

placed into sequence

We define the Time-to-live (TTL) to be the minimum amount of time for which a tap must have

existed in memory before it is erased. Set this time too short, and many late taps will have to be

discarded. Set this value too long, and we will overrun available memory and/or impact the system

performance. The lower bound for the TTL value is subject to calibration against the operational

reliability of the fare collection equipment at stations and on vehicles, as well of the communication

infrastructure conveying transactions from the field to the fare engine.

We define the cleanup threshold as follows:

CleanupThreshold = CurrentTime - TTL

With this, we can implement a cleanup rule. Note that a larger timestamp has a later time.

Cleanup Rule: Remove tap if Tap. Timestamp < CleanupThreshold

The cleanup rule binds the reach of the cleanup process. It states that we will remove any tap we see

which is older than CurrentTime - TTL.

Finally, we define the max-age to be the age of the oldest data object (tap) in memory. Max-age is

always greater than TTL.

7.7.1.1 Rolling and Fixed Cleanup

Two broad classes of cleanup cycles are possible. In a rolling cleanup schedule, cleanup is an

ongoing process that is repeated at short intervals and not timed to an absolute schedule. Older taps

are stripped away as time progresses, ensuring that the max-age of the data structure approximates

the TTL which we have set.

160

In a fixed cleanup cycle, the cleanup operation is scheduled to occur at recurring time points which

are defined in an absolute timeline. The time between scheduled cleanups is the cleanup interval. An

example of a fixed cleanup schedule is a daily schedule where cleanup occurs at 3AM every day -

this has a cleanup interval of 1 day. Under a fixed cleanup schedule, the age of the database is always

older than the TTL. Specifically, the maximum age reached by the database is given by

MaxAge = TTL + CleanupInterval

In the example above, a TTL of one day and a CleanupInterval of one day means that at the time of

cleanup, taps a in the data structure go back two days. This is significant as memory usage is

determined by the MaxAge, not TTL. A finite amount of physical memory space is available. For

performance reasons we wish to keep the heap size below size of our physical memory in order to

avoid any part of the data structure being swapped into virtual memory22. Aspects of the virtual

machine executing the journey processor software (such as the performance of the garbage collector)

may also restrict the cleanup interval.

A journey processor that uses a fixed cleanup cycle must be planned on the basis of MaxAge, not just

the TTL.

2 MaxAge 2

a $ No fixed cleanup
interval

TTL 1 TTL, Max Age

o Cleanup Interval 7

1 2 1 2
Time (days) Time (days)

Fixed Cleanup Rolling Cleanup

Figure 7.22 - Fixed vs. rolling cleanup.

22 Virtual memory is used when the amount of memory used exceeds the system's physical memory. Blocks of data

in memory (pages) are swapped out to temporary storage on disk to make room. This results in a heavy performance

penalty as that data must be swapped to memory before it can be accessed.

161

7.7.2 Multi-threading Considerations

Up to now, multi-threading has not been a significant issue. For a given user, object manipulations

take place in a well defined chain of execution where method calls are made and returned

sequentially. At the same time, different users have completely non-intersecting object spaces,

allowing us to divide the work of journey processing for different users into multiple threads with

impunity, if we wish to do so.

7.7.2.1 Batch Cleanup

Multithreading issues in cleanup can be avoided completely if we dictate that the cleanup of objects

in memory will occur only during the journey processor's down-time.

This approach is used with a fixed cleanup cycle of a relatively long cycle length. As we have

discussed, fixed cleanup cycle incurs additional memory usage compared to a rolling cycle. However

this is not a fatal impediment, as memory is a low cost and abundant resource. Furthermore, the long

cycle length does not affect business capabilities or operations in any way. A long cycle length does

not negatively impact the real-time posting and processing of linked journeys.

One drawback of phased cleanup is that we must halt fare engine processing during the cleanup

process. All incoming taps need to be buffered in a queue so that they can be processed when cleanup

completes. System throughput is expected to be extremely low during the early hours of the morning,

providing a window of opportunity for executing once-daily cleanup. If the cleanup time can be

reduced to an order of seconds, it should be acceptable to suspend the journey processor momentarily

for cleanup even during daytime operations.

We have a feasible compromise. Nonetheless we shall consider more advanced techniques that will

not result in service disruptions.

7.7.2.2 User Level Locking

Let us consider how concurrency problems can arise in journey processing. On the one hand, the

insertion of taps and the subsequent object manipulations that follow occur in real time, at arbitrary

moments as determined by the user's actual travel behavior. On the other hand, we have a cleanup

process which operates either on a fixed schedule based, or on a rolling basis, but in any case, on a

basis which bears no obvious link in causality to the insertion of taps.

I Al

Without further accommodation, the system would enter an inconsistent state and fail if we tried to

insert a tap into a linked journey in the midst of that journey being deconstructed. Likewise, if the

cleanup process attempts to destroy a linked journey whose construction is still in progress, the

system would also enter an undefined state and the data structure would become corrupted. This is

the simplest description of why we have a concurrency problem.

User level locking is one solution to this problem. We require both insertTap() and cleanup() to

obtain a lock on a user's JPUser object before they can perform any action on that user. Object

locking (or synchronization) is directly supported in Java, using the synchronized block.

cleanup()
insertTap() Cleanup is

FPUser unable to proceed
insertTap() has on this user due

obtained a lock on to the lock taken
the user object out by insertTap().

Figure 7.23 - Locking on an JPUser object.

If insertTapo has locked a given user and is operating on it, and cleanup() attempts to operate on the

same user, it would be unable to do so because the lock that insertTapo has taken out would prevent

cleanup() from obtaining its own lock (recall that we require each function to obtain a lock on an

object before touching it). In the default Java implementation of locking, cleanup() would be asked to

block, that is, to wait until insertTapo is finished, at which point it would remove its lock and free up

the object. While it is technically preferable in the context of a cleanup process to skip over a

blocked user and move onto the next user rather than sit idle waiting for it to free up, given that

cleanup is strictly an optional process, to do so in an implementation would involve exchanging the

standard java synchronization mechanism for a custom implemented solution, a daunting task that

cannot be justified given the virtually imperceptible benefits. Insertion-cleanup collisions on the

same user are extremely rare events, and the delay in incurred when such a rare collision does occur

is also negligibly small.

User level locking is useful not only in preventing insertion-cleanup collisions, but as a side effect it

also opens up the opportunity for multiple insertion threads to run concurrently. Up to now we have

assumed that taps arriving from the device manager are processed sequentially in a single thread (the

163

device manager maintains a queue which buffers taps as they arrive physically from all points in the

TfL network). However, on a dual or multiple core system, we have the option of dispatching

multiple threads (a number commensurate with the number of CPU cores) to clear out this queue.

Most of the time, successive taps will concern different users. User lever locking will very cleanly

and effectively cater to the few rare occasions where we have both threads (assuming a dual core

CPU) attempting to insert taps into the same user.

7.7.2.3Journey Level Locking

Another optimization that we will mention briefly, if only for academic purposes, is the locking of

specific journey objects. One can identify a theoretical weakness in the user level locking approach.

Recall that cleanup proceeds from the left-most (head end) of the linked list of taps. On the other

hand, the vast majority of tap insertions are expected to take place at the right-most (tail end) of the

list, given that usually arrive in order. There is no reason why a tap cannot be inserted at one end of

the structure while the other end of the structure is being dismantled. In fact, operations can be

allowed simultaneously anywhere on the data structure as long as they do not spatially interact.

Observe that the insertion of a tap directly modifies its two adjacent taps. Also note that the cleanup

process leaves the entire structure beneath a linked journey in an inconsistent state while it is in

progress. The linked journey is the natural object to lock on. We can require cleanup() to lock on a

linked journey before dismantling it, at the same time, we can ask insertTap() to obtain locks on the

linked journeys associated with both neighboring taps, before it inserts a new tap between them.

Special cases with orphaned taps and edge cases can be catered for accordingly.

However because insert-cleanup collisions are so rare, and the consequence of a collision is so

imperceptible, not only would we not gain anything from implementing this elaborate fine-grain

protection mechanism, we would in fact lose substantial performance due to the added overheads in

locking and unlocking, and the traversals needed to find the linked journeys that we want to lock.

7.7.2.4 Recommended Solution

The recommended solution is user level locking using standard java synchronization. TTL can be set

based on system reliability and physical limitations of the server configuration.

164

8 Fare Processor

The second sub-component of the fare engine is the fare processor. This unit is responsible for

calculating the fare incurred for a given linked journey, taking into account any period ticket that the

user may be holding.

8.1 System Overview

Fare Engine

Figure 8.1 - Fare processor overview.

The fare processor is composed of two units, the Fare Calculator and the Automatic Ticket Selection

Unit (ATSU). External systems that interact with the Fare Processor include the Account Manager

and the Billing Engine. The fare processor receives its input directly from the Journey Processor.

8.2 Inputs and Outputs

The fare processor accepts LinkedJourney objects as described in 6.3.2, and outputs Billingltem

objects, as described in 6.3.3.

A notable feature of the fare processor from a data flow perspective is that it is practically pass-

165

through system. In other words, the LinkedJourney objects which the fare processor accepts as an

input are augmented with missing information and then passed onto the billing engine as

BillingItems. In particular, we dispose of the extremely lightweight LinkedJourney object (essentially

a placeholder) and replace it with a BillingItem, while recycling the list of journey segments

(NodeList (an ArrayList) and its children JourneySegments). The alternative would have been to

abandon and recreate the ArrayList and its children from start, a process that is wasteful both in

memory space and processing power.

On the other hand, the JourneySegment objects referenced by LinkedJourney are cloned. Within the

journey processor, recall that JPLinkedJourneys are merely proxy objects that reference the

underlying JPJourneySegment objects, which in turn reference JPTaps. We want to detach the fare

processor from this arrangement for two reasons. First, as a rule of encapsulation, the internals of the

journey processor should only be accessed by elements of the journey processor, and not by classes

outside of the journey processor package.

Secondly and more importantly, we want the fare processor to be able to run asynchronously from

the fare processor. For asynchronous processing to work, we cannot allow linked journeys to be

changed (or even destroyed) in between the time they are submitted for fare processing and the time

they are actually processed. Therefore the interface between the journey processor and the fare

processor must be of a 'fire-and-forget' nature, that is, proxy linked journeys must be cloned into

stable linked journeys. Note that within a prototype, fare processing may occur sequentially (in the

same thread) as journey processing. However, we maintain the option to break apart journey and fare

processing into separate threads. Billing is clearly an asynchronous process and the need for billing

items to be stable is not disputed. As mentioned prior, the billing engine can reuse the bulk of the

immutable linked journey objects accepted by the fare processor.

8.3 Fare Structure Assumptions

The nuances of the current TfL fare structure were described in chapter 3. There, we found that TfL

currently operates under a dichotomous fare structure, with a single product branch and a period

product branch. Furthermore, we found that the each branch can be broken down systematically

using a series of decision tiers, culminating in the concept of a charge code, which encapsulates the

effect of a zonal structure.

166

TfL's fare structure is under constant flux and there is no reason to assume that future ticketing will

operate under same structure as today's Oyster system. In the process of describing our fare

processor system design, we will gradually point out assumptions that we have made about the fare

structure under future ticketing. The goal of these assumptions is to satisfy our design requirements

without necessarily mirroring the way Oyster works. Many technical limitations and legacy

paradigms stemming from historical precedence have been folded into Oyster. For example, the

"capping" algorithm used to implement best value in Oyster was motivated largely by the

conservation of storage on Oyster Cards. Given the opportunity to design a system from ground up

where these technical and historical constraints no longer apply, we will explore some new

approaches that may depart significantly from the existing paradigm. However, we attempt to

preserve backward compatibility where possible. Simplifications are made where it is possible to

illustrate a concept without undue complexity (for example, the number of discount groups is limited

to 3).

The first and foremost assumption we make in this fare structure is that we will deal with only one

fare medium, that being contactless bankcards. Whether existing fare media, such as Oyster and

cash/magnetic stripe will continue to operate in their existing form, or be adapted to become

consistent with the contactless bankcard fare structure, or be eliminated altogether is a question

which lies outside the scope of our discussion.

8.3.1 Bus Journeys

We adopt a very simple policy with regard to bus journeys. Stand-alone bus journeys are charged a

fixed price based on the user's discount group. Bus journey segments which appear in a compound

linked journey (as a result of the cross-mode interchange rule) are free of charge. They are simply

stripped from the linked journey and ignored. Finally, if the user has any ticket holding whatsoever,

bus journeys are made free.

8.4 Fare Calculator

The fare calculator accept three inputs, a linked journey from the fare processor, the discount group

which the user belongs to from the account manager, and the zonal validity of the ticket held, if the

user has a pre-purchased ticket. The zonal validity is also provided by the account manager. The fare

calculator's outputs are the fare and the revenue allocation code for the journey. The fare is the

167

amount, in pence, which the given journey will cost the user, given his discount group status and his

ticket holding. Note that the fare produced by the fare calculator does not account for any best-value

capping. The revenue allocation code (ROC) references the primary key of a revenue allocation

table. This value will be explained below.

Linked Journey -

Discount Group-

Zonal Validity (of
ticket held, if any)

UaeCluaoFare

Revenue Allocation Code

Figure 8.2 - Fare calculator in a nutshell. A black box view.

What we have described is a black-box view of the fare calculator, or a contract between the fare

calculator and the fare processor. An important point to note is that the fare processor is not

concerned with how the fare calculator computes its outputs. The fare calculator could be generating

random numbers. As long as the fare calculator generates the same output repeatably on multiple

trials given the same input, it is legitimately fulfilling its contract to the fare processor. In other

words, the fare calculator must be a stateless function. Of course, in practice the fare calculator

would not be a random function. The fare calculator is where much of the TfL fare structure is

implemented. As TfL's fare structure for future ticketing is still under development, we will proceed

with an example design that provides flexibility for National Rail integration while incorporating the

significant investment that TfL has already made toward this goal.

8.4.1 Handling of Fare Zones

Our contactless bankcard (CLBC) fare calculator uses a fare zone system modeled geographically on

existing TfL fare zones, which take the form of concentric rings centered on Central London (see

3.4.2.1). However, unlike the current TfL network, CLBC stations are not required to belong to a fare

zone. Fare zones in the fare calculator serve two purposes:

1. The fare zones spanned by a journey may be used to determine the journey's single fare.

2. Period tickets are differentiated and priced in terms of the fare zones covered. Following

established nomenclature, we call this coverage the ticket's zonal validity. Fare zones may be

168

used to determine the applicability of a period ticket to a journey. The fare may be waived for

the portion of a journey that is covered by the zonal validity of a ticket held by the user.

In the above description we have emphasized that both of these uses of fare zones are optional. Not

all single fares have to be computed in terms of fare zones. Similarly, not all journeys have to be

eligible to be covered by a period ticket. Below we will explore the consequence these statements.

The single fare of any journey can be broken down into two components. A zone reducible fare

component and a non reducible fare component. The total fare is the sum of these two components.

We will define zone reducible and non reducible below.

8.4.1.1 Zonal Reducible Fare

A zone-reducible fare (ZRF) is a fare Which can be reduced through the use of a ticket. It is the fare

contribution assignable to a journey occurring inside of the defined fare zones. Note that the part of

journey over which a ZRF is computed need not be coterminous with the empirically recorded

journey segments. The application of a ticket could trigger the computation of 'residual' ZRF

journeys which are not coterminous with recorded journey segments.

S- Assumed
Route

Zonal Range: Joumeylnnerzone=1, JoumreyOuterzone=4

Figure 8.3 - A Journey made within the fare zones has a characteristic Zonal Range and ZRF.

Each ZRF has zonal range associated with it.

ZonalRange is defined as [Journeylnnerzone, JourneyOuterzone]

ZonalRange = zonalBounds(segment pattern)

The user's ticket has a zonal validity.

169

ZonalValidity is defined as [Ticketlnnerzone, TicketOuterzone]

It is very important to realize that although every ZRF has a zonal range, a ZRF does not have to be
computed in terms its zonal range.

An example of this is National Rail journeys within London. Nationwide, National Rail single fares
are set on the basis of the origin and destination station of the journey, and are published in the
National Fares Manual, while permitted routes for each OD pair are published in the National
Routing Guide. The fare for a given journey is determined by a complex formula for which there is
no compact expression, although it is generally commensurate with the distance travelled. However,
despite the fact that NR single fares are decidedly non-zonal, zonal Travelcards allow users to travel
on National Rail services throughout London. Here we have a situation where a fare can be waived if
the user holds a ticket with the right zonal validity, but the fare itself is not based on fare zones.

To implement ZRFs, we can begin with the linked journey. Each linked journey has a characteristic
profile of journey segments. A segment profile is essentially a refined form of the 'syntactic pattern'
described in section 7.4.2.1. For each segment profile, we compute a 'most likely path'. The zonal
range is assigned based on the zones traversed by the assumed route. Note that each segment profile
is associated with its own ZRF.

Note that ZRFs and zonal ranges need not be computed in real time. The implementation may consist
of a large table of segment profiles, with pre-computed zonal ranges and ZRF values. Where we
encounter a compound segment profile that is not recognized in our table, a standby option is to
merge the journey segments in that profile, effectively ignoring the intermediate waypoints and
reprocessing the journey with only its origin and destination.

SZone Reducible Fare

Linked Journey SegmentPrAssumed Route Zonal Range

Figure 8.4 - ZRF Implementation. Note that the ZRF is not computed in terms of the Zonal Range.

National Rail single fares do not translate well into TfL fare zones. Not only do zonal fares offer

significantly less granularity than non-zonal fares, they create some obvious discrepancies. For

170

example, a circumferential journey would incur a lower fare than a radial journey of the same length.

Unless the Train Operating Companies (TOC) can agree to adopt single fares that are calculated in

terms of TfL's fare zones, a fare collection system seeking to support National Rail must be prepared

to implement ZRFs that are arbitrarily defined. This is the reason we cannot require ZRFs to be

computed in terms of their zonal ranges.

We will now take a look at how ZRFs behave in the presence of a ticket.

If the zonal range is contained fully inside of the zonal validity, the zonal reducible fare is zero.

IF Journeylnnerzone > = Ticketlnnerzone AND JourneyOuterzone <= TicketOuterzone

ZRF=£O

If the zonal range does not intersect the zonal validity, the zone reducible fare is determined as a

function of the origin, destination and waypoints.

IF Journeylnnerzone > TicketOuterzone OR JourneyOuterzone < TicketlnnerzoneFare

ZRF = ZRFfarefunc(origin, destination, waypoints)

Zonal Range: Journeylnnerzone=l, JourneyOuterzone=4
Zonal Validity: Ticketlnnerzone=l, TicketOuterzone=4
ZRF: £0

Zonal Range: Journeylnnerzone=2, JourneyOuterzone=4
Zonal Validity: Ticketlnnerzone=l, TicketOuterzone=1
ZRF: ZRFfunc(segment pattern)

Figure 8.5 - Left: Zonal validity fully contains zonal range of journey. No charge for journey. Right:

Zonal validity does not intersect zonal range of journey. Full ZRF of journey is charged.

If the zonal range intersects the zonal validity, the assumed route of the journey is decomposed. The

sections of the route which reside in the zonal validity of the ticket are removed (reduced away). The

remaining sections of the original assumed route are the residual route sections. Next, we take

171

residual routes and construct extension journeys out of them. One extension journey is created for
each contiguous residual route. These extension journeys are then queried for their corresponding
extension fare. For sake of simplicity, extension journeys can be processed as a regular journey, and
the ZRF returned is used as the extension fare. Note that extension journeys are not recursively
zone-reduced. In other words, if by some unlikely occurrence the assumed route of an extension
journey were to venture back into a zone which we have reduced away as part of a ticket holding, we
would simply ignore it and use the extension fare as-is. The ZRF for the original journey as whole is
computed as the sum of the extension fares of the two residual ranges.

Zonal Range: Journeylnnerzone=l, JourneyOuterzone=4
Zonal Validity: Ticketlnnerzone=2, TicketOuterzone=3
ZRF: Zone Reduction ...

Extension

4 3 2

Residual
Route

Sections

Zonal Range: Journeylnnerzone=l, JourneyOuterzone=4
Zonal Validity: Ticketlnnerzone=2, TicketOuterzone=3
ZRF: ZRFfunc(ExtJryl) + ZRFfunc(ExtJry2)

Figure 8.6 - Zone Reduction: Shows the deconstruction of the assumed route and the construction of
extension journeys. Note that although neither the origin, nor destination nor IV stations are located
in zone 4, the user is still liable for uncovered travel in zone 4 as the assumed route extends there.

8.4.1.2 Non-Reducible Fare

Zone
Reduction

I Zone Reducible Fare (if eligible)

Linked Journey Segment Profile Assumed Route ZonalRange

Non-Reducible Fare Cannot beReduced

Figure 8.7 - Figure 8.4 updated with NRF.

A Non-reducible Fare (NRF) is the portion of a journey's fare that cannot be reduced by a zonal

period ticket. The NRF represents the fare incurred when travelling outside of the defined fare zones.

172

The non-reducible fare is introduced in order to accommodate journeys to NR stations that are

located outside of central London.

A NRF is defined for each segment profile whose assumed route extends beyond the bounds of the

fare zones. The assumed route can be decomposed into reducible and non-reducible legs. Since each

segment profile has a fixed assumed route, the NRF is fixed for a given segment profile and can be

pre-calculated and stored in a table.

Zonal Range: Journeylnnerzone=N/A, JourneyOuterzone=N/A
Zonal Validity: Ticketlnnerzone=2, TicketOuterzone=3
ZRF: N/A
NRF: Yes
Total Fare: ZRF + NRF = NRF

ZRF NRF

Zonal Range: Journeylnnerzone=l, JourneyOuterzone=4
Zonal Validity: Ticketlnnerzone=2, TicketOuterzone=3
ZRF: ZRFfunc(ExtJryl) + ZRFfunc(ExtJry2) - see prev. ex.

NRF:Yes
Total Fare: ZRF + NRF

Figure 8.8: Left; A journey whose assumed route is located entirely outside the fare zones. Right: A

journey with both zone-reducible and non-reducible components.

Ticket Holding (Zone 1-3)

ZRF. Fully Reduced

ZRF. Partially Reduced

Zone Reducible Fare

1 2 3 4 5 6 Non-Reducible
Fare

£ iExt. Fare

El

NRF. Not Reduced
NRF is a function of
each journey and
differs between

NRF Not Reduced. ZRF £0 £1.5 journeys
Partially Reduced

Figure 8.9 - Examples of journeys with zone reducible and non-reducible fares.

Note that the non-reducible legs of a journey do not necessarily have to be at the journey's beginning

or end. For example, the non-reducible leg could bisect a journey that both begins and ends in a fare

zone. In this case, the ZRF and zonal range of the journey reflects the discontinuous reducible legs.

173

The zonal range represents the inner and outer most reaches of the discontinuous legs, while the ZRF
represents the combined fare contribution of those legs. A discontinuous ZRF can be reduced by a
ticket in the same way as would a normal continuous ZRF.

8.4.2 OXNR Matrix Control System (MCS)

Oyster eXtension to National Rail (OXNR) is an effort by TfL to extend its existing Oyster Pay-as-
you-go (PAYG) system to National Rail services. Currently, Oyster based zonal period tickets are
available on NR services. However PAYG is generally not accepted on National Rail, with the
exception of certain lines that are paralleled by London Overground.

A key requirement for bringing Oyster PAYG to National Rail is revenue allocation. When a user
makes a journey that consists of multiple legs, and some of those legs are made on National Rail
services while others are made on TfL services (such as the Underground or DLR), a system must be
in place to ensure that the fare collected for that journey is divided equitably between TfL and the
TOCs. Note that, for the purpose of revenue allocation, London Overground is considered a TOC and
treated in the same way as other TOCs. The Matrix Control System (MCS) is OXNR's solution to
fare allocation problem. In addition, it enables support for Intermediate Validation.

Segment Segment Segment

CLBC Fare(Origin EndLoc StartLoc EndLoc StartLoc EndLoc StartLoc Destination Calculator

Linked Journey

I Leg Leg Inter Leg I OXNR
Matrix Control

Origin Tap Tap Tap Destination System(Tap)
(Tap)

Validation Signature

Figure 8.10 -Analogous views of a journey: MCS and fare processor. An excerpt of MCS output is
provided in appendix B. For each given OD, the MCS calculates and stores all the plausible
interchange possibilities, known as validation signatures. And for each validation signature, a path

174

choice model is used to enumerate the likely journey routes and the market share of each route as

percentage of the total flow between the given OD with the given validation signature.

We can see strong parallels between MCS and our fare calculator design. Validation signatures in

MCS are equivalent to the segment profiles we have described in section 8.4.1, which are themselves

derived from linked journeys, the output of the journey processor. The path choices (percentage

flows) generated by the MCS for each validation pattern is analogous to the semantic patterns we

have described in 7.4.2.1. The percentage flow for each path choice can be interpreted as the

probability likelihood that that path choice is in fact the true semantic pattern for a given linked

journey, with the given characteristic syntactic pattern. It is from this percentage split that a revenue

split between TfL and the TOCs is determined. Note that the further splitting of revenue assigned to

NR between the individual TOCs is undertaken by the Association of Train Operating Companies

(ATOC) using a proprietary model and is not a concern of TfL's.

8.4.2.1 Adapting MCS for the Contactless Bankcard Fare Processing

Contactless
Bankcard Fare

Calculator nked Assumed FarecJoury Route Reduction - o Fare

Fare

-----------Validation Signature Routes/Flows
OXNR i -

Matrix Control
System Flow Pot

Figure 8.11 - Comparing services: CLBC fare processor and OXNR MCS.

Figure 8.11 shows a side by side comparison of the fare calculator and OXNR MCS services. As the

diagram shows MCS is missing some services which the CLBC fare calculator requires. For

example, MCS computes a range of feasible routes, but does not select an assumed route and identify

the zonal range for that assumed route. The MCS does not differentiate the fare it reports for a given

175

validation signature into ZRF and NRF components. Finally, zone reduction logic needs to be

implemented. However, despite these differences, MCS is structurally similar and suited for direct

adaptation into a fare calculator for CLBC fare calculator. This means TfL's ongoing investment in

MCS can be reused.

8.4.2.2 Prototype Implementation

For a prototype implementation, the Maciejewski fare calculator [4] can be used as a plug in

replacement for the fare calculator module proposed above. The Maciejewski fare calculator

calculates single fares on the basis of the zonal range of the selected route. Arbitrary OD-based single

fares are not supported. Non-zonal single fares are also not supported. However, intermediate

validation is supported and zone reduction can be implemented in the Maciejewski fare calculator

with minimum modification.

8.4.3 Automatic Ticket Selection Unit

The Automatic Ticket Selection Unit (ATSU) implements best value, a feature of the existing TfL

fare description and a key requirement of the contactless bankcard fare engine. Previously we saw

that best value is currently implemented in Oyster using the capping. Capping relies on a system of

stretching windows and running totals to determine which cap applies to the user. This approach

suffers from the following drawbacks.

1. Window overextension - Over stretching of capping windows result in sub-optimal best-

value decisions.

2. Interference across time bands - All day and off-peak running totals are linearly dependent.

3. Non-contiguous zonal usage - Stretching window is able to record only Contiguous zonal

usage. 'Skipping' zones by non-Oyster means results in sub-optimal best value.

4. No support for best value over a week or longer periods - The capping architecture is not

easily adopted for capping over longer period e.g. 'Weekly capping'.

The design of Oyster capping, with its limitations, was largely motivated by the decentralized

architecture of Oyster and the capacity constraints of the Oyster card. Freed from these constraints,

we are able to explore alternative best-value implementations.

176

In this implementation of the ATSU we assume that the user may only exercise one ticket at a time.

This ticket could be one which the user has pre-purchased, or it could a ticket automatically selected

for him. No combination of two tickets could be used at the same time.

In Oyster, the same period product is priced differently depending on whether it is presented as a

'Ticket' or a 'Cap'. We called this the application context. In our fare structure we will not make this

distinction. There will only be one type of period product.

Note that there is no need to offer any ticket which has been enabled for automatic selection by the

ATSU for pre-purchase. The ATSU ensures that any pre-purchase of an automatically selectable

ticket will be redundant at best, and a bad economic decision in all other cases.

8.4.3.1 Daily Best Value

In our initial example we will explore the application of the ATSU to the daily best value problem.

The premise of daily best value is that under no circumstance would a user be able to spend less

money on fares by pre-purchasing a daily ticket than by simply using his contactless bankcard to

travel without preparation. In other words, we remove from the user the need to decide which daily

ticket, if any to buy out.

To implement daily best value in the ATSU, We will move away from the notion of 'capping' and

introduce a new paradigm. The ATSU maintains a series of Scenario Counters. Each scenario

represents a hypothetical 'alternate universe' in which the user is holding a particular ticket. Each

scenario counter tracks the charges accumulated throughout the day under its corresponding ticket

holding scenario. We will demonstrate this concept in an example below.

Base case Best Value
No Ticket

Min(Scenario counters})

Figure 8.12 - Scenario Counters.

177

In the figure above, each column except the last represents a scenario counter. The following

scenario counters are maintained:

* Base Case - This is the scenario where the user holds no ticket. Full single fares are

charged for all journeys.

* AD n-n - These are a set of All-Day (AD) tickets. Our AD tickets are modeled after

existing TfL all-day products as described in section 3.7.1. Once purchased an AD ticket

allows the user to travel within its validity zones at any time at no incremental cost.

Following the current Oyster offerings we provide AD tickets with the following zonal

validity: 1-2, 1-3, 1-4, 1-5, 1-6, 2, 2-5, 2-6. For the sake of simplicity we will not

demonstrate tickets with zonal validity greater than zone 6.

* OP n-n - These are a set of Off-Peak (OP) tickets. Our OP tickets are modeled after

existing Tfl off-peak products as described in section 3.7.1. Once purchased an OP ticket

allows the user to travel within its validity zones during the off-peak time band at no

incremental cost. The current Oyster off-peak time bands are described in section 3.5.1.4.

We provide OP tickets with the same zonal validities as available for AD tickets.

The last column in the table labeled 'Best value' is not an actual scenario counter. Rather, it takes the

minimum value chosen from all scenario counters. This value is given as min({scenario counters}).

The best value scenario is given as argmin({scenario counters}).

8.4.3.2 Worked Example

Other than the base case, each hypothetical ticket is associated with an 'initial investment'. At the

beginning of the day, we initialize the each scenario counter to the cost of its respective ticket. This is

how much the user would have spent if he had to pre-purchase that ticket. Our daily ticket costs are

based on the 'daily cap' limits published in the 2008 TfL Guide to Fares and Tickets.

In the base case, the user does not buy a ticket, and therefore incurs no cost. The initial value in the

base case is zero. A hypothetical all-day zone 1-2 ticket would have cost the user £6.30 to pre-

purchase. Therefore we initialize the scenario counter of the zone 1-2 ticket scenario to £6.30. We set

the other scenario counters similarly. Finally, the best value column is computed as the minimum of

178

the scenario counters. In this case, argmin({scenario counters}), or the 'winning' scenario is the base

case. The corresponding best value is therefore £0.00.

Figure 8.13 - Initializing Scenario Counters.

Now let us consider the user's first journey:

Journey 1: 7am Edgware-> Bank

Inner Zone - 1, Outer Zone - 5

Figure 8.14 - Fare calculator queried for single fares. Journey 1: 7am Edgware-> Bank. Inner Zone - 1,

Outer Zone - 5.

For each scenario, we use the fare calculator to generate the single fare for the current journey. The

zonal validity of the scenario (if any) is supplied to the fare calculator. In this example, we assume

that we have a simplified fare calculator which is based on the Maciejewski fare calculator. Recall

that the Maciejewski fare calculator computes single fares based on fare zones. The fully featured

fare calculator capable of arbitrary fares as proposed in section 8.4 could also be used; however we

have chosen to use the simpler alternative for sake of more intuitive illustration.

179

O1S O1 B

+3.50 +1.80 +1. 1.0+1.00 +0.00 +0.00 +2.80 +1.50 +1.50 +3.50 +3.50

Figure 8.15 - Fares returned by the fare calculator are added to the scenario counter.

In the base case, where the user holds no ticket, our journey incurs the full zone 1-5 fare. In the AD
1-2 scenario, because the user has free travel in zones 1-2, our journey incurs only a zone 3-5

extension fare. In the AD2 scenario, the user has free travel only within zone 2; therefore our journey
incurs two extension fares for the zone 1 section, and the zone 3-5 section of the journey. Note that
journey incurs the full zone 1-5 fare in all of the OP cases because an OP ticket does not give the user
any free travel during the peak time band (into which our journey falls). Because we need to query
the fare calculator for a fare for each scenario and for each journey, a high-performance fare

calculator implementation is essential.

6.30 7.50 8.90 11. 130 0 7.90 4.80 SAO07.00

8.10 8.50 9.90 11.30 13.30 9.10 9.00 9.40 8.30 8.90 3.50

Figure 8.16 - Scenario counters after first journey.

Fares returned by the fare calculator are added to the scenario counters. The scenario counters now
hold the user's total outlay under each scenario. For example, under the base case, the user would
have spent £3.50. In the AD 1-2 case, the user, having had to pay for both the cost of the ticket and
the extension fare for the first journey, would have spent a total of £8.10. The best value after the
first journey is still the base case (no ticket).

Now, we consider a second journey.

180

Journey 2: 8am Bank -> St James's Park

Inner Zone - 1, Outer Zone - 1

Figure 8.17 - Fare calculator queried for single fares. Journey 2: 8am Bank -> St James's Park. Inner

Zone - 1, Outer Zone - 1.

Figure 8.18 - Fares returned by the fare calculator are added to the scenario counter.

Figure 8.19 - Scenario counters after journey 2.

Again, the fare calculator is queried for the single fare for each scenario. The resulting fares are then

added to the scenario counters. We repeat this process for three more zone 1 peak journeys. The

181

resulting state of the scenario counters is shown in the figure below. The base case still remains the

winning scenario after journey 5. However will this still be the case when we add one more journey?

11.30 13.30 15.10 15.00 15.40 14.30 14.90

Figure 8.20 - Scenario counters after three more zone-1 peak journeys. The base scenario still remains
the winning scenario after journey 5. Now we add another zone 1 journey (the 5 th such journey in a
row).

I OP -

11.30 13.30 15.10 15.00 15.40 14.30 14.90

Figure 8.21 - The best-value scenario switches from the base case to AD 1-2.

After a fifth zone-i peak journey, we can see that the base case is no longer the best value scenario.

The winning scenario has now switched from the base case to the AD 1-2 scenario. In other words,

had the user pre-purchased an AD 1-2 ticket, his total outlay at this point would be £8.10, including

the initial cost of the ticket. In contrast, if he had not held a ticket and had to pay for every single fare

his total outlay would now be £9.50. The ATSU has determined that an all-day zones 1-2 ticket

would give the best value under these circumstances and automatically selected it for the user.

This example has been chosen to demonstrate that this ATSU algorithm is immune from zonal

overextension. Under the traditional Oyster capping algorithm, the sequence of journeys shown

above would have resulted in zonal over-extension. Specifically, the first journey, a zone 1-5

journey, would have extended the stretching window to 1-5. This would have activated the zone 1-5

182

I~~~

cap for the remainder of the day, even though the subsequent barrage of zone 1 journeys mean that a

zone 1 cap with a single zone 2-5 extension fare for the initial journey would have been more

effective.

By working through the examples from section 3.7.5 using the ATSU algorithm presented in this

chapter one can ascertain that this ATSU design resolves all of the identified drawbacks of Oyster

capping.

8.4.3.3 Weekly Best Value

Our automatic ticket selection algorithm can be extended to support weekly best value with relative

ease. Before we begin, we stipulate that weekly best value is supported on a fixed-window basis.

Either the user or TfL appoints a day of the week that automatically selected weekly tickets would

take effect from, for example, every Monday (beginning from 4:30 am when the system opens). Any

weekly ticket selected by the system would take effect for the entire week from Monday to Sunday.

Subsequent windows would adjoin the previous one (beginning the Monday after, and the Monday

after that, etc.). The alternative to fixed-window is a rolling window, where weekly tickets may be

applied beginning on any arbitrary day of the week as chosen by the algorithm. Rolling windows

introduce additional complexity which will not be discussed in this thesis.

The most intuitive first step to support weekly best value is to add scenario counters corresponding

the weekly ticket products. We will illustrate weekly best value in the figures below, which map out

the same set ofjourneys as used in the example above in section 8.4.3.2.

9.50 8.10 8.50 9.90 11.30 13.30

Figure 8.22 - Weekly best value. Weekly scenario counters added. Weekly ticket scenarios

highlighted.

183

i~r~~

Weekly ticket scenarios are evaluated in the same fashion as their daily counterparts. Any time a

journey is not fully covered by the zonal validity of the given weekly ticket, an extension fare is

charged, adding to the total. For example, the first journey is not fully covered by the W1-2 ticket,
incurring a £1.80 extension fare and therefore raising the W1-2 counter from £24.20 (the initial cost

of an adult zones 1-2 weekly ticket) to £26.00.

However, adding weekly ticket scenarios alone is not sufficient to give us weekly best value

capability. The problem is that the daily ticket scenarios require the best value counter to be reset at

the beginning of each day. However, when we do so the cumulative cost of daily charges would be

lost and the weekly scenarios would never be selected. In order for the weekly scenarios to be

considered fairly, we must a maintain a total of charges accumulated from the use of daily tickets

throughout the week.

To accomplish this, we two add counters. The first is the cumulatively daily best value (CDBV)

counter. This counter is reset at the start of the weekly ticket bracket (we have chosen Monday for

this example). Changes to the CBDV counter tracks changes to the daily best value (DBV) counter.

As it can be seen below in Figure 8.23, on the first day the CBDV increases in synchronization with

the DBV counter. When the daily best value scenario switches from the base case to AD 1-2, the

daily best value ceases to increase; this is reflected in the CBDV.

At the end of Monday, the DBV counter is reset, as before. The CDBV counter, however, continues

to accumulate. In essence, the CDBV counter tracks the user's cumulative spending for the week if

only single fares and automatically selected daily tickets had been available. The CDBV counter

accumulates each day's total in the same fashion for the remainder of the week.

The functioning of the weekly best value algorithm should now be clear. The user is charged the

amount in the second of the counters we added, the weekly best value (WBV) counter. The WBV

counter always carries the lesser of the CDBV counter and all of the weekly counters. For the first

part of the week, the CDBV is the winning scenario. This means that the user has not 'broken even'

with any weekly ticket yet and would be best served by some combination of no ticket and daily

tickets. At some point later in the week, such as journey 28 in the example above, the CDBV finally

loses its position as the winning scenario. In this case, it is overtaken by a W1-3 ticket. In other

words, the user is now best served if she had purchased a W1-3 ticket at the beginning of the week.

184

We give her this benefit retroactively by letting the WBV assume the cost of the best value scenario,

W1-3.

Daily B.V. resets every day. However

Cumulative Daily B.V. carries over day- Weekly Best Value is Min of these

to-day columns

Figure 8.23 - Weekly best value. Weekly best value and cumulative daily best value counters
introduced.

Automatic ticket selection can be extended to monthly and annual tickets extending this algorithm,

by introducing monthly and annual best value counters. The limitation of a fixed window still stands.

8.4.3.4 Best Value with Pre-purchased Ticket

Offering tickets which are automatically selectable for manual purchase by users may appear to be

completely redundant, since making a conscious purchase would always result in a zero or negative

benefit for the user. However, TfL may opt to exclude some of its ticket products from automatic

selection. Furthermore, if the fixed ticket windows are prescribed by TfL (and not selectable by the

user), the user could benefit by purchasing a weekly, monthly or annual ticket which begins on a

different date than the prescribed default (e.g. a monthly ticket beginning on the 8th rather than the

1st).

185

Daiy c n'. W 1-

A user pre-purchased a ticket can be represented in the ATSU as a scenario counter with a £0.00

initial investment, accounting for the fact that the pre-purchased ticket is a 'sunk cost'. This counter

is evaluated in accordance with the terms of the purchased ticket, including its zonal validity and

reset behavior. The ultimate best value scenario is then represented by the lesser of the pre-purchase

counter and the winning scenario of the existing automatic selection scenarios.

Note that the limitation that a user can hold only one ticket product at a time still stands. In other

words, the pre-purchased product cannot be applied at the same time (in conjunction with) any

automatically selected product, just as two products cannot be automatically selected together. A

multi-ticket algorithm which supports more than one ticket simultaneously warrants further

development.

186

Conclusions

We will restate here the thesis question that was posed in section 2.2.

Is it feasible to develop afare engine capable of accepting and processing contactless

bankcards as a fare instrument on the TL network while satisfying current and future fare

structure and performance requirements?

8.5 Summary of Research Process

The process of answering this question was decomposed into successive steps represented by the

seven chapters of this thesis.

Step 1 - Background research

First, we framed this discussion on contactless bankcard fare payment by examining the drawbacks

of current fare payment systems in use by transit agencies around the world. We discussed that high

operating costs were a prevailing challenge, and that direct fare payment using contactless bankcard

is an attractive alternative owing to the ability to export much of the operational expense associated

with a proprietary fare payment system to third party financial entities.

Step 2 - Thesis question

We defined the context of the question by laying out what fare engine is and where it fits in a fare

collection system. We defined a fare engine to be the business logic which converts the passenger's

use of a fare instrument into the charging of a fare. The thesis question was stated and decomposed

into a three-part problem:

1. What are the current and future fare requirements for TfL?

2. What are the capabilities and limitations using contactless bankcards as a fare instrument?

3. Is it feasible to design a fare engine which satisfies the requirements of 1) and successfully

solves the challenges posed by 2)?

Step 3 - Analysis of current TfL fare structure

We answered the first part of the thesis question by identifying and formalizing the existing TfL fare

structure. This was accomplished by analyzing the de-facto fare documentation available to us, in the

187

form of published user pamphlets and staff guides. We found that TfL fares can be segmented into

two product spheres - single products and period products. Each of these spheres can in turn be

represented by a fare matrix which can be parameterized into multiple independent tiers. The only

exception to this is that the geographic sensitivity of single fares can neither be explained by a fare

table of origin and destination stations, nor by a fare table of origin and destination zones. A system

of charge codes can be used to capture the intricate system of exceptions. We also documented the

operation of the current capping algorithm in Oyster, and its inability to produce true best value

under various input conditions. The operation of out-of-station interchange (OSI), automatic journey

completion and aliasing were described.

Step 4 - System Requirements

Based on our analysis of TfL's current fare structure, we laid out the system requirements for a fare

engine that meets current and future fare needs. In this process, we defined two sets of requirements,

one set for an ambitious and scalable general design, and another set for a more limited proof-of-

concept prototype. We also identified the three key journey linking requirements, which are OSI,

bus-rail interchange, and intermediate validation. The former two are existing Oyster services, while

the latter is not currently available in Oyster.

Step 5 - Fare Engine Design

The bulk of this thesis is devoted to the design of the fare engine. In chapter 4, we outlined the future

ticketing fare collection system being developed by TfL. We positioned the fare engine as the

subsystem that provides the linkage between field devices and the billing engine. In chapter 5, we

established the internal structure of the fare engine. The fare engine was divided into two modules.

The journey processor is responsible for converting raw bankcard interactions (taps) into linked

journeys, while the fare processor is responsible for converting linked journeys into billing items

which can be charged to the user's account, where they can be aggregated in any way the billing

engine sees fit. We also defined the data flows that connect the fare engine to other systems within

the fare collection system, and the data flow that connects the two fare engine modules.

8.6 Identified Challenges and Solutions

During the design process of the contactless bankcard fare engine, we identified some major

challenges and were successful in proposing solutions to them. The more significant challenges were:

188

Tap sequencing without guaranteed in-order arrival

The processing of taps in Oyster is guaranteed to be sequential due to the decentralized nature of

the system. However, contactless bankcard fare payment is a centralized system which relies on

the transmission of taps from stations and vehicles to a central processing system.

Communication delays could cause taps to arrive at the server in a different order than that in

which the original transactions were made.

The consequence of this is that the fare engine can no longer be a stateless system (as in Oyster).

Our solution is an object oriented data structure which resides in memory and keeps a full state of

the user's journey history. An individual structure is maintained for each user to ease user

management and multi-tasking. As taps arrive they can be inserted into the correct position based

on their timestamp. A cleanup mechanism prevents the data structure from growing without

bound as journey history accumulates.

Dynamic journey linking

A consequence of out-of-sequence tap arrival is that adjacency cannot be guaranteed. In other

words, two taps formerly thought to be adjacent (follow one after the other) may turn out not to

be so after the arrival of a delayed intervening tap. This means arriving taps could alter the

interpretation of existing taps.

Our solution is a dynamic journey linking mechanism. Journeys are represented in a three level

structure. The levels are Tap, Journey Segment and Linked Journey. As taps are inserted at the

lowest level, their effect on existing journey segments and linked journeys is bubbled up through

the structure using a set of triggering business rules. Linked journeys may have been created,

deconstructed or reformed as a consequence. The mechanism is guaranteed to stabilize with near-

constant time complexity, providing predicable and scalable performance. Inserted taps are

reflected immediately in the structure, providing real-time feedback for customer service and

payment authorization needs.

Arbitrary OD fares on National Rail

Unlike TfL fares, which are tightly coupled to the zonal structure, National Rail (NR) single fares

are set on an arbitrary basis between origin and destination stations. At the same time, it is a

requirement that zonal period tickets be usable for NR journeys. It is a challenge to integrate

189

these two conflicting requirements in a contactless bankcard fare engine so that tickets can be

applied where eligible and extension fares are calculated correctly where needed.

Our solution proposes a fare calculator module that divides the fare for each journey into zonal

reducible and non-reducible components. The former is affected by period tickets, while the latter

is not. This solution cleanly unifies period tickets with NRjourneys, providing seamless,

automatic NR support from the contactless bankcard user's perspective. Moreover the existing

TfL investment in the Matrix Control System (MCS) for Oyster Extension on National Rail

(OXNR) can be leveraged, giving ready support for revenue allocation.

True Best Value

Oyster currently implements best value through a capping algorithm that suffers from a number

of inefficiencies primarily concerned with its use of running totals and stretching windows to

determine which cap to apply. Furthermore, extending the capping algorithm to support weekly

best value is difficult and unwieldy.

Our solution is to abandon the notion of capping and instead introduce the concept of automatic

ticket selection. By maintaining a battery of scenario counters that correspond to the possible

ticket holdings and keeping these scenarios updated with user actions, we are able to select the

counter with the lowest cumulative fare, to ensure true best value at all times. With minimum

modification, this solution can be adapted for weekly best value.

As we have seen, taps can be sequenced without a guarantee of in-order arrival. Journey linking can

be performed dynamically, in real time on these unsequenced taps. Arbitrary National Rail fares can

be integrated into the existing system of zonal tickets, and finally, best value can be accomplished in

a future ticketing system without the restrictions of today's Oyster capping.

Ultimately, we conclude that a fare engine which works with contactless bankcard payments and

implements TfL's current and future fare needs appears feasible. This conclusion is based on our

ability to find solutions to the key obstacles arising from both the limitations of using contactless

bankcards for direct fare payment and TfL's complex fare requirements.

190

8.7 Further Work

In this thesis we have demonstrated evidence for the feasibility of a contactless bankcard fare engine.

It has been shown from a systems engineering perspective that the difficulties posed by the properties

of contactless bankcards and TfL's complex fare structure are not insurmountable. A fare engine

design has been proposed. However the practicability of this design can be confirmed by enacting it

in a proof-of-concept and subjecting the prototype to inputs that simulate the stresses of real-world

usage.

Therefore, the next logical step in the development process of a contactless bankcard fare engine is to

prove that such a fare engine is not only feasible, but practical with respect to hardware and software

requirements by implementing the prototype implementation and making quantitative benchmarks of

performance under stress testing.

In addition, we have so far glossed over the details of the fare calculator module. Integration with the

Matrix Control System was proposed and a general mapping of services was provided. However the

specific aspects of this integration, as well as performance and data considerations need further

investigation.

191

References

[1] Transport for London, Your guide to fare and tickets within zones 1-6. London:TfL, 2009.

[2] Transport for London, Your guide to fares and tickets Zones 7-9. London: TfL, 2009.

[3] Transport for London, "Tickets", London: TfL, 2009. [online]. Available:

http://www.tfl.gov.uk/tickets/ [accessed: May 2, 2009]

[4] J. Maciejewski, "Automating Journey Fare Calculation for Transport for London", MST Thesis,

Massachusetts Institute of Technology. Cambridge, MA, 2008.

[5] S. Mehta, "Analysis of Future Ticketing Scenarios for Transport for London", MST Thesis,

Massachusetts Institute of Technology, Cambridge, MA, 2006.

[6] M. Dorfman, "Future Contactless Payment Options for Transport for London: Demand, Cost,

Equity, and Fare Policy Implications", MST Thesis, Massachusetts Institute of Technology,

Cambridge, MA, 2007.

[7] Smart Card Alliance. "Transit and Contactless Financial Payments: New Opportunities for

Collaboration and Convergence," Smart Card Alliance, Princeton Junction, NJ, 2006.

[8] Smart Card Alliance. "Transit and Retail Payment: Opportunities for Collaboration and

Convergence," Smart Card Alliance, Princeton Junction, NJ, 2003.

[9] Smart Card Alliance. "Co-Branded Multi-Application Contactless Cards for Transit and Financial

Payment," Smart Card Alliance, Princeton Junction, NJ, 2008.

[10] A. Kjos, "The Merchant-Acquiring Side of the Payment Card Industry: Structure, Operations,

and Challenges," Federal Reserve Bank of Philadelphia, Philadelphia, PA, 2007.

[11] D. Fleishman, N. Shaw, A. Joshi, R. Freeze, "TCRP Report 10: Fare Policies, Structures and

Technologies," TRB, Washington, DC, 1996.

[12] MultiSystems Inc, "TCRP Report 94: Fare Policies, Structures and Technologies: Update,"

TRB, Washington, DC, 2003.

192

[13] D. Gauthier, "Watch out, EMV is coming in contactless too," ContactlessNews, Dec 6, 2005.

[online]. Available: http://www.contactlessnews.com/2005/12/06/watch-out-emv-is-coming-in-

contactless-too [accessed: May 20, 2009].

[14] Visa Europe, "Visa Contactless," Visa Europe, London, UK, 2009. [online]. Available:

http://www.visaeurope.com/pressandmedia/factsheets/visacontactless.jsp [accessed: May 20, 2009].

[15] HSBC plc, "MasterCard PayPass," HSBC plc, London, UK, 2009. [online]. Available:

http://www.hsbc.co.uk/1l/2/personal/credit-cards/paypass [accessed: May 20, 2009].

[16] Smart Card Alliance, "Contactless Payment: Try It, You'll Like It," Smart Card Alliance,

Princeton Junction, NJ, 2008. [online]. Available:

http://www.smartcardalliance.org/articles/2008/09/1 7/contactless-payment-try-it-voull-like-it

[accessed May 20, 2009].

[17] B. Blanchard & W. Fabrycky, Systems Engineering and Analysis. Upper Saddle River: Pearson

Upper, 2006.

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1994.

[19] J. Shirazi, Java Performance Tuning 2ed. O"Reilly, 2003.

193

Appendices

A. Current Oyster Fare Structure Hierarchy

This hierarchy was compiled by noting the heading organization and formatting.

o Adult
> Single Fare

* Bus and Tram

* Oyster single

* Cash single
* Tube DLR and Overground

* Oyster

* Peak

* Off-Peak

* Cash single

> Day Tickets and Oyster Daily Price Capping
* Bus and Tram

* Daily Price Cap

* One day bus and tram pass
* Tube DLR and Overground

* Daily price cap

* Peak

* Off-Peak

* Day Travelcard

* Peak

* Off-Peak

> Season Tickets
* Bus and Tram Passes

* 7 Day

* Monthly

* Annual
* Travelcards

* 7 Day

* Monthly

* Annual

• Discount

194

Single Fare
* Bus and Tram

* 16+ and New Deal

* Oyster Single

* Cash Single
* Tube DLR and Overground

* Child

* Oyster single

* Cash single

* 16+ and New Deal

• Oyster single
> Peak

> Off-peak

Daily Price Caps and One Day Tickets
* Bus and Tram

* 16+ and New Deal

* Daily Price Cap
* Tube DLR and Overground

* Child

* Daily Price Cap

> Peak

> Off-peak

• Day Travelcard

> Anytime

> Off-peak

* 16+

• Daily Price Cap

> Peak

> Off-peak

* New Deal

* Daily Price Cap
> Peak

> Off-peak

Season Tickets
* Bus and Tram

* Student

* 7-Day

* Monthly

195

* Annual

* 16+ and New Deal

* 7-Day

* Monthly
Travelcards

* Child, 16+ and New Deal

* 7 Day

* Monthly

* 18+ Student

* 7 Day

* Monthly

* Annual

* Visitor and Group Tickets
> Adult

> Under-18

* DLR and River Rover Tickets
> Adult

> Child

> Family

* 3 Day Travelcards

> Adult
* Anytime

* Off-peak
> Child/New Deal

* Anytime
* Off-peak

196

B. Matrix Control System Sample Output

The following excerpt illustrates the output of TfL's Matrix Control System. Disclaimer: Information below is provided for illustrative

purposes only and is not to be interpreted as a representation of actual TfL policy or processes.

Matrix Engine Results run date
Matrix Version

11/27/2008
1

Total Total NR TfL
Route GJT distance distance distance Flow %

1 76.02 2489 1561 928 100.00i~ i '' ' i ~ i !~i i 1 ! iii! iii~ii i i! ~ii ~i~~~ii~~ !~ ~iiii~iiii~i i !i~~i!N !!i~ii~l~~iii~i~ii~ii~i'iii! !!~i~~ iii ii~ iii i iii iil ~li!iiiiiiiii! _i ii, 9B~iiii i~i~
r . 9 8i , ? ii ' ii i i ! iil I - , , ,, !i! ii!!i !ii'i~ii i iii!i,

Mode Distance
TfL 928

0
NR 1561

GJT
37.02

10.2
28.8

Start
name

Stratford
Waterloo
London Waterloo

End
name

Waterloo
London Waterloo
Richmond NR

Total Total NR TfL
Route GJT distance distance distance Flow %

1 76.20 2794 2794 0 50.28

End nic Mode
5570 NR

Start
Distance GJT name

2794 76.2 Stratford NR

End
name

Richmond NR

Type
Leg
Inter
Leg

Start
nlc

719
747

5598

End nlc
747

5598
5570

Type
Leg

Start
nlc
6969

197

Total Total NR TfL
GJT distance distance distance

2 79.37 2504 0 2504 36.62

Type
Leg

Start
nlc

719
End nic Mode Distance

686 TfL 2504

Start
GJT name

79.37 Stratford

Total Total NR TfL
GJT distance distance distance

3 93.94 2793 2408 385 8.53

End nic
5588

591
686

Mode Distance
NR 2408

0
TfL 385

GJT
67.75

6.3
19.89

Total Total NR TfL
GJT distance distance distance

4 100.20 2794 2794 0 4.56

End nic
6009

6009

5570

Mode Distance
NR 724

0

NR 2070

Start
name

Stratford NR
Gunnersbury NR
Gunnersbury

Start
GJT name

28.25 Stratford NR
Highbury&lslington

12 NR
Highbury&lslington

59.95 NR

End
name

Gunnersbury NR
Gunnersbury
Richmond

End
name

Highbury&lslington NR

Highbury&lslington NR

Richmond NR

Total Total NR TfL
GJT distance distance distance

1 85.17 2463 650 1813 91.09

198

End
name

Richmond

Type
Leg
Inter
Leg

Start
nic
6969
5588
591

Type
Leg

Inter

Leg

Start
nic
6969

6009

6009

Type
Leg
Inter
Leg

Type
Leg
Inter
Leg
Inter
Leg

Start
nic
6969
6965

513

Start
nlc
6969
6965

513
591

5588

Start
Type nic

Leg 719
Inter 542
Leg 5598

End nic
6965

513
686

End nic

6965
513
591

5588
5570

End nlc
542

5598
5570

Mode Distance
NR 650

0
TfL 1813

Mode Distance
NR 650

0
TfL 1428

0
NR 386

Mode Distance
TfL 964

0
NR 1561

GJT
16.85

15.4
52.92

GJT
16.85

15.4
47.22

6.3
22.65

GJT
41.2
16.7
28.8

Start
name

Stratford NR
London Livrpl St
Bank

Start
name

Stratford NR
London Livrpl St
Bank
Gunnersbury
Gunnersbury NR

Start
name

Stratford
Embankment
London Waterloo

End
name

London Livrpl St
Bank
Richmond

End
name

London Livrpl St
Bank
Gunnersbury
Gunnersbury NR
Richmond NR

End
name

Embankment
London Waterloo
Richmond NR

Total Total NR TfL
GJT distance distance distance

2 115.50 2850 2285 565 5.32

199

--

Mode Distance
NR 724

TfL

NR

0
565

0
1561

Start
GJT name

28.25 Stratford NR
Highbury&lslington

7.6

34.15
16.7
28.8

NR
Highbury
Embankment
London Waterloo

End
name

Highbury&lslington NR

Highbury
Embankment
London Waterloo
Richmond NR

Rou e Total Total NR TfLGJT distance distance distance Fow
1 88.95 2448 2211 237 100.00

Mode Distance
NR 650

0
TfL 237

0
NR 1561

GJT
16.85

15.4
17.7
10.2
28.8

Start
name

Stratford NR
London Livrpl St
Bank
Waterloo
London Waterloo

End
name

London Livrpl St
Bank
Waterloo
London Waterloo
Richmond NR

Total Total NR TfL
GJT distance distance

1 90.25 2484 2211 273 100.00

Mode Distance
NR 650

Start
GJT name

16.85 Stratford NR

End
name

London Livrpl St

Type
Leg

Inter
Leg
Inter
Leg

Start
nic
6969

6009
603
542

5598

End nic
6009

603
542

5598
5570

Type
Leg
Inter
Leg
Inter
Leg

Start
nic
6969
6965

513
747

5598

End nic

6965
513
747

5598
5570

Type
Leg

Start
nic
6969

200

End nlc
6965

Inter
Leg
Inter
Leg

6965
513
542

5598

Start
Type nic

Leg 719
Inter 747
Leg 5598
Inter 5595
Leg 5595

513
542

5598
5570

End nic
747

5598
5595
5595
5570

TfL

NR

0
273

0
1561

Mode Distance
TfL 928

0

NR 624
0

NR 937

15.4
12.5
16.7
28.8

GJT
37.02

10.2
11.9

13
20.2

London Livrpl St
Bank
Embankment
London Waterloo

Start
name

Stratford
Waterloo
London Waterloo
Clapham Junction
Clapham Junction

Bank
Embankment
London Waterloo
Richmond NR

End
name

Waterloo
London Waterloo
Clapham Junction
Clapham Junction
Richmond NR

201
