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Searching for Supersymmetry with the ATLAS Detector

Martin John White

This thesis presents a new method by which one may use data from the ATLAS detector of the
Large Hadron Collider at CERN to measure the parameters of the theory of supersymmetry
(SUSY). The technique uses a Markov Chain Monte Carlo sampling algorithm to combine
measurements of exclusive variables, in the form of kinematic endpoints that arise in the in-
variant mass distributions of leptons and jets given out in sparticle decay chains, with inclusive
data, in the form of the cross-section of events passing a missing transverse energy cut. This
improves the precision of sparticle mass measurements (beyond that obtained using exclu-
sive data alone), whilst also enabling experimental uncertainties to be handled in an intuitive
fashion. The method is demonstrated on an mSUGRA benchmark model, and is also used to
constrain a model with a greater number of parameters. Throughout, an attempt is made to
break some of the unrealistic assumptions that characterise current SUSY search techniques,
and to this end it is successfully demonstrated that one can use the Markov Chain method to
obtain precise results even if it is not possible to precisely determine which sparticles produced
the endpoints in the invariant mass distributions. This decay chain ambiguity is extended by
looking at a sample SUSY model with non-universal Higgs masses, in which cascade decays
featuring three body decays become more prominent. The positions of the associated end-
points are calculated for a squark cascade decay, and are subsequently studied with the aid of
a benchmark model. In addition, this thesis presents work relating to the development of an
online monitoring package for the ATLAS Semi-Conductor Tracker (SCT). A tool for the cal-
culation of noise occupancies is developed and tested against existing calibration data, prior
to its application to various data sets obtained during the SR1 cosmic commissioning tests at
CERN in the summer of 2006. It is found that the modules of the SCT included in the test
have an average noise occupancy of less than 5 × 10−4 per strip per event, and thus meet the
design specification.
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Preface

The theory of supersymmetry (SUSY) proposes a special relationship between fermions and
bosons, and was first introduced in the context of particle physics in 1973. Subsequent years
have seen much theoretical development, and it has become apparent that many of the prob-
lems of the Standard Model are solved by making the theory supersymmetric. Unfortunately,
despite the many hours of high energy experiment performed in the last 30 years, there is no
hard evidence to suggest that supersymmetry is indeed a valid theory of Nature.

This thesis nevertheless picks up the narrative at a particularly exciting time. As of next
year, the largest particle accelerator ever built will be colliding protons at CERN in Geneva,
Switzerland, and observing the results with sophisticated, multi-purpose detectors. The Large
Hadron Collider (LHC) has two detectors designed to search for new physics, ATLAS and
CMS, and these will collect large amounts of data over 10 years, at a centre of mass energy
of 14 TeV. It has long been suspected that the new particles required by supersymmetry have
masses of the order of 1 TeV, thus making them visible at the LHC.

The purpose of this thesis is to explore a method by which the data from ATLAS can be
used to constrain the parameters of the supersymmetric theory. Current analyses in the field
tend to rely on unrealistic assumptions, either by fixing most of the 105 possible parameters in
order to make calculations easier, or by making false assumptions related to the identification
of particles in decay chains. Here, a Markov Chain Monte Carlo method is used to combine
exclusive and inclusive variables from the detector in order to provide enough information for
these assumptions to be relaxed.

Chapter 1 reviews the Standard Model of particle physics, and explains the theoretical
motivation for supersymmetry. This is followed in Chapter 2 by a discussion of the ATLAS
experiment at the LHC, thus presenting the equipment with which experimenters hope to
discover supersymmetry. The thesis is then divided into two distinct components.
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The first covers work that is relevant to the operation of the detector itself. A Semi-
Conductor Tracker (SCT) is used, amongst other things, to track particles in the ATLAS inner
detector, and the design of this subsystem is presented in Chapter 3. The development of an
online monitoring system for the SCT is described in Chapter 4, and the resulting software is
applied to various data sets from the recent cosmic ray commissioning tests at CERN in order
to investigate the noise occupancy of the detector strips.

The second original section of this thesis returns to the theory of supersymmetry, and ap-
plies the Markov Chain Monte Carlo sampling method to the supersymmetric parameter space
using simulated ATLAS data. In order to motivate the need for a more general strategy for
SUSY parameter measurement, Chapter 5 reviews the current approach to sparticle mass mea-
surement using kinematic endpoints, including two original studies performed by the author.
The chapter also introduces the Markov Chain Monte Carlo (MCMC) algorithm used later on.
Having identified the key issues that need to be addressed (mainly those related to the low
number of parameters probed by current studies, and decay chain ambiguity), Chapter 6 uses
the MCMC method to combine a cross-section measurement with kinematic endpoint infor-
mation in order to make definite statements on the impact of decay chain ambiguity, and the
possibility of extending the number of parameters used in SUSY searches. Finally, Chapter 7
investigates a class of SUSY model where the Higgs masses are not unified at the GUT scale,
and examines an interesting extension to the decay chain ambiguity considered in chapter 6.
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Chapter 1

Theory

What is the world made of? This is the central question at the heart of particle physics, the
study of the fundamental particles of nature and the interactions between them. Though the
idea of a natural world comprised of a space filled with an almost infinite number of indivisible
particles can be traced back to Greek philosophers, it was only in the last century that we really
began to observe and understand Nature on the smallest scales. Indeed, nature appears to be far
from the simple empty void full of atoms that Democritus described, instead being composed
of families of fundamental objects whose interactions can only be understood through the
often counter-intuitive ideas of quantum theory.

During the second half of the last century, experiments at the high energy frontier led to
the development of the Standard Model (SM) of particle physics. The theory has proved to
be astonishingly successful in predicting a wide range of phenomena with great accuracy, but,
as we will see shortly, is deficient in certain key areas, most notably its inability to deal with
gravity. For this reason, it is assumed that the SM is an effective theory valid only at low
energy scales, and hence there must be some physics that has yet to be found. This forms the
motivation for the next round of particle experiments, starting with the commencement of data
taking at the Large Hadron Collider in 2007.

Here, a brief review of the SM and its problems is given, after which supersymmetry is
introduced as a well-motivated extension of the current theory.

1



2 Theory

1.1 The Standard Model

1.1.1 Overview

The SM was developed in the early 1970s, and is a quantum field theory consistent with two
of the greatest ideas of twentieth century physics- quantum mechanics and special relativity.
Matter and forces are described in terms of point-like particles1 which carry internal angular
momentum. The quantum number called ‘spin’ which parameterises this internal property
gives rise to two distinct types of particle; fermions (with half-integer spin) and bosons (with
integer spin). All matter in the SM is in the former category (and hence must obey the Pauli
exclusion principle), and all forces are mediated by particles that fall into the latter category.

It is believed that four forces are sufficient to describe all phenomena in nature, these
being the strong force, the electromagnetic force, the weak force and gravity. The SM is
a combination of gauge field theories that explain the first three of these, but does not cur-
rently incorporate gravity. The electromagnetic and weak force are given a unified description
by ‘electroweak theory’, whilst the strong force is described by ‘quantum chromodynamics’
(QCD).

A particular subtlety of the SM is the treatment of mass. It is obvious from observation
that most SM particles are massive, and yet putting mass terms into the SM Lagrangian di-
rectly breaks gauge invariance and results in a theory which is nonrenormalizable. The most
popular solution to this problem is the Higgs mechanism which requires spontaneous sym-
metry breaking, and which is reviewed in more detail in 1.1.3 after a short description of the
unbroken SM. A more complete description can be found in reference[1].

1.1.2 Matter and forces in the SM

One can divide matter in the SM into two categories; particles that feel the strong force
(quarks) and particles that do not (leptons). The quarks and leptons in the SM are grouped
into three families, distinguished by their successively greater masses. The common house-
hold atom is made only of particles in the first family, as particles in the higher families decay
rapidly into the those of the first generation, and can only be observed over short timescales in
high energy experiments. The origin of this peculiar family structure remains a great mystery.

1In reality, although the theory treats particles as ‘point-like’, the only possible empirical statement one can
make is that the fundamental particles of the SM have no spatial extent above the current level of observation of
10−18 − 10−19 m.
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Table 1.1: The matter content of the SM, including the gauge quantum numbers
of the various species. T is the weak isospin, with third component T 3. Y is the
S U(1)Y hypercharge, and Q is the electric charge. The subscripts L and R denote
chiral components.

A force is introduced into the SM by requiring the Lagrangian that describes the matter
fields to be invariant under a particular local (i.e. space-time dependent) transformation, called
a “gauge transformation”, and the precise form of the transformation relevant to each force
has been motivated by experiment. In QED2, for example, we impose invariance under a local
U(1) transformation of the electron field, under which the electron field ψ transforms to eiθ(x)ψ,
thus corresponding to a local rotation of the phase of the electron field. In order to preserve
gauge invariance, an interaction term is introduced with a massless gauge boson (the photon).
We also obtain a coupling constant to describe the strength of the interaction.

The weak force is formulated in a similar fashion, except that the transformation is more
complicated. All fundamental fermions can be grouped in multiplets, each of which shares
similar behaviour under the weak interaction (see Table 1.1) with, for example, u-type quarks
always producing d-type quarks in decays 3, and vice versa. The analogue of ‘electric charge’
is ‘isospin’, and the weak force is introduced to the SM by requiring that the Lagrangian
describing the fermion fields is invariant under SU(2) transformations in the vector space of
weak isospin. There are three vector bosons associated with it as a consequence of the general
rule that the number of gauge bosons associated with a force is the same as the number of
generators of the group describing the transformation. In addition, since SU(2) is non-abelian
(not all of the elements commute), we obtain self-interaction terms for the gauge bosons of
the weak force.

All fermions in the unbroken SM are massless fields that can be expressed as a sum of left-
and right-handed parts (whose behaviour is completely independent in this massless limit).

2The theory of electromagnetism that will later be unified with the description of the weak force.
3In fact, the W± bosons of the weak interaction do not couple directly to the quark fields, but instead to linear

combinations of the quark fields.
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These interact differently with the bosons of the weak force and this is described in the SM
by only allowing the left-handed components of particles (the right-handed components of
antiparticles) to transform under SU(2). It is possible to unify the electromagnetic and weak
interactions by imposing invariance under the gauge group SU(2)L×U(1)Y , where the sub-
script Y denotes a quantum number called hypercharge, and is intended to indicate that the
U(1) transformation of the unified “electroweak” group is not the same as the QED gauge
group referred to earlier[2–4]. The subscript L represents the fact that only the left-handed
components of particles transform under SU(2).

The description of the strong force involves a Lagrangian invariant under SU(3) rotations
in ‘colour’ space. Quarks are described by a field ψi, where the subscript i runs over the three
possible colours. Eight gauge bosons, or “gluons”, mediate the force, and the non-Abelian
nature of SU(3) once more leads to self-interaction terms in the Lagrangian, meaning that
gluons themselves carry colour charge. Colour isn’t observed directly in nature, and thus it
is argued that quarks are confined to colourless states known as hadrons by a potential that
increases toward large distances.

1.1.3 Mass and the Higgs mechanism

Mass terms in a renormalizable theory

So far, we have only considered massless fermions and gauge bosons. For fermions, this is
because we wanted to describe the parity violation of the weak interactions by decoupling
the left and right-handed components of the Dirac field, and for bosons it is because gauge
invariance of the unbroken SM can be shown to imply that spin-1 gauge bosons have zero
mass if they are the only bosons in the theory. Whilst this second point is correct for photons
and gluons, it is clearly not the case for the heavy bosons of the weak interaction, whose
non-zero mass was measured to great precision at CERN in the 1980s.

A first naive approach to this problem would be to simply add mass terms for the weak
gauge bosons to the Lagrangian, thus explicitly breaking the gauge symmetry. This gives us
a theory which is non-renormalizable, however, and whose infinite number of divergences is
catastrophically undesirable. Instead, one can invoke the method of Peter Higgs[5], in which
the Lagrangian preserves gauge invariance whilst the vacuum state of the theory is no longer a
singlet under the action of the gauge group. This “spontaneous symmetry breaking” generates
massive gauge bosons without compromising renormalizability, and is achieved in the SM
through the inclusion of a scalar field which is a doublet under SU(2).
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Spontaneous symmetry breaking

In order to demonstrate the Higgs mechanism, consider a general SU(2) gauge theory for a
complex doublet of scalar fields Φi, i = 1, 2, with the Lagrangian density:

L = −1
4Fa

µνF
aµν + |DµΦ|2 − V(Φ) (1.1)

where Fa
µν is the field strength tensor, and:

DµΦ = ∂µΦ + igWa
µTaΦ (1.2)

The terms here require some explanation. g is a coupling constant for the weak interaction,
that parameterises the strength of the force. The matrices Ta are the generators of the SU(2)
group, the gauge boson fields are denoted by Wa

µ and the superscript a = 1, 2, 3 runs over the
generators of the group. The indices µ and ν of the field strength tensor are summation indices
that run over the four rows and columns of the matrix, and the superscript a runs over the three
gauge fields.

Now suppose that the potential V(Φ) specified above is given by:

V(Φ) = −µ2Φ†iΦ
i + λ(Φ†iΦ

i)2 (1.3)

This has a local maximum rather than a minimum at Φ = 0, and hence there is no longer
a zero vacuum expectation value (VEV), but instead an infinite number of degenerate minima
given by Φ†iΦi =

1
2µ

2/λ. Thus there is a degenerate vacuum and symmetry breaking occurs
when we make a choice of one of these minima to represent the true vacuum, which here, for
simplicity, is selected to be:

〈Φ〉 = 1
√

2





















0

v





















(1.4)

with v = µ/
√
λ. We now expand Φi about its VEV:

〈Φ〉 = 1
√

2





















φ1 + iφ2

v + H + iφ3





















(1.5)

Here, a general complex field has been added to the VEV, but one of the components has been



6 Theory

called H in anticipation of the significance it will acquire later on. Note that the fields φi,
i = 1...3 and H all have a zero VEV, and that Equation 1.5 can be inserted into Equation 1.3 in
order to obtain the potential in terms of the extra fields. In doing so, a term of the form µ2H2

is obtained, which is a mass term for the H field corresponding to a mass of MH =
√

2µ, but
there are no analogous terms for the φi fields. Hence, although H is a field for a massive boson
known as the Higgs boson, the φi fields describe massless fields called Goldstone bosons. One
can always work in a certain gauge in which all three φi are set to zero4. Working in this gauge
(the unitary gauge), one can write DµΦ as:

DµΦ =
1
√

2





















∂µ





















0

v + H





















+ i
g
2





















W3
µ

√
2W−

µ

√
2W+

µ −W3
µ









































0

v + H









































(1.6)

where the following notation has been introduced:

W±
µ ≡ (W1

µ ± iW2
µ)/
√

2 (1.7)

In addition, the following explicit form for the generators of SU(2) in the 2 × 2 representation
is used:

T1 =
1
2





















0 1

1 0





















,T2 =
1
2





















0 −i

i 0





















,T3 =
1
2





















1 0

0 −1





















(1.8)

It is now possible to write explicitly the term |DµΦ|2 in Equation 1.1:

|DµΦ|2 =
1
2∂µH∂µH +

1
4g2v2(W+

µ W−µ +
1
2W3

µW3µ)

+
1
4g2H2(W+

µ W−µ +
1
2W3

µW3µ) + 1
2g2vH(W+

µ W−µ +
1
2W3

µW3µ) (1.9)

The first term is a kinetic term for the Higgs boson, whilst the third and fourth terms (count-
ing those in brackets as one term) are both interaction terms between the Higgs field and the
weak bosons, specifying quartic interactions and Yukawa interactions respectively. The sec-

4The Goldstone bosons still play an important part in the theory, however, as the quantum degrees of freedom
associated with them must remain even after a choice of gauge is made. To see what happens to them, consider
that a massless vector boson has only two degrees of freedom whereas a massive boson has three possible
helicity values. This third degree of freedom arises from a Goldstone boson, and hence the gauge bosons “eat”
the Goldstone bosons in order to become massive. For the case of the SU(2) group considered here, there are
three Goldstone bosons, and each is eaten by one of the three gauge bosons of SU(2). Hence the introduction of
the four degrees of freedom of a scalar doublet has given us the Higgs field and the three longitudinal components
of the now massive vector bosons.
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ond term, meanwhile, is a mass term for the weak bosons. Each of the three gauge bosons
associated with the SU(2) group has acquired a mass:

MW =
gv
2

(1.10)

The Higgs mechanism

The Higgs mechanism in the SM proceeds exactly as in the previous section. In order to obtain
massive gauge bosons for the SU(2)L×U(1)Y group, one can introduce a scalar ‘Higgs’ field as
a doublet under SU(2), as given by Equation 1.5. The field is a singlet under SU(3). Because
the kinetic term (DµΦ)†(DµΦ) now contains contributions from the U(1)Y boson, one finds that
the fields arising from SU(2) mix with that arising from U(1)Y and hence the physical gauge
bosons W±, Z and γ must be superpositions of the original gauge fields.

In addition, one can obtain massive fermions by adding gauge invariant terms of the form:

LYukawa = −GeēL
iΦieR + h.c. (1.11)

where h.c. denotes the Hermitian conjugate of the first term. This is called a ‘Yukawa’ term,
and is an interaction between the left-handed electron doublet ēL

i, the right-handed electron eR

and the scalar doubletΦi. Analogous terms exist for muons and taus. Ge is a Yukawa coupling
constant that parameterises the strength of the interaction. In the unitary gauge, one may write
equation 1.11 as:

LYukawa = −
Ge√

2





















ν̄L

ēL
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0

v + H





















eR + h.c. (1.12)

The part of this proportional to the vacuum expectation value of the Higgs field is:

−Gev√
2

(ēLeR + ēReL) = −Gev√
2

ēe (1.13)

This is a mass term for the electron, which has acquired a mass that is proportional to the
vacuum expectation of the scalar field and to the Yukawa coupling Ge. Ge may be written in
terms of the weak coupling constant g, the electron mass me and the W mass MW as:

Ge = g
me√
2MW

(1.14)
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In addition, equation 1.12 has a term expressing the coupling between the electron and the
Higgs field:

−g
me

2MW
ēHe (1.15)

This reflects the general feature that the couplings of the Higgs boson are proportional to the
masses (or squares of masses) of the particles it is interacting with, which is an important
factor in the phenomenology of Higgs searches.

The Higgs mass and the hierarchy problem

Although its appearance in accelerators is hotly anticipated, the Higgs boson is the only parti-
cle in the SM that has yet to be observed. Furthermore, we have seen that the Higgs acquires a
mass MH =

√
2µ, equivalent to MH ∝ λv2, and this unfortunately means that we cannot predict

MH in the SM, as we do not know the value of the quartic coupling λ.5 One can, however, use
experimental constraints along with the structure of the theory to place bounds on the Higgs
mass.

One such constraint arises from considering the elastic scattering process W+W− → W+W−,
which can be described in terms of a matrix S which must be unitary. This implies an upper
bound on MH of

(

8π
√

2
3GF

)
1
2
= 1008 GeV[6] and means that, if it exists at all, one would expect

to see the Higgs boson at the LHC. One can also consider the fact that λ rises with energy
for large Higgs masses, and hence the theory will eventually become non-perturbative. The
demand that this does not occur below some energy scale Λ implies an upper bound on the
Higgs mass[7, 8]. Finally, a lower bound can be obtained theoretically by studying quantum
corrections to the SM, and by imposing the requirement that the effective potential be positive
definite[9]. These arguments imply that, if the SM is to be consistent up to the GUT scale
Λ ≈ 1016GeV, one expects MH to lie in the range 130 to 190 GeV. The observation of a Higgs
boson with a mass below 130 GeV would imply the existence of new physics below the GUT
scale, and hence the Higgs mechanism is intimately connected with searches for new physics.

In addition to theoretical data, one can use experimental results. Indirect bounds are ob-
tained through the use of precision fits to electroweak data, and these currently predict that
MH < 219 GeV at the 95% confidence level[10]. There are also direct lower bounds on the
SM Higgs mass resulting from the failure to observe it in previous collider experiments; the
most substantial of these to date is the LEP2 limit which gives MH > 114.4 GeV at the 95%

5The VEV of the Higgs field is, however, fixed by the Fermi coupling, and is given by v = 247 GeV.
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(a)

H

f

(b)

H

S

Figure 1.1: Loop corrections to the SM Higgs mass.

confidence level[11].

The fact that all available evidence points toward a light Higgs mass unfortunately causes
problems in the SM, which predicts that MH will be subject to large radiative corrections due
to loop diagrams of the form shown in Figure 1.1. A fermion of mass m f and Higgs coupling
λ f gives the following contribution to the square of the Higgs mass:

δM2
H =
|λ f |2

16π2

[

−2Λ2 + 6m2
f ln(Λ/m f ) + ...

]

(1.16)

where Λ is the cut-off scale of the theory, beyond which new physics is expected to enter. Any
scalars resulting from new physics, meanwhile, give a contribution:

δM2
H =

λs

16π2

[

Λ2 − 2m2
sln(Λ/ms) + ...

]

(1.17)

Summing these contributions results in divergences quadratic in Λ, and one sees immediately
that setting Λ to the unification scale or the GUT scale (both reasonable assumptions) gives
a huge Higgs mass. The only way to obtain a Higgs with a mass within the range specified
previously is to introduce what may be considered as a high level of fine-tuning, and this is
known as the ‘hierarchy problem’. We will see shortly that supersymmetry provides us with
an elegant solution.

1.1.4 Problems of the SM

Any review of the SM is incomplete without a discussion of the problems of the theory. We
have already seen that gravity is not incorporated, and this leads to the conclusion that we
have an effective theory only valid below some energy cut off scale Λ. We have also seen that
such a cut-off scale causes problems when the Higgs mass is considered, and this leads to a
hierarchy problem.
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In addition to these, it is noted that the SM does not contain explanations for the partic-
ular pattern of quantum numbers we obtain, and neither does it explain the family structure.
Furthermore, it features at least 19 arbitrary parameters.

It is when pondering such facts that one is forced to conclude that, despite its successes,
there is highly likely to be new physics beyond the SM, and it is at this point that we turn our
attention to one of the most well-motivated extensions; supersymmetry (SUSY).

1.2 Supersymmetry

In this section, a brief review of the most relevant topics in supersymmetry is given. More
comprehensive discussions can be found in references[12–14].

1.2.1 Theoretical motivation

We have already seen the importance of symmetry in the formulation of the SM, having used
the principle of invariance under gauge transformations to construct the Lagrangian of the
theory. This naturally leads one to consider the question of what is the most general possible
group of symmetries.

The SM is in fact invariant under internal symmetries such as gauge symmetries and a
group of transformations known as the Poincaré group, which consists of translations along
with Lorentz boosts and rotations. Coleman and Mandula produced a no-go theorem [15]
which states that a non-trivial extension of the Poincaré group6 is not possible, though there
is a get out clause in the case of the SM. The only way to extend the group is to make it
supersymmetric; that is, to add an operator that transforms bosonic states to fermionic states,
and vice versa (this is the Haag-Lopuszanski-Sohnius theorem[16]). A theory is then said
to be supersymmetric if it is invariant under this expanded Poincaré group, and the fact that
nature appears to respect the other symmetries in the group convinces some theorists that there
is no reason why it should not also respect supersymmetry.

The generators of the supersymmetric transformation, Q, change the spin of a single par-
ticle state by ± 1

2 , and the immediate implication is that each bosonic degree of freedom in the
theory has a corresponding fermionic degree of freedom. It follows that each of the quarks and

6i.e. an extension where the generators of the new transformations have non-zero commutation relations with
the Poincaré generators.
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Figure 1.2: Renormalisation group running of the inverse gauge couplings α−1
i in the

SM (dashed lines) and the MSSM (solid lines). In the MSSM case, the sparticle mass
thresholds are varied between 250 GeV and 1 TeV, whilst αS (mZ) is varied between
0.113 and 0.123. Two-loop effects are included[13].

leptons in the SM is accompanied by two complex scalars (one for each chiral component),
and this leads to a cancellation of theΛ2 terms in Equations 1.16 and 1.17 if one sets λS = |λ f |2,
thus reducing the divergence from quadratic to logarithmic. Furthermore, invariance under su-
persymmetry ensures that this success persists to higher orders, and so one obtains an elegant
and natural solution to the hierarchy problem.

There is another piece of theoretical evidence in support of SUSY related to grand uni-
fication. The gauge coupling strengths of the SM vary with the energy scale of interactions,
and many theorists postulate that they may become equal at a high scale, thus uniting all of
the forces of the SM into a single interaction characterised by a single coupling constant at
the unification mass. This is equivalent to embedding the SU(3) × SU(2) × U(1) group in a
simpler group which is spontaneously broken below the unification mass. The relevance to
SUSY is that the running of the gauge coupling strengths is dependent on the particular par-
ticles that are available over a given energy range, and hence introducing new particles will
affect the differential equations that describe the evolution from the GUT scale to the weak
scale. It turns out that adding SUSY particles with masses at the electroweak scale improves
gauge unification (see Figure 1.2).
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1.2.2 The Minimal Supersymmetric Model

In this section, consideration is given to the Minimal Supersymmetric Model (MSSM); that is,
the supersymmetric theory that requires a minimum of extra particle content beyond the SM.

The single-particle states of a supersymmetric theory fall into irreducible representations
of the SUSY algebra, called supermultiplets. Each supermultiplet contains both boson and
fermion states, which are referred to as superpartners of each other, and one can use the com-
mutation relations for Q and other operators to show that members of the same supermultiplet
must have the same mass, electric charges, weak isospin and colour degrees of freedom.

One can immediately ask what the simplest possibilities for supermultiplets are. It turns
out that in models with only one distinct copy of the supersymmetry generators7 the various
possible combinations of particles in a supermultiplet can always be reduced to combinations
of chiral supermultiplets (containing a single Weyl fermion and two real scalars that are rep-
resented by a single complex scalar field), and gauge supermultiplets (containing a massless
spin-1 gauge boson and a massless spin-1/2 Weyl fermion). These both satisfy a rule stating
that the number of bosonic degrees of freedom in a supermultiplet must equal the number
of fermionic degrees of freedom and, in addition, it can be shown that the fermions in a
gauge supermultiplet must have the same gauge transformation properties for left-handed and
right-handed components. Thus, the particles of the SM alone cannot form the entire particle
content of the MSSM, as all of the quarks and leptons of the SM have left- and right-handed
parts that transform differently under the gauge group, and hence they must all be in chi-
ral supermultiplets. New particles are needed to fill the fermionic degrees of freedom in the
gauge supermultiplets, and there is also a need for new particles that fill the bosonic degrees
of freedom in the chiral multiplets.

The supermultiplets of the MSSM are shown in Tables 1.2 and 1.3. Note that the left-
handed and right-handed components of the SM quarks and leptons are separate two-component
Weyl fermions, and hence each must have its own scalar partner. These ‘squarks’ and ‘slep-
tons’ are denoted by putting a tilde over the corresponding SM partner, and the subscripts L
and R refer to the handedness of the SM partner (the sparticles have spin 0 and hence are
neither right- nor left-handed). The gauge interactions of the sparticles are the same as their
SM partners.

The Higgs sector of the MSSM requires some explanation, as it is more complicated than
7Models that do not satisfy this choice are known as “extended” supersymmetric theories, and they cannot

easily reproduce the chiral fermions or parity violation observed in the SM. Hence the discussion here will only
consider N = 1 supersymmetry, where N specifies the number of supersymmetries.
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that of the SM. It is clear that the Higgs boson of the SM must exist in a chiral supermultiplet
given that it has spin 0, though a less obvious fact is that one actually requires two Higgs
doublets to complete the MSSM. One of the reasons for this results from the general structure
of supersymmetric theories, in which it can be shown that only a Y = +1/2 Higgs chiral
supermultiplet can have the Yukawa couplings necessary for charge +2/3 quarks, and only a
Y = −1/2 Higgs can give the right couplings for charge -1/3 quarks and charged leptons. This
gives us the two complex S U(2)L doublets Hu and Hd shown in Table 1.3, containing eight
real, scalar degrees of freedom. When electroweak symmetry breaking occurs in the MSSM
three of them form Goldstone bosons which become the longitudinal modes of the Z0 and
W± vector bosons, and the remaining five give us Higgs scalar mass eigenstates consisting of
one CP-odd8 neutral scalar A0, a charge +1 scalar H+and its conjugate H−, and two CP-even9

neutral scalars h0 and H0. Whilst the masses of A0, H0 and H± can be arbitrarily large, one
can set an upper bound on the h0 mass; assuming that none of the MSSM sparticles have
masses exceeding 1 TeV, and that all of the couplings in the theory remain perturbative up to
the unification scale, one obtains an approximate upper bound of 150 GeV[17, 18], and thus
we see that at least one of the MSSM Higgs bosons must be light.

The states shown in Tables 1.2 and 1.3 mix in the MSSM to produce the following physical
eigenstates:

H0
u ,H

0
d ,H

+
u ,H

−
d → h0,H0, A0,H± (Higgs)

t̃L, t̃R, b̃L, b̃R → t̃1, t̃2, b̃1, b̃2 (stop/sbottom)

τ̃L, τ̃R, ν̃τ → τ̃1, τ̃2, ν̃τ (stau)

B̃0, W̃0, H̃0
u , H̃

0
d → χ̃0

1, χ̃
0
2, χ̃

0
3, χ̃

0
4 (neutralinos)

W̃±, H̃+u , H̃
−
d → χ̃±1 , χ̃

±
2 (charginos)

where it is noted that the mixing in the squark and slepton sectors is typically proportional to
the mass of the associated fermion, and thus is assumed to be largest for the third family.

8CP is the product of two symmetries, charge conjugation and parity. The parity transformation involves
inverting the spatial coordinates of a matter field, and charge conjugation involves turning a particle into its
antiparticle. ‘CP odd’ means that a field ψ transforms to −ψ under a CP transformation.

9‘CP even’ means that a field ψ transforms to itself under a CP transformation.
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1.2.3 SUSY breaking

If SUSY were an exact symmetry of nature, the sparticles introduced above would have the
same masses as their SM counterparts and would have been seen already in collider experi-
ments. Sadly, this isn’t the case, and there remains no direct experimental evidence for su-
persymmetry. Any valid supersymmetric theory must therefore introduce a mechanism for
supersymmetry breaking, and one can introduce spontaneous symmetry breaking in a way
directly analogous to the treatment of electroweak symmetry breaking in the SM.

Recall the previous assertion that, if supersymmetry is to solve the hierarchy problem, one
requires that λS = |λ f |2. This must persist in any broken SUSY theory, and hence only ‘soft’
supersymmetry breaking is allowed; that is, the effective Lagrangian of the MSSM can be
written in the form

L = LSUSY + Lsoft (1.18)

where LSUSY preserves supersymmetric invariance, and Lsoft violates supersymmetry but only
contains mass terms and couplings with positive mass dimension. This restriction is necessary
to ensure that the breaking terms are consistent with Poincare and SM gauge invariance, and
do not reintroduce quadratic divergences for scalar particles.

Many models of spontaneous symmetry breaking have been proposed, and, although all of
them involve adding new particles and interactions at very high mass scales, there is no general
consensus on which is the correct mechanism. We may, however, take the traditional route in
physics of simply parameterising our ignorance, accomplished in this case by explicitly adding
soft SUSY breaking terms to the Lagrangian. The most general Lsoft that can be constructed
that is compatible with gauge invariance and R-parity conservation10 is

LMSSM
soft = −1

2
(

M3g̃g̃ + M2W̃W̃ + M1B̃B̃
)

+ c.c.

−
(

˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃Hd

)

+ c.c.

−Q̃†m2
QQ̃ − L̃†m2

LL̃ − ˜̄um2
ū

˜̄u† − ˜̄dm2
d̄

˜̄d† − ˜̄em2
ē
˜̄e†

−m2
Hu

H∗uHu − m2
Hd

H∗dHd − (bHuHd + c.c.)

(1.19)

Hu, Hd, Q̃, L̃, ˜̄u, ˜̄d and ˜̄e are chiral ‘superfields’ corresponding to the chiral supermultiplets
listed in Table 1.2, and the adjoint representation indices on the wino and gluino fields, and

10see Section 1.2.4.
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the gauge indices on all of the chiral supermultiplet fields, have been suppressed. M1, M2 and
M3 are the gluino, wino and bino mass terms, whilst the second line in Equation 1.19 con-
tains (scalar)3 couplings (each of au, ad, and ae is a complex 3 × 3 matrix with dimensions of
(mass)). Line three contains squark and slepton mass terms (each of the m2

i matrices is a 3× 3
hermitian matrix in family space) and the final line lists the supersymmetry-breaking contri-
butions to the Higgs potential. Clearly, the fact that nothing is known about the mechanism of
SUSY breaking has given us many new parameters of the theory, and a careful count reveals
that the terms of Equation 1.19 contain a total of 105 masses, phases and mixing angles on top
of those already present in the SM. Although it is possible to heavily constrain some of these
parameters using existing experimental data, the difficulty of performing a general analysis in
such a large parameter space remains a pressing issue, and will be a recurring theme of this
thesis.

Having obtained the most general breaking terms allowed in the MSSM, it is necessary
to briefly consider how SUSY breaking is postulated to work in practise. It is expected that
the MSSM soft terms arise indirectly or radiatively rather than from tree-level renormalizable
interactions, and so SUSY breaking must occur in a ‘hidden sector’ of particles which have
little or no direct couplings to the chiral supermultiplets. Of course, some interactions between
the hidden and visible sectors of the theory are required in order to mediate SUSY breaking,
and these appear as the calculable soft terms. There are various suggestions for what these
mediating interactions might be, and the main candidates are reviewed below. In addition,
the difficulty involved in working with the large number of parameters of the MSSM means
that the vast majority of phenomenological studies are performed in simplified models where
many of the parameters are chosen to be degenerate.

Supergravity

In the supergravity (SUGRA) class of models, the mediating interactions are gravitational; that
is they result from new physics which includes gravity and enters at the Planck scale. In the
simplest formulation of the model (minimal supergravity, or mSUGRA) the gaugino masses
are unified to some mass m1/2, and the matrices of q̃ and l̃ masses are set to m2

01, where m0 is
some common scalar mass. Similarly, the Higgs masses mHu and mHd are set to m0. Assuming
the couplings of sparticles are flavour blind, the coupling matrices are all set to A0y, where y

are the Yukawa couplings. Finally, the b mass term is expressed as b = B0µ, and one is left
with five parameters for the mSUGRA model:
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m1/2, m0, A0, b, µ

It is conventional to replace b and µ by tanβ and sgn(µ), where β is the ratio of the Hu and
Hd vacuum expectation values. It should also be noted that the model contains a gravitino
with mass m3/2.

The mSUGRA mechanism is elegant, as it requires only the use of existing fields and
interactions such as gravity, although one has to fine tune the squark and slepton mass ma-
trices to avoid the introduction of unobserved large flavour-changing neutral current effects.
mSUGRA models are very attractive phenomenologically, however, and there is a great deal
of effort currently being invested in observing the phenomenology at different points in the
parameter space.

Anomaly mediated SUSY breaking

Anomaly Mediated Supersymmetry Breaking (AMSB) is a special case of the gravity media-
tion scenario, in which there is no direct tree level coupling that transmits the SUSY breaking
from the hidden sector to the observable one. In this case, SUSY breaking is communi-
cated to SUSY particles via loop effects; gaugino masses are generated at one-loop level, and
scalar masses are generated at two-loop level. The mechanism solves the flavour problem of
mSUGRA and all of the low energy phenomenology may be obtained by adding only two
extra parameters and one sign to the SM. Unfortunately, this minimal AMSB framework leads
to negative squared masses for the sleptons at the electroweak scale, and thus it is necessary
to add one additional parameter representing an extra contribution to the SUSY breaking, and
this is normally provided in the form of an extra universal scalar mass parameter.

Thus, the parameter set for an AMSB model would comprise of the gravitino mass m3/2,
the ratio of the vacuum expectation values of the Higgs fields tanβ, the common scalar mass
parameter m0, and the sign of the Higgs term sgn(µ).

Gauge mediated SUSY breaking

In the Gauge Mediated Supersymmetry Breaking (GMSB) scenario, messenger particles in-
teract with a SUSY breaking VEV in the hidden sector and communicate with the MSSM
particles via ordinary gauge interactions. These messenger particles could be states from a
larger gauge group than those found in the SM, e.g. SU(5).
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GMSB models have six parameters: Fm (the SUSY breaking scale), Mm (the messenger
scale), N5 (the number of messenger multiplets), tanβ and sgn(µ) (as in the mSUGRA frame-
work), and Cgrav (the coupling for decays into gravitinos). In GMSB models, the gravitino is
not related to msoft and is expected to be very light; hence, all final states contain gravitinos.
Weak coupling between the gravitino and other SUSY particles means that the next to lightest
SUSY particles (NLSPs) may have a long lifetime, and thus GMSB models give rise to a very
distinctive phenomenology.

1.2.4 R-parity

When one writes down the superpotential for the MSSM, it is possible in general to include
terms which are gauge invariant and analytic in the superfields given in Table 1.2, but which
violate baryon number (B) and lepton number (L). Both of these processes must cause very
small effects in nature in order to reproduce experimental data, with the most obvious con-
straint being the non-observation of proton decay[19] (which violates both baryon and lepton
number by 1 unit). One cannot simply forbid these terms by allowing B and L to be fundamen-
tal symmetries of nature, as it is known that they are necessarily violated by non-perturbative
electroweak effects (though these effects are negligible for experiments at ordinary energies).
However, one can introduce a multiplicatively conserved quantum number called matter par-
ity, defined as:

PM = (−1)3(B−L) (1.20)

for each particle in the theory. It is then possible in principle to impose an exact and fun-
damental symmetry which states that all terms in the Lagrangian must contain a combination
of fields that has a PM product of +1. This forbids the explicit B and L violating terms in the
proposed MSSM Lagrangian.

For phenomenological applications, it is often useful to recast matter parity in an alterna-
tive form known as ‘R-parity’:

PR = (−1)3(B−L)+2s (1.21)

It is stressed that conservation of R-parity is completely equivalent to conservation of matter
parity, but using R-parity conveniently means that all SM particles have even R-parity (PR =

+1), whilst all of the new SUSY particles have odd R-parity (PR = −1). Thus, exact R-
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Names spin 0 spin 1/2 S U(3)C , S U(2)L,U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) (3, 2, 1
6 )

(×3 families) ū ũ∗R u†R (3̄, 1,− 2
3 )

d̄ d̃∗R d†R (3̄, 1, 1
3 )

sleptons, leptons L (ν̃ ẽL) (ν eL) (1, 2,− 1
2)

(×3 families) ē ẽ∗R e†R (1, 1, 1)
Higgs, higgsinos Hu (H+u H0

u ) (H̃+u H̃0
u) (1, 2,+ 1

2)
Hd (H0

d H−d ) (H̃0
d H̃−d ) (1, 2,− 1

2)

Table 1.2: The chiral supermultiplets of the MSSM.

Names spin 1/2 spin 1 S U(3)C , S U(2)L,U(1)Y

gluino, gluon g̃ g (8, 1, 0)
winos, W bosons W̃± W̃0 W± W0 (1, 3, 0)

bino, B boson B̃0 B0 (1, 1, 0)

Table 1.3: The gauge supermultiplets of the MSSM.

parity conservation not only forbids mixing between SM and SUSY particles, but leads to the
following important phenomenological results:

1. In collider experiments, such as the LHC, one must produce sparticles in pairs.

2. The lightest supersymmetric particle (LSP) must be absolutely stable. We will see later
that, if the LSP is electrically neutral, it interacts only weakly with ordinary matter, and
hence is an excellent candidate for dark matter.

3. All sparticles other than the LSP must decay into states featuring an odd number of
sparticles. In practise, this number is usually one.

1.2.5 Supersymmetry and dark matter

As mentioned above, in R-parity conserving supersymmetric models, the lightest supersym-
metric particle (LSP) is stable and is therefore an ideal candidate for non-baryonic cold dark
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matter. By assuming that the LSP is responsible for the dark matter present in the universe,
one can use cosmological measurements of the dark matter density to constrain supersymme-
try models and attempt to reveal more about the mechanism of SUSY breaking.

The recent data from the WMAP satellite[20] have allowed the matter density of the Uni-
verse to be quantified with greater precision than ever before, whilst also strongly disfavouring
warm dark matter. With a total reported matter density of Ωmh2 = 0.135+0.008

−0.009 and a baryon
density of Ωbh2 = 0.0224 ± 0.0009, one can infer the following 2-σ range for the density of
cold dark matter: ΩCDMh2 = 0.1126+0.0161

−0.0181.

Within a given SUSY breaking scenario, it is possible to calculate the mass spectrum and
decay widths of the SUSY particles, and use this information to obtain the relic density of the
LSP. Past studies in the context of the minimal supergravity (mSUGRA) class of models have
identified regions of the five dimensional mSUGRA parameter space in which the relic density
of the LSP (usually the lightest neutralino χ̃0

1) is consistent with dark matter constraints[21],
and recent studies carried out post-WMAP have narrowed these regions further[22]. There is
a general tendency for SUSY models to produce too much dark matter in the form of LSP’s,
and thus the regions of parameter space that are consistent with WMAP are those in which
one or more annihilation processes reduce the number of LSP’s to within the acceptable limit.
Examples of the regions allowed in the m0,m1/2 plane for certain configurations of the other
parameters are shown in Figures 1.3 and 1.4, along with other constraints resulting from ex-
isting data that are less relevant to the current discussion.

There is now a lot of interest in examining the phenomenology of points in parameter space
that satisfy the WMAP relic density constraint, in the hope that this will provide a useful guide
for obtaining the correct parameter set should supersymmetry be observed at the LHC. Two
such examples will be seen in Chapter 5.

1.3 Summary

A brief review of the state of the art in the quest to understand Nature on her smallest scales has
been given. The SM describes a wide range of phenomena, but suffers from certain technical
problems which can only be solved by the introduction of new physics at higher energy scales.
Work at CERN is currently producing a particle accelerator whose arrival is anticipated with
great excitement.

Supersymmetry has been introduced as a well-motivated extension of the current theory,
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Figure 1.3: The m0,m1/2 plane of the mSUGRA parameter space showing the region
consistent with the WMAP data[23], where the other mSUGRA parameters are fixed
at the values shown (with A0 = 0). The light blue region shows the region consistent
with dark matter relic density measurements before WMAP, whilst the dark blue re-
gion is based on WMAP data. The region shaded in brown is disallowed due to the
fact that the LSP is charged (mτ̃1 < mχ̃0

1
). The branching ratio of the process b → sγ

receives additional loop corrections if SUSY exists, and hence measurements of the
value can be used to exclude regions of the parameter space that are incompatible;
these are shown in green. Measurements of the anomalous magnetic moment of the
muon gµ−2 favour some regions of the parameter space, and these are shown in pink.
Finally, the dot-dashed line shows the LEP constraint on the ẽ mass whilst the black
line shows the contour mχ̃± =104 GeV.

.
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Figure 1.4: Similar to Figure 1.3, but with a higher value of tanβ. This gives rise to
a so-called ‘rapid annihilation funnel’ in which we can satisfy the WMAP constraint
through enhanced annihilation to third generation fermions via a heavy Higgs boson.
This is enhanced when the heavy Higgs mass mA is almost twice that of the χ̃0

1.

with a wide range of supporting theoretical arguments. Although these are not currently
matched by experimental observation, it is expected that, if SUSY really is the natural answer
to the problems of the SM, the sparticle masses will be around 1 TeV or less, and this strongly
motivates the development of techniques for the measurement of SUSY particle masses and
model parameters at the LHC.

SUSY is a broken symmetry, and our woeful ignorance of the SUSY breaking mechanism
adds 105 parameters to the 19 parameters of the SM. Practically all phenomenological studies
to date have been performed in simplified models with 5 or 6 parameters. Though it is impor-
tant to use these to develop experimental techniques, there is no reason why Nature should be
so kind as to heavily constrain the MSSM parameters in this way, and hence it is absolutely
vital to develop techniques that are capable of exploring much more general models. This is
the guiding principle of this thesis, in which an attempt is made to move toward a general
approach to the problem of constraining the MSSM.
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Chapter 2

ATLAS and the LHC

It has been shown that the current state of our knowledge of particle physics can be considered
both comprehensive and frustratingly incomplete. It is against such a background that physi-
cists are currently putting the finishing touches on the most advanced particle accelerator yet
constructed- the Large Hadron Collider (LHC), located in Geneva, Switzerland. This chapter
gives a brief summary of the LHC, with a specific focus on the ATLAS detector, within whose
framework all analysis in this thesis will be based.

2.1 The LHC

Upon the commencement of data taking in 2007, the LHC will be largest operational particle
accelerator and collider in the world. Protons will eventually be accelerated by supercon-
ducting magnets to an energy of 7 TeV, and will collide head on at four points around the
27km circumference tunnel previously used by the LEP electron-positron collider. Rather
than having continuous beams, the collider operates by having protons bunched together into
approximately 2800 bunches per beam so that interactions between the two beams occur at
discrete intervals. At each of the four collision points, activity will be monitored by one of the
four primary LHC experiments shown in Figure 2.1: ATLAS, CMS, LHCb and ALICE. The
largest of these- ATLAS and CMS- are specifically designed to find new physics beyond the
SM, and it is the ATLAS detector that forms the basis for the analysis in this thesis. It is worth
noting, however, that the search reach for both experiments is similar, and there is no reason
why the physics analysis presented here could not be repeated within the framework of CMS.

At 14 TeV, the centre of mass energy of the LHC is over seven times greater than the previ-

23



24 ATLAS and the LHC

Figure 2.1: The LHC above and below ground.
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Energy at collision 7.0 TeV
Energy at injection 0.45 TeV

Machine circumference 26658.833 m
Dipole field at 7 TeV 8.33 T

Time between bunches (at L = 1034 cm−2s−1) 25 ns
Number of particles per bunch 1.15 ×1011

Number of bunches per beam 2808
RMS bunch length 7.55 cm

Circulating beam current 0.582 A
Dipole magnet temperature 1.9K
Number of dipole magnets 1232

Number of quadrupole magnets ≈600
Number of corrector magnets ≈7000

Table 2.1: Parameters for the LHC running in proton-proton collision mode at design
luminosity.

ous record held by the Tevatron at Fermilab[24]. This is a great step forward, but is of little use
unless one can also guarantee a plentiful supply of events, as characterised in particle experi-
ments by the luminosity. Starting in a low luminosity mode running at 1 × 1033 cm−2s−1, the
LHC aims for a final design luminosity of 1 × 1034 cm−2s−1, thus comfortably exceeding the
Tevatron peak luminosity of approximately 1032 cm−2s−1. Other important parameters of the
LHC are given in Table 2.1. It is important to remark that the high luminosity leads to immense
challenges in, amongst other things, event selection and offline data storage, and the successful
solution of these problems will itself be a tremendous achievement. On average, 23 interac-
tions occur in each bunch crossing, and though the majority of these are well-understood low
energy processes, care must be taken that these “pile-up” events do not mask more interesting
physics.

Owing to the great complexity of the LHC, there have been several delays during the course
of the project. Nevertheless, at the time of writing it is possible to give a coherent account of
the first run schedule which will see the beam pipe closed at the end of August 2007, followed
within weeks by collisions at the injection energy (450 GeV in each beam) until the end of
2007. A subsequent shutdown will allow the remaining machine sectors to be commissioned
without beam to full energy in preparation for the first physics run at 14 TeV. It is hoped that
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Figure 2.2: Labelled diagram of the ATLAS detector.

a substantial integrated luminosity will be obtained by the end of 2008.

2.2 The ATLAS experiment

2.2.1 Basic detector layout and geometry

The ATLAS detector of the LHC is shown in Figure 2.2. The beam direction defines the z-
axis, whilst the positive x-axis points from the interaction point to the centre of the LHC ring
and the positive y-axis points upward.

Given that the detector is almost exactly cylindrical, the most convenient coordinate system
to use is (R, φ, z), where R is the transverse radius from the beamline, φ is the azimuthal
angle (measured from the x-axis), and the origin of z is at the interaction point. One can
also refer to the polar angle θ measured from the z-axis. In addition to these, it is useful to
refer to a couple of other quantities that arise from a particular complication of hadron-hadron
colliders. Hadrons are composite objects, and one does not know the original z-momentum
of the constituents (or “partons”) that interact in a given collision. For this reason, it is useful
to define the true rapidity, y = 1

2 ln[(E + pz)(E − pz)], of a Lorentz vector, since differences in
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this variable are invariant under longitudinal Lorentz boosts. This is particularly convenient if
the mass of a particle is known; if not, one can refer to the pseudo-rapidity, η = −ln[tan(θ/2)],
which closely approximates the true rapidity in the relativistic limit.

Particles are often described by the parameters (pT , η, φ), where pT is the transverse mo-
mentum with respect to the beam axis. Particles in the η − φ plane are then separated by
a distance ∆R =

√

∆η2 + ∆φ2. Particles travelling toward higher |η|1 would be described as
heading for the ‘forward’ region.

2.2.2 Physics programme and detector concept

As one of the two LHC “generic” physics detectors, the ATLAS experiment was designed to
accommodate as broad a programme of investigation as possible. Work will encompass both
precision tests of the standard model, and searches for physics beyond it, and the rich promise
of ATLAS in both areas is best summarised in the two volumes of the ATLAS Detector and

Physics Performance Technical Design Report[25]. The brief highlights are as follows:

1. The Higgs Boson: We saw in Chapter 1 that the SM, like the LHC, is currently in-
complete. The introduction of particle masses requires interaction with a scalar field
whose associated boson has yet to be observed. The Higgs boson is therefore one of the
most sought after particles at the LHC, and is one of the chief goals of the experiment.
Fortunately, ATLAS is expected to be capable of detecting an SM Higgs boson with a
high significance (> 5σ) in the entire mass range allowed by the theory. If a Higgs is
not observed, it is hoped that ATLAS will observe another mechanism of electroweak
symmetry breaking such as Technicolour.

2. CP Violation: Matter and antimatter do not behave in the same way, and the difference
in their behaviour is known as CP-violation. Current experiments designed to probe this
phenomenon, such as Babar and Belle, have not yet observed a sufficiently strong effect
to explain the apparent absence of antimatter in our observable universe. New physics
observations may shed light directly on this problem, and measurements of the decays
of B mesons will provide indirect constraints on potential new theories.

3. The top quark and other particles: Though long predicted in the SM, the top quark
was discovered only as recently as 1995 at Fermilab, and measurements of its properties

1‘High’ in this instance means that the particles head toward the end-cap detectors rather than the barrel
region, and thus |η| is approximately greater than 1.
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lack the precision obtained in other areas of particle physics. The cross-section for tt̄

pair production at the LHC has been calculated as 833+52
−39 pb[26], and thus the LHC will

produce a very large number of tt̄ pairs, allowing ATLAS to obtain much more precise
measurements of its mass and interactions than those currently available. For example, a
day of running at low luminosity will produce about 10 pb−1 of data, and thus over 8000
top quarks. It is hoped that this extra precision will allow us to more rigorously examine
inconsistencies in the SM. The same logic applies to other known particles such as the
W boson, whose mass is to be sought with a precision of 20 MeV.

4. New physics searches: Chapter 1 introduced supersymmetry as a viable extension of
the SM and the use of ATLAS as a powerful tool for the measurement of SUSY param-
eters is the primary topic of this thesis. Other possibilities for observable new physics
include the discovery of extra spatial dimensions, which may or may not be associated
with mini black hole production; technicolour; compositeness and the so-called ‘little
Higgs’ models.

5. Strong interactions: QCD provides a good description of the basic principles behind
the nuclear strong force. However, interactions of interest are often outside the applica-
ble range of perturbation theory and are thus very difficult to quantify. Measurements of
the strong coupling constant αS and parton density functions will therefore be of great
use.

In order to maximise the potential for successfully completing the tasks listed above, the basic
design criteria of the ATLAS experiment include very good electromagnetic calorimetry for
measurements of photons and electrons, and full-coverage hadronic calorimetry for jet and
missing transverse energy measurements. Muon momentum measurements can be carried out
to relatively high precision, and at high luminosity one can obtain a muon momentum reso-
lution of ≈10% for momenta of 1 TeV using the external muon spectrometer alone. Efficient
tracking is expected at both high and low luminosity, thus fulfilling an important requirement
for high-pT lepton-momentum measurements, electron and photon identification and heavy
flavour identification. The detector has a large acceptance in η and almost full coverage in
φ, whilst also being able to trigger at low pT thresholds (this is important for many physics
processes).

There follows a brief review of the various subsystems of the ATLAS detector, summaris-
ing all basic points relevant to the analysis that follows. For more detailed discussions, a good
starting point is reference [25], from which one can also find all previous technical design
reports on the ATLAS experiment.
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2.2.3 The magnet systems

ATLAS contains two magnet sub-systems- a central solenoid that surrounds the inner detector,
and a toroid system, comprising one barrel toroid and two end-cap toroids, that generates a
magnetic field for the muon spectrometer.

The central solenoid provides a field of 2 T (along the beam axis) for the inner detector,
and the coil is designed to be as thin as possible, without compromising performance and
reliability, in order to reduce the amount of material obscuring the calorimeters. Thus, despite
a diameter of 2.5 m and a length of 5.3 m, the thickness is a mere 45 mm. The system is
designed to allow accurate measurements of charged particles in the inner detector up to a
momentum of 100 GeV.

Each of the three toroids consists of eight coils assembled radially around the beam axis,
with the 8 ‘race track’ magnets of the barrel toroid mimicked by smaller versions in each of the
two end-caps. The immense size of the barrel toroids gives rise to one of the most distinctive
visual features of the detector, as the magnets are a staggering 25 m long and 5 m wide. The
end-cap toroids are a more modest 5 m in length, and are rotated by 22.5 deg with respect to
the barrel toroid coil system in order to provide radial overlap and to improve bending power
in the interface regions of the coil systems.

The 1300 tonnes of the ATLAS magnet system present a considerable engineering chal-
lenge. Cooling the system to its operational temperature of 4.8 K will take approximately 30
days, and the system will store 1600 MJ of energy when operational. The barrel toroid is
mostly operational over a range |η| ≤ 1.0, whilst the end-cap magnets dominate in the range
1.4 ≤ |η| ≤ 2.7. In the intermediate range, bending is provided by both systems and the whole
configuration is such that the field is mostly orthogonal to muon trajectories. The average
field in the muon spectrometer is 0.6 T, allowing muons with momenta of up to 6 TeV to be
measured.

2.2.4 Inner Detector

Accurate observations of particles in accelerator experiments rely on precise measurements of
a particle’s momentum and charge, whilst also requiring information such as whether a particle
was produced at the primary interaction vertex or at a secondary vertex (the latter is important
for b-tagging). The ATLAS inner detector is designed to perform all of these measurements
by observing the tracks of particles in the 2 T magnetic field of the central solenoid. The
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Figure 2.3: The ATLAS inner detector[28].

field is along the beam axis and hence particle tracks are bent according to their transverse
momentum. The momentum resolution of the inner detector can be parameterised as[27]:

σ(1/pT ) = 0.00036 ⊕ 0.013
pT

√
sin θ

[GeV−1] (2.1)

Obtaining high precision results in both momentum and vertex resolution requires fine-granularity
detectors, particularly in an environment with as many tracks as the high luminosity LHC.
Semiconductor detectors can, and will, be used in the ATLAS inner detector to meet this crite-
rion though they are not used alone due to several factors. Cost is one consideration, and one
must also take note of the fact that the inner detector is placed inside the calorimeters (which
measure particle energy), and that these must be placed nearer to the vertex for optimum per-
formance. Thus the SCT must use the minimum possible material.

The ATLAS inner detector (shown in Figure 2.3) is divided into three separate parts: a
semiconductor pixel detector that provides high granularity near the vertex region, a semi-
conductor tracker (SCT) that utilises silicon micro-strip technology, and a cheaper straw tube
tracker (TRT) that provides continuous track-following with much less material per point.
The detector consists of a barrel region and two end-cap regions, and the design is such that
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no single component dominates the momentum measurement.

The aim here is to give a brief introduction to the workings of the ATLAS inner detec-
tor, concentrating on the details most relevant to physics analysis. Much more complete in-
formation is given in the Technical Design Reports (TDRs) of the inner detector[28], pixel
detector[29], and overall detector and physics performance[25].

The Pixel detector

Situated closest to the beam pipe, the pixel detector is built from modules that contain 46,080
pixels of size 50 × 400 µm, providing high-precision measurements with high granularity
as close to the interaction point as possible. It therefore bears the brunt of both the high
particle flux density at the LHC, and the extreme radiation environment, and the permanent
components must be capable of dealing with the equivalent of 5 × 1014 neutrons per cm2 over
a 10 year lifetime. The pixels are smaller in the Rφ direction in order to improve measurement
of the sagitta (deviation from a straight line) of particle tracks, thus enhancing the momentum
measurement. The detector mostly determines the impact parameter resolution of ATLAS,
and the ability to find B hadrons in the inner detector.

The detector consists of three barrel layers, located at radii of 50.5 mm (B-layer), 88.5 mm
(1st layer) and 122.5 mm (second layer), and six disk layers (three on each end-cap). The
‘B-layer’ is designed to be replaced every few years as a result of the received radiation dose
being roughly four times higher than that received by the 1st layer. The modules, which form
the basic building blocks of the detector, are identical in all regions, and each comprises of a
silicon pixel array bump-bonded to 16 front-end integrated read out circuits. These read out
chips each serve an array of 18 × 160 pixel diodes, and their basic function is to compare the
electrical signal in the diodes to a threshold in order to provide a binary output.

It should be noted that, due to delays in the provision of the radiation-hard integrated-
circuit electronics, the layout of the pixel detector has changed since its inception, with the
notable changes recorded since the TDR detailed in reference[30]. At the time of writing, the
pixel detector still lies on the critical path.

The SCT

The SCT uses the same basic technology as the pixel detector, but can afford to use fewer
readout channels owing to the lower track density at a larger value of R. Thus, the detectors
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of the SCT are strips rather than pixels, and the modules are arranged into four barrel layers
(each with two sides) and 2 end-cap sections each containing 9 disks.

Each module of the barrel SCT consists of four 63.6 × 64 mm wafers with 80 µm pitch
strips, with two wafers placed end-to-end on each side to give an effective length of 123.2 mm.
The two pairs of wafers are placed back-to-back with a stereo angle of 40 mrad between them
to give some measurement along the z-direction, whilst the modules are arranged to give an
Rφ precision per layer of the order of 17 µm. The end-cap modules are similar, but have one
set of tapered strips aligned radially. The output from each module is binary as in the pixel
detector.

A more complete description of the SCT is given in Chapter 3. Changes since the TDR
are noted in the Final Design Reports[31].

The Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is a drift tube system, with a design that incorporates
“straw” detectors. Each of these is a small cylindrical chamber of 4 mm diameter filled with
a gas mixture of Xe, CO2 and O2, in which the aluminium coated inner wall acts a cathode
whilst a central gold-plated tungsten wire acts as an anode. Charged particles passing through
ionise the gas, and the resulting ionisation cluster is amplified by a factor of ≈ 2.5×104 whilst
drifting through the electric field in the straw. The wires are split in half at the centre and read
out at each end, and each channel provides a drift time measurement. The expected spatial
accuracy is 170 µm per straw.

The space between the straws is filled with a polypropylene/polyethylene fibre radiator
which increases the amount of transition radiation photons produced in the detector. These
are produced when relativistic particles cross a boundary between materials with different
dielectric constants, and the threshold above which radiation is produced is dependent on
γ = (1 − v2

c2 )−1/2 where v is the particle velocity and c is the speed of light. The Xe in the
straw gas presents a high interaction cross-section to these photons and a signal is produced
which has a higher amplitude than the signal arising from minimally ionising particles. There
are thus two different categories of signal that one wishes to detect in each straw, and for this
reason each channel has two independent thresholds. The lower threshold detects the tracking
hits, of which an average of 36 are expected for each particle with pT > 0.5 GeV, and the
higher threshold is designed for the transition radiation photons. This higher threshold aids
particle identification, as, for example, electrons start producing transition radiation when their
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Figure 2.4: Labelled diagram of the ATLAS calorimeters.

momentum is close to 1 GeV, whilst pions start to radiate only when their momentum is close
to 100 GeV. At ATLAS, the pion rejection is expected to be ≈100 for an electron efficiency of
90%.

The TRT is intrinsically radiation hard, and provides a large number of measurements at
relatively low cost. A barrel region covers |η| < 0.7 and 18 wheels in each end-cap extend
coverage to |η| = 2.5. In the current schedule, only 14 wheels of the end-cap will be present at
start up, reducing the initial coverage to |η| < 2.0. For a recent review, see[32].

2.2.5 Calorimeters

The ATLAS calorimeters (see Figure 2.4) are situated outside the central solenoid that sur-
rounds the inner detector, and their primary job is to precisely measure the energy of electrons,
photons and jets. High energy particles entering a calorimeter produce a cascade of secondary
particles known as a ‘shower’. The incoming particle interacts via either the electromagnetic
or strong interaction to produce new particles of lower energy which react in a similar fashion,
producing very large numbers of particles whose energy is deposited and measured. Calorime-
ters also play an important role in determining the position of particles, measuring the missing
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transverse momentum per event, identifying particles and selecting events at the trigger level.

There are two calorimeters in ATLAS, due to the fact that the interaction with matter
for electrons and photons is different from that of hadrons. Electrons and photons penetrate
much less deeply than hadrons, and produce narrower showers. Energy loss occurs predomi-
nantly via bremsstrahlung2 for high energy electrons (which for most materials means energies
greater than ≈ 10 MeV), and high energy photons lose energy via the related process of e+e−

pair production. The characteristic amount of matter traversed by a particle before undergoing
one of these interactions is described by the ‘radiation length’ X0, and is entirely set by the
properties of the material being traversed. The expectation values of the energy of an electron
E(x) and the mean number of photons Nγ(x) as a function of the distance x into the material
are given by:

〈E(x)〉 = E0e−
x

X0 (2.2)

〈

Nγ(x)
〉

= N0e−
7
9

x
X0 (2.3)

Hadrons interact with the nuclei of the calorimeter material via the strong force, and the result-
ing showers are characterised by a nuclear interaction length λ which is typically an order of
magnitude greater than X0. This length is a function of both the energy and type of incoming
particle, since it depends on the inelastic cross-section for nuclear scattering. Longitudinal
energy deposition profiles have a maximum at:

x ≈ 0.2λ ln(E0/1GeV) + 0.7 (2.4)

where x is the depth into the material and E0 is the energy of the incident particle. The depth
required for containment of a fixed fraction of the incident particle energy is also logarith-
mically dependent on E. The energy deposit in a hadronic cascade consists of a prompt EM
component due to π0 production, followed by a slower component due to low-energy hadronic
activity. These two different types of energy deposition are usually converted to electrical
signals with different efficiencies, the ratio of which is known as the intrinsic e/h ratio.

Both ATLAS calorimeters are sampling calorimeters; that is the material that produces the
particle shower is distinct from that used to measure the energy and it is thus through periodic
sampling of the particle shower that an energy measurement is obtained.

2Bremsstrahlung (which translates as ‘braking radiation’) is produced by the acceleration of a charged particle
after deflection by another charged particle.
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The Electromagnetic Calorimeters

The Electromagnetic CALorimeter (ECAL) uses lead and stainless steel to absorb energy, with
liquid argon as the sampling material. This LAr sampling technique is radiation resistant and
combines good energy resolution with other attractive features such as long-term stability of
the detector response and relatively easy detector calibration. The geometry of the detector
describes a complex accordion shape, shown in Figure 2.5, chosen to provide complete φ
symmetry with no azimuthal cracks. As in the inner detector, the calorimeter has a barrel
region (covering the range |η| < 1.475) and end-cap regions (covering the range 1.375 < |η| <
3.2), and the lead thickness in the absorber plates has been optimised as a function of η to
maximise the energy resolution performance.

No discussion of the ATLAS ECAL is complete without mention of two points relevant
to physics analysis: there is a crack in the coverage at |η| = 1.5 due to the barrel/end-cap
transition, and a small crack at |η| = 0 arising from the fact that the barrel calorimeter is
constructed of two identical half barrels separated by 6 mm at z = 0. The ECAL is ‘non-
compensating’; that is, it responds differently to electromagnetic and hadronic showers as the
intrinsic e/h ratio is not equal to unity. This difference is corrected for in the reconstruction
software.

We have already seen that the inner detector sits between the interaction point and the
calorimeters, and the total material seen by an incident particle before it reaches the front face
of the calorimeter is ≈ 2.3X0 at η = 0. This amount increases with η because of the particle
angle. A presampler consisting of an active LAr layer of thickness 1.1 cm (0.5 cm) in the
barrel (end-cap) region is used to correct for the energy lost by electrons and photons en route
to the ECAL in the region |η| < 1.8. In the transition region between the barrel and end-
cap, this is supplemented by a scintillator slab, as the amount of obscuring material reaches a
localised maximum of ≈ 7X0.

The total thickness of the ECAL is above 24 X0 in the barrel, and above 26 X0 in the end-
caps. As shown in Figure 2.5, the system is divided into three longitudinal sections (“sam-
plings”). The overall design utilises high granularity to provide precise position measure-
ments, and the information obtained by the presampling and the first sampling layer provides
excellent γ/π0 and e/π separation by measuring the transverse energy profile of the preshower.
Table 2.2 gives the resolution in the position and angle measurements for photons of ET=50
GeV at η = 0.3, assuming that the readout electrodes of the EM calorimeter are aligned in z

with the expected precision of 400 µm. The π0 rejection factor under the same conditions is
3.50 ± 0.17 at η = 0.3 for 90% photon efficiency.
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Figure 2.5: Geometry of the electromagnetic calorimeter[35].

The energy resolution σE/E of a calorimeter can be parametrised as a/
√

E ⊕ b⊕ c/E. The
first term is a stochastic term representing statistical fluctuations arising in both the shower
development and the sampling procedure. The constant term b arises from detector non-
uniformity and calibration uncertainty, and can in principle be increased by radiation damage
of the active medium. This is not expected to be a problem at ATLAS[33]. The final term is
generated by electronic noise in the readout chain[34]. The energy resolution of the ATLAS
ECAL is dominated by sampling fluctuations, and is close to ≈ 0.10 GeV 1

2 /
√

E(GeV) for the
entire range of η coverage, with a constant term of less than 0.007. The c term is expected to
be 0.245 GeV/pT .
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ση strip section (0.215 ± 0.008) × 10−3)
ση middle compartment (0.652 ± 0.021) × 10−3)

σθ (mrad) (7.180 ± 0.260)

Table 2.2: Resolution of the η and θ measurements for photons of ET = 50 GeV at
η = 0.3, assuming that the readout electrodes of the EM calorimeter are aligned in z
to within 400 µm.

The Hadronic Calorimeters

The hadronic calorimeters cover the range |η| < 4.9, and must use different techniques over
this range to cope with the variation in the performance requirements and radiation environ-
ment. A tile calorimeter is used for |η| < 1.7, using iron as the absorber and scintillating tiles
as the active material. The system consists of one barrel and two extended barrels, and is
longitudinally segmented in three layers. For ≈ 1.5 < |η| < 4.9 LAr calorimeters (similar to
those in the ECAL) are used, with the system comprising of a Hadronic End-Cap calorimeter
(HEC) extending to |η| < 3.2 and a high density forward calorimeter (FCAL) covering the
range 3.1 < |η| < 4.9. The FCAL is divided into three sections, one of which uses copper (as
does the HEC) and two of which use tungsten for its higher density. A summary of design
parameters for the hadronic calorimeters is provided in Table 2.3.

The hadronic calorimeter must be thick enough to provide containment for hadronic show-
ers and to keep punch-through into the muon system to a minimum. A thickness of about 10
interaction lengths has been shown to be sufficient to reduce punch-through to a sufficient
level, and this feature combines with the large η coverage to help obtain a good measurement
of the missing transverse energy in each event. This is particularly important for experimental
SUSY searches, and is thus highly relevant to this thesis. The fact that good calorimeter cover-
age is essential has been shown by a study of A→ ττ events with mA = 150 GeV, performed at
the particle level. The resolution of each component of the Emiss

T vector was shown to degrade
from 2.3 GeV to 8.3 GeV if the calorimeter coverage is reduced from |η| < 5 to |η| < 3. This
significantly increases the width of the measured A mass peak.

The HCAL, like the ECAL, is non-compensating. Chapter 9 of the ATLAS Detector and
Physics Performance TDR lists an expected jet energy resolution for the full calorimeter (i.e.
ECAL and HCAL) of σ/E = (48.2 ± 0.9%)/

√
E ⊕ (1.8 ± 0.1%) for |η| = 0.3 (barrel region),

and σ/E = (55.0 ± 2.5%)/
√

E ⊕ (2.2 ± 0.2%) for |η| = 2.45 (end-cap region).
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HADRONIC TILE Barrel Extended Barrel

Coverage |η| < 1.0 0.8 < |η| < 1.7
Longitudinal segmentation 3 samplings 3 samplings
Granularity(∆η × ∆φ)
Samplings 1 and 2 0.1 × 0.1 0.1 × 0.1
Sampling 3 0.2 × 0.1 0.2 × 0.1
HADRONIC LAr End-cap

Coverage 1.5 < |η| < 3.2
Longitudinal segmentation 4 samplings
Granularity(∆η × ∆φ) 0.1 × 0.1 for 1.5 < |η| < 2.5

0.2 × 0.2 for 2.5 < |η| < 3.2
FORWARD CALORIMETER Forward

Coverage 3.1 < |η| < 4.9
Longitudinal segmentation 3 samplings
Granularity(∆η × ∆φ) ≈ 0.2 × 0.2

Table 2.3: Design parameters for the hadronic calorimeters[25].

2.2.6 The Muon Spectrometer

The ATLAS muon spectrometer is essentially a huge straw tracker, with two primary tasks.
The first is to precisely measure the momentum of high energy muons that are not measured
well by the inner detector, and this is performed using monitored drift tubes (MDTs) over most
of the η range, and cathode strip chambers at large η and at close proximity to the interaction
point. These detectors are all referred to as the ‘precision chambers’. The second task is to
trigger on high energy muons (for a description of the trigger, see Section 2.2.7), and this is
done using resistive plate chambers (RPCs) in the barrel and thin gap chambers (TGCs) in
the end-caps. Triggering requires less precise position data, but a response time better than
the LHC bunch spacing of 25 ns, thus explaining the use of a separate technology for the
purpose. The trigger system covers the pseudo-rapidity range η ≤ 2.4. A schematic view
of the layout of one quadrant on the muon spectrometer, showing the position of the various
detector technologies, is shown in Figure 2.6.

The MDTs are aluminium tubes of 30 mm diameter and 400 µm wall thickness, with a
50 µm diameter central W-Re wire, and are commercially available. The single wire reso-
lution is expected to be 80 µm. These are arranged into chambers, each of which contains
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Figure 2.6: A view of one quadrant of the ATLAS muon spectrometer[36].

multilayer pairs of either three or four mono-layers of tubes. The CSCs are fast multiwire
proportional chambers, with parallel high voltage wires strung in a gas volume and closed
by conducting planes at 0 V. Precise position measurements along the wires are obtained by
determining the centre of gravity of the charge induced on the strips of the conducting plates.
Position resolutions of better than 60 µm are expected, and the high granularity of the system
ensures that it will cope with the demanding rate and background conditions at high η. Meet-
ing the momentum resolution requirements in the muon spectrometer requires that the relative
positioning of chambers matches the intrinsic resolution of the precision chambers. For this
reason, an optical alignment system will be used to constantly monitor chamber deformations
and displacements.

Over most of the muon spectrometer, the magnetic field is essentially in the φ direction,
and thus muons bend in the R−z plane. The MDTs and CSCs provide precision measurements
in this plane.

The RPCs of the trigger system are made of a pair of parallel plates separated by a narrow
gas gap, with a high electric field applied. Muons passing through release ionisation electrons,
and these form an avalanche between the plates whose signal is read out by two sets of strips
in orthogonal directions. The expected space-time resolution is 1 cm × 1 ns, and the measure-
ments will be used both to complement the MDT tracking data (the RPC measurement is in
an orthogonal direction), and for the level 1 trigger. The TGCs in the end-caps are similar in
design to multi-wire proportional chambers, though the anode wire pitch is larger.
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The muon spectrometer should give three precision measurements for |η| < 2.7, except in
crack positions (such as at |η| = 0). A 20 GeV muon will give a momentum measurement at
2% precision with good acceptance. This rises to 10% as the energy approaches 1 TeV.

2.2.7 Trigger and Data Acquisition System

It has already been noted that the number of interactions at the LHC will be very large indeed,
and that a majority of these are of little interest to those chasing the frontier of particle physics.
Thus, a detector such as ATLAS does not record every interaction but instead is designed to
trigger on interesting processes. Limitations on the amount of data that can be stored require
an initial bunch-crossing rate of 40 MHz to be reduced to a rate of selected events of 100
Hz, and the challenge is to do this without missing any of the rare new physics processes that
motivate the entire experiment!

The ATLAS trigger and data-acquisition system (DAQ) , shown pictorially in Figure 2.7
is based on three levels of online event selection, with each trigger level refining the decision
made at the previous level through the use of additional selection criteria. The process will
start with the level-1 (LVL1) trigger which uses only reduced-granularity information from
a subset of detectors, identifying combinations of the presence or absence of objects such as
high pT muons, electrons and photons, jets, hadronic τ-lepton decays and large missing and
total transverse energies. The time from a proton-proton collision until the availability of the
LVL1 trigger decision at the front-end electronics must not exceed 2.5 µs. During this time,
information for all detector channels is stored in ‘pipeline’ memories placed on or close to
the detector in harsh radiation environments. The pipeline lengths must be kept as short as
possible for reasons of cost and reliability and hence this imposes constraints on the LVL1
latency. One must also consider the time required for signals to leave the detector via cabling.
The LVL2 trigger system will use region of interest (RoI) information, provided by the LVL1
trigger. This permits the LVL2 system to have access to the full detector information (i.e. full
granularity and inner detector tracking information which is excluded at LVL1), since it need
only read out a fraction of the whole detector. Finally, the last stage of the trigger process is
the event filter (EF), which makes use of fully reconstructed events in order to decide which
should be committed to permanent storage for subsequent offline analysis.
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Figure 2.7: Block diagram of the ATLAS trigger/DAQ system[25].
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2.3 Summary

A short description of the LHC and ATLAS has been provided, illustrating not only the
tremendous challenges involved in getting the experiment up and running, but also the strong
potential for seeing genuinely new and exciting physics. With less than a year to completion
(not counting staged components!) there is now a great deal of excitement amongst both the-
orists and experimentalists, and we are undoubtedly approaching one of the great periods in
particle physics.

The next chapters of this thesis will cover part of the ATLAS detector in more detail,
through a description of software work performed in conjunction with the SCT monitoring
group.



Chapter 3

The ATLAS Semiconductor Tracker

The ATLAS detector was described in Chapter 2, along with the ATLAS Semi-Conductor
Tracker (SCT). The purpose of this chapter is to cover the design and operation of the SCT
in sufficient detail to understand the monitoring software developed in Chapter 4. The focus
throughout will be on the SCT barrel detector, and the discussion will concentrate mostly on
factors that are relevant to noise occupancy.

A thorough overview of the design of the SCT is given in the SCT TDR, located in volume
2 of the ATLAS Inner Detector TDR [28], whilst the barrel modules are covered in refer-
ence[37].

3.1 Layout of the SCT barrel region

The SCT barrel region is divided into four separate layers, referred to as barrels 3-6 (with the
pixel layers providing barrels 0, 1 and 2). Each layer is assembled from identical modules,
mounted in a tile arrangement to minimise dead regions. In order to minimise the adverse
effects of radiation damage, chiefly that due to anti-annealing of the silicon (see reference

[38]), the module sensors will be operated at ≈ −7◦ C. Table 3.1 summarises important barrel
parameters whilst Figure 3.1 displays the geometry of the modules for one quadrant of the
detector. The barrel region covers a pseudo-rapidity range |η| < 1.4, and has 3.2×106 channels
in total.

43
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Figure 3.1: Transverse view of a quadrant of the ATLAS inner detector (without the
TRT). The outer four layers show the four barrels of the SCT, with support structures
shown in green, lumped power cables and cooling shown as red circles, active silicon
shown in pink, and electronics boards shown in pale blue[28]. The inner three layers
show the pixel detector. The distance from the centre to the outermost layer shown is
514 mm.
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Barrel cylinder Radius (mm) Full length (mm) Number of modules

Barrel 3 299 1492 384
Barrel 4 371 1492 480
Barrel 5 443 1492 576
Barrel 6 514 1492 672

Total 2112

Table 3.1: SCT barrel parameters[37].

3.2 SCT Module Design

3.2.1 Silicon Detector Basics

The basic component of an SCT module is a silicon detector strip, formed from a reverse-
biased p-n junction. In a semiconductor, there is a small gap (3.6 eV) between the highest
filled energy level (the ‘valence band’) and the next available energy level (the ‘conduction
band’). A charged particle passing through the semiconductor will release electron-hole pairs
which, under the influence of an applied electric field, will drift toward opposite electrodes.
However, in pure silicon, there are many more free charge carriers than those produced by the
through passage of a charged particle, and the electron-hole pairs quickly recombine. Hence
one must find a way to deplete the material of charge carriers before one can usefully apply
the technique to measure the position of a particle.

The solution lies in doping. In an ‘n-type’ semiconductor, donor ions of group V are
added that introduce energy levels close to the lower end of the conduction band, thus creating
a surplus of electrons in the material. In a ‘p-type’ semiconductor, acceptor ions of group
III are added that introduce energy levels close to the top of the valence band, which absorb
electrons from the valence band and create a surplus of holes. When these two types of
doped semiconductor are brought together, a gradient of electron and hole densities results
in the diffuse migration of majority carriers across the junction. The ionised donors now
have positive charge, whilst the ionised acceptors acquire negative charge, and the interface
region becomes depleted of carriers. There is a potential difference across this ‘depletion
region’, which can be increased through application of an electric field (adding a ‘reverse bias
voltage’). This increases the width of the depletion region. Any electron-hole pairs produced
by a charged particle passing through the region will drift along the field lines to opposite ends
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Figure 3.2: 3D view of an ATLAS barrel SCT module[41].

of the junction, and if the p-n junction is made at the surface of a silicon wafer, a prototype
silicon strip detector is obtained. Charge is collected on the strips, and is amplified before
readout.

Information on the strips used in the ATLAS SCT can be found in reference[39].

3.2.2 ATLAS Module Design

Module layout

Each SCT barrel module is made of four single-sided silicon wafers arranged as two back-to-
back pairs, with each wafer containing 768 strips of 80µm pitch and active length 61.6 mm.
One side of the module is aligned precisely along the beam direction, whilst the other is rotated
by 40 mrad in order to provide a measurement in the z-direction. Technical information on
the wafers is given in references[37] and[40], and a 3D view of the module layout is shown in
Figure 3.2.

Readout of the sensor strips is performed by dedicated Application Specific Integrated
Circuits (ASICs), known as ABCD3TA chips[42]. Each of these reads out 128 strips and is
a single chip implementation of a binary readout (i.e. each strip registers either ‘hit’ or ‘no
hit’), manufactured using the radiation hard DMILL process[43, 44]. There are 12 chips per
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module, and these are mounted on a wrap around electronics hybrid that thermally decouples
them from the wafer. Each side has six chips and a readout fibre, or ‘opto-link’. Information
is transported through the module by having each chip pass a token to the next chip. Only one
chip, called the ‘master’, is connected to the link. If a single chip fails, it can be bypassed so
that information from the remaining five chips can still be read out. If the failure occurs in the
master chip (or the link) the other chips on the problematic side can be read out via the link
on the other side of the module.

ABCD3TA ASIC design

A block diagram of the ABCD3TA ASIC is shown in Figure 3.3, showing the various functions
performed during processing and readout. The front-end section of each chip is an analogue
signal processing chain involving charge integration, pulse shaping and amplitude discrim-
ination. The basic function of the discriminator is to register a hit if the amount of charge
collected in the strip is above a pre-defined threshold value, and this threshold can be set us-
ing an internal programmable digital-to-analogue converter (DAC). At the start of each clock
cycle, the chip samples from the discriminator output and stores the binary ‘hit’ or ‘no hit’
output in a pipeline until a level-1 trigger signal is received. If a trigger is received, the corre-
sponding set of values is passed to the readout buffer along with their neighbours in time, thus
providing information on the next and previous bunch crossing in addition to the current one
(referred to as the three ‘time bins’). This information is compressed before transmission off
the chip through the link.

If one injects a known charge Qi into a strip and then scans through different thresholds for
that strip, one can extract the threshold, t50 at which 50% efficiency is achieved for pulses of
magnitude Qi. By varying Qi and plotting the change in t50, one can determine the threshold
response of the module. The threshold at a charge Qi = 0 C should be 0 V, and any difference
is termed the ‘threshold offset’ of that channel. This offset varies from strip to strip and hence a
‘TrimDAC’ of 4-bit resolution is available for each channel that allows a threshold correction
to be applied to each channel individually (this is in addition to the overall chip threshold
DAC). The TrimDAC has four selectable ranges (‘trim ranges’) in order to cope with the extra
spread of threshold offsets that occurs after radiation damage. To enable calibration of the
detector, each channel has a calibration capacitor of 100 fF connected to its input to allow the
injection of test charges in a range from 0 to 16 fC (set by an 8 bit DAC). These capacitors are
themselves calibrated during production, and the information is stored in the SCT Production
Database. There is also the capability to offset the timing of the discriminator with respect to
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Figure 3.3: Block diagram of the ABCD3TA readout chip[45].

the clock signal over a 50 ns range, and the ability to mask channels that are not performing
correctly.

3.3 Sources of Noise

It was observed in Section 3.2.1 that a silicon strip detector measures the presence of electron-
hole pairs created by the passage of a charged particle through the strip. However, any practical
device will be subject to stray capacitance effects, leakage currents, thermal noise and other
effects, and these can cause a strip to register a ‘noise’ hit in the absence of any incident
charged particle (with leakage currents being the main offender in the case of silicon). An
important measure of detector performance is the average number of noise hits in a given strip
per event, a quantity referred to as the ‘noise occupancy’.

Given a charge probability distribution P(Q) (either from noise or from legitimate sources),
one can calculate the occupancy ρ for a given threshold t as follows:

ρ =

∫ ∞

t
P(Q)dQ (3.1)

The distribution P(Q) is a Landau distribution for the charge released by a minimally ionis-
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ing particle (MIP). Noise, meanwhile, has an approximately Gaussian distribution, and so, in
practise, the charge distribution seen by the discriminator circuit of the ASIC in response to
a MIP is actually a Landau distribution convolved with a Gaussian- the so-called ‘improved
Landau’ distribution (see Figure 3.4). Typical numbers for a silicon detector are a most prob-
able value of ≈ 3 fC, and a Landau width of 0.17 fC (before convolution with a Gaussian),
whilst the noise distribution has a width of around 0.15 fC. The Landau distribution has a low
energy tail which extends to even lower energies after noise broadening. Figure 3.4 demon-
strates that one can reduce the noise occupancy by increasing the threshold of the module,
and ideally one would position the threshold so as to lie to the right of the tail of the Gaussian
noise distribution. However, the thick black curve on the same figure indicates that, by moving
to the right, the efficiency of the module decreases. Thus, care must be taken to balance the
competing demands of low noise occupancy and high efficiency.

The ATLAS inner detector is required to reconstruct a large number of tracks, whilst hav-
ing access to only 6 silicon clusters per track and the TRT hits. For this reason, it is vital to
reduce noise occupancy as much as possible, as sensible results will only be obtained by the
pattern recognition software if the detector activity is dominated by legitimate hits. It is par-
ticularly important to remember that the SCT has only a binary output, so the effect of noise
hits could be severe if too many modules are noisy.

The SCT specification requires that the detectors should be over 99% efficient for a noise
occupancy of less than 5 × 10−4, with most strips operating with a threshold setting of 1 fC.
This noise occupancy condition arose from a combination of the experience of prototype sili-
con module performance gained from test beam measurements (see Figure 11-67 of reference

[28]), and investigations of the track reconstruction efficiency obtained in the pattern recogni-
tion software as a function of noise (see page 77 of reference [25]). During the lifetime of
the LHC, radiation damage of the modules will decrease the signal collection and increase the
noise at the front-end of the ASICs 1, and the range of threshold settings for which one can
still obtain the design performance will be narrower. For this reason, the initial settings are
such that there is still room to manoeuvre when required later on.

1The main consequences of radiation damage to silicon devices are an increased leakage current due to the
creation of defects in the strips and a change in the effective doping of the bulk silicon from n- to p-type followed
by an increase of the full depletion voltage. The first of these effects increases the front end noise, in addition to
which there may be radiation effects on the readout chip.
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Figure 3.4: Schematic diagram showing an improved Landau distribution (pale black
line), noise distribution (dashed line) and the efficiency vs threshold (thick black line)
for a typical silicon detector[46].

3.4 Module calibration

3.4.1 Overview

In addition to possessing the various configurable parameters detailed in Section 3.2.2, each
module has mechanisms for performing a series of calibration tests in order to tune the settings
for optimum performance. Since Chapter 4 will deal with the development of software tools
for the continuous monitoring of SCT module noise occupancy, it is instructive at this point
to briefly review the calibration tests that exist on modules for the purpose of characterising
noise occupancy. Results from these tests will later be compared with the results from cosmic
ray commissioning tests.

The main goal of calibration tests is to ensure that the threshold is set at the right level
for each strip, and that the thresholds are uniform over the detector. This involves finding the
optimum common chip threshold DAC for each chip, and the channel correction TrimDAC
settings for all strips within that chip.

Calibration of the detector is aided by the internal capacitor present for each strip, and
various tests may be performed in order to determine strip behaviour. These were initially
controlled by use of the SCTDAQ software package[47], now superseded by the SctRodDaq
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package[48] which uses the optical readout system. This current package was designed to
perform the same functions as SCTDAQ (these basic functions are described in[49]), and its
development is described in considerable detail in references [46] and [50]. Conveniently
brief reviews of the SctRodDaq functionality are provided in[51] and[52]. The aim of this
section is to cover only those tests which are of relevance to the noise occupancy calculations
presented in Chapter 4.

3.4.2 Calibration tests

The basic method of calibration is to perform a series of occupancy measurements while a
chip parameter (usually the threshold) is varied in steps within a specific range. The relevant
analogue tests that can be performed in this fashion are summarised below:

1. Trim Range Test: The chips used to build the final SCT modules were selected such
that the threshold offsets (as defined in Section 3.2.2) of all channels can be brought into
line by adjustment of the TrimDAC settings using trim range 0 or 1 (where 3 is the most
coarse trim range). Trim ranges 2 and 3 will be required at a later date once radiation
damage sets in. It is therefore necessary to determine the initial TrimDAC characteristic,
for each strip, for all of the trim range settings. This is done using a trim range test.

For trim range 0, a threshold scan is performed for each of the 16 possible TrimDAC
settings (i.e. set the TrimDAC, take a new scan), with an injected charge of 1 fC. This
yields a mean threshold value t50 defined in Section 3.2.2. The purpose of using all 16
possible TrimDAC settings is to check that each TrimDAC step can be selected for the
particular channel of interest. A plot of mean threshold t50 vs TrimDAC setting is found
to have a linear shape, and by fitting a straight line to this plot one obtains the formula
for working out the TrimDAC setting that should be used for a required value of t50.

The test is then repeated for the other trim ranges, though with only 4 threshold scans
per trim range, rather than 16, in order to save time. For each of these tests, a straight
line fit once again gives the formula that tells us which TrimDAC setting to use for a
required mean threshold t50.

The test now asks the question: “If I wanted to set my channel threshold to a particular
t50 value, is there a TrimDAC setting that I can use to do it?”. A range of possible t50

values to which one might want to set the threshold for a given channel is considered
(referred to as ‘trim targets’). For each hypothetical t50 value, the TrimDAC setting
required to set that particular threshold on the channel is calculated using the straight
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line equation. If this value lies within the permitted range of TrimDAC settings, then
we would be able to obtain the t50 value if we so wished, and the channel is termed
‘trimmable’. This test is done on all channels, and the total number of trimmable chan-
nels for each hypothetical threshold is stored. This is repeated for each of the four trim
ranges. The aim for the detector is to have as much control over the channels as possible-
we therefore want most of them to be ‘trimmable’.

Finally, the TrimDAC and trim range settings at which each channel should be operated
are selected, and this is done in such a way as to minimise the spread in the mean
thresholds t50 that the channels are set to. Any defective channels are noted and stored.
The goal is to choose settings so as maximise the number of trimmable channels whilst
minimising the sum of the trim ranges of chips (thus meaning that most channels are
operated with low trim ranges). There is a choice of three ways in which to do this
optimisation. One can either choose to vary both the trim range and trim target from
chip-to-chip, or have the trim target fixed for all chips in a module but the trim range
variable or, finally, to have the trim range and the trim target fixed for all chips in a
module. Modules with their TrimDAC settings set to the mean thresholds resulting
from this optimisation test are said to be running with their ‘trim target settings’.

2. Three Point Gain Test: A series of threshold scans is performed for three different
injected charges (e.g. Qi = 1.5, 2.0 and 2.5 fC). For each injected charge, a complemen-
tary error function is fitted to the data, the mean of which corresponds to the threshold
t50 at which 50% efficiency is achieved for pulses of magnitude Qi (defined originally
in Section 3.2.2, and the RMS of which is a measure of the output noise (in mV). The
gradient of a straight line fit to the graph of t50 vs Qi gives the gain of each channel, and
one can then obtain the input noise for each channel by dividing the output noise at the
2.0 fC data point by the gain. The threshold voltage corresponding to a charge of 0 fC
obtained from this fit gives the threshold offset, which is corrected for using the 4-bit
TrimDAC referred to in Section 3.2.2.

3. Response curve test: This is an extended version of the three point gain test, where
threshold scans are run at ten different injected charge values (Qi = 0.5, 0.75, 1.0, 1.25,
1.5, 2, 3, 4, 6 and 8 fC). The aim is to determine more accurately how the voltage
measured at the comparator in the ABCD3TA relates to the charge that was injected
from the calibration capacitor. Rather than fitting the graph of t50 vs Qi with a straight
line as before, the response curve is normally fitted with the following empirical function
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which is found to give a good fit to the data:

V = a +
b

1 + e−Q/c
(3.2)

where a, b and c are fit parameters. Examples of fits are given in Figure 3.5. One
can extract the gain ( ∂V

∂Q ), offset (voltage at Q = 0) and noise as before. One can set
the TrimDAC settings for channels so as to compensate for the offset encountered, and
these are termed the ‘response curve’ settings.

4. Noise occupancy test: A threshold scan is performed without charge injection in order
to determine the noise occupancy of each module as a function of threshold. This is
often done after the response curve obtained in the previous test has been analysed, and
the aim is to test more precisely the noise occupancy near the 1 fC nominal working
point. This can be taken directly from the plot of threshold (t) vs noise occupancy (N),
and is an important statistic. However, the total effect of noise depends not only on
the noise voltage/current in the strip, but also on the amplification and pulse shaping
that occur in the front-end processing chain. The cumulative effect of these factors is
described by the ‘equivalent noise charge’ (ENC) which describes a noise pulse in terms
of the charge pulse at the detector needed to create the same output. To evaluate this
for a strip, one can make use of the following relationship between the noise occupancy
and the threshold, which is a close approximation to the complementary error function
at low occupancy:

N ∝ exp
[

− t2

2σ2

]

(3.3)

where σ is the ENC of the strip[53]. A plot of ln(N) vs t2 therefore gives a straight line
whose gradient is determined by σ (for an example, see Figure 4.9).

3.5 Summary

A review of the module design and readout of the SCT barrel has been given, along with a
summary of the calibration tests most relevant to noise occupancy. These tests are vital both
to ensure that the detector is operating correctly, and to establish what action needs to be taken
with regard to the changing of DAC settings, etc, should a channel be operating too far from
its nominal settings.
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Figure 3.5: Examples of response curves, for the 12 chips of one module of the SCT,
obtained in a calibration run taken during the SR1 cosmics commissioning period.
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During its lifetime in the ATLAS detector, the SCT will be monitored constantly in order
to track changes in the detector response due to radiation damage and/or component malfunc-
tions. This will be performed using dedicated software that will use ATLAS event data to
calculate module efficiencies and noise occupancies, which was recently commissioned using
cosmic ray tests at CERN. The SCT monitoring software is the subject of the next chapter.



56



Chapter 4

Development of the SCT Monitoring

Package

From next year, the ATLAS semiconductor tracker will find itself in the centre of an unprece-
dented maelstrom of radiation, facing a constant barrage of damaging particles. Although this
is partly the point of having it there in the first place, it is impossible to avoid detector damage
in such an environment, and it is vitally important to track changes in the detector response
and adjust calibration settings to maintain optimum performance.

As described in Chapter 3, one effect of radiation damage is an increase in the noise occu-
pancy of affected strips, and this can be addressed by changing the voltage threshold settings
if the location of problem strips can be identified. Unfortunately, this is not the only type of
problem with the detector, and there are other effects that will be relevant even in the earliest
days of low luminosity running. For example, if the high voltage supply of a module trips off,
one registers large numbers of spurious hits and hence can no longer trust the output of a mod-
ule. In an environment where there are lots of tracks to be reconstructed from a small number
of hits, pattern recognition is already tough even if noise is entirely absent. Excellent control
must be exerted over noise hits in order to obtain good quality data for physics analysis.

It is clear, then, that the successful running of the SCT demands a system capable of
continuously monitoring the detector in order to observe changes in strip behaviour. The
system should run online during data taking and provide visual output for the tired eyes of
shift workers, as well as communicating with the databases that store module conditions and
configurations.

This chapter details the development of software tools for the online monitoring of the
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SCT, written in C++ within the Athena software framework of the ATLAS collaboration (see
Section 4.1). This package has existed for some time prior to the work in this thesis, and is
the result of ongoing work within the ATLAS collaboration[54]. The detailed analysis in this
chapter will focus on tools for measuring noise occupancy and DAQ errors.

During the development of the noise monitoring tool, large amounts of data were obtained
at CERN by running a sub-section of the SCT barrel and observing the passage of cosmic rays
through the detector (these are referred to as the ‘SR1’ commissioning tests, after the building
in which they were performed). This data was used to debug the tool in comparison with other
offline analyses, and the tool was subsequently used on later data sets to investigate several
different noise effects.

Section 4.1 contains a brief explanation of the ATLAS software framework, thus defining
some of the jargon used in later discussions. This is followed by an overview of the SCT
Monitoring Athena package as a whole, and an introduction to the SR1 cosmic tests. Original
work performed for the development of this package is contained in Section 4.4 in order to
provide a clear distinction between the work of the collaboration and the work of the author.
Finally, Section 4.5 presents noise occupancy results obtained during the SR1 cosmic testing
at CERN in the summer of 2006.

4.1 Overview of the ATLAS Software Framework

4.1.1 The Athena Framework

ATLAS will produce a very large amount of data which needs to be processed at both the sub-
detector and detector level in order to form events. These must then be analysed by dedicated
algorithms. The sheer complexity of this process demands a large amount of varied software,
and any software project of such a size requires a firm organisational principle in order to
guarantee firstly that it functions at all, and secondly that it is able to keep pace with new
developments.

To this end, the software for the ATLAS experiment is developed within a framework
called Athena which is itself an implementation of the Gaudi framework developed by the
LHCb experiment. This provides a skeleton C++ application in which users can develop their
code, and supplies the tools for communication between different parts of the software and
for any common functionality that is required. Athena provides the functionality for offline
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analysis algorithms and packages and can also be run online at the event filter stage of the
triggering process.

Each release of the ATLAS software is divided into ‘packages’, each conforming to a
specified structure. A package can be built and then configured at run-time using a Python
script called a ‘job option’ file. Once developed, code is stored in a central CVS repository,
where it is available to the rest of the collaboration.

4.1.2 The Event Filter and Athena Processing Tasks

The Event Filter (EF) is the third and final stage in the ATLAS triggering process (see Fig-
ure 2.7), receiving at its input fully built ATLAS events with an input rate of the order of 1
kHz. The EF will exist as a farm of computers that each run ‘event Processing Tasks’ (PTs) in
order to provide trigger decisions in addition to performing event analysis and reconstruction,
and ‘Event Filter DataFlow Managers’ (EFDs,) that move events from the LVL2 trigger to the
PTs and to mass storage. The combination of reduced data rate and full event information
means that it is possible to use Athena-based algorithms at the event filter stage, and these are
implemented as PTs. The SCT Monitoring package is one example of a process that may be
run as an Athena PT.

4.2 The SCT Monitoring Athena Package

4.2.1 Overview

The SCT Monitoring package is written in the ATLAS offline Athena framework, but is able
to run online as an Athena PT. The package originally existed as a combined test beam tool,
but has recently been updated to provide monitoring facilities during the 2006 cosmic commis-
sioning tests (see Section 4.3.) The package remains in development, and is currently being
extended further.

The package was designed to be able to process either simulated data or data from the
bytestream that is generated from the DAQ in real time. This data passes through several
stages of processing in the Athena software chain. Simulated data is ‘digitised’ in a tool
that recreates the action of the SCT readout by comparing the simulated signals to a given
threshold for each strip to give a binary output. The results are SCT ‘hits’ which are stored as
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Raw Data Objects (RDOs). On the other hand, bytestream data do not need to be digitised,
and are merely converted to RDOs by a conversion algorithm. After digitisation/conversion,
the data passes through a clusterisation algorithm which groups the signals in neighbouring
strips into ‘clusters’ of hits. These are characterised by a mean position and width.

The SCT monitoring tool must have access to reconstructed tracks online, and must also be
able to read and write to the database that stores module conditions (implemented as a COOL
database[55].).

4.2.2 Online running

When running as an Athena PT, the monitoring package periodically sends updated his-
tograms to an Online Histogram server (OHS) via an interface to the High Level Trigger
software known as the MonAthenaEF service. Histograms are then collected from the OHS
by an interactive GUI called the Online Histogram Presenter (OHP) with a frequency set by
the user. Note that the update-to-server frequency is quite separate from the retrieve-from-
server frequency; the former is a property of the Athena algorithm, and the latter a property
of the display GUI. A configuration file sets which histograms on the server are subscribed
to, and which of these subscribed histograms are displayed in the OHP. Subscribing to more
histograms slows the process due to slow retrieval, and any number beyond about 3000 is
unreasonable. This sets limits on the design of the package, and a final design strategy is still
under discussion.

4.2.3 Package contents

The SCT Monitoring package contains a series of tools with a common interface that are
driven by a top level algorithm. Each tool has an initialize, execute and finalize method, and
these are called sequentially by the top level algorithm for each of the tools in turn. All
histograms are booked in the initialize method of the top algorithm. The execute method of
the top algorithm performs analysis and fills histograms, and periodically updates the OHS.
The finalize method can be used to provide any information that is required on output.

The tools contained in the package are summarised below:
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SCTEffMonTool

The efficiency monitoring tool makes histograms of module efficiencies and track-fitting ef-
ficiencies. For each reconstructed track in an event that remains after a quality cut, the algo-
rithm takes the perigee parameters 1 and extrapolates the track, ultimately returning a vector
of places where the track should cross the various layers of the SCT, in the form of Track State
On Surface (TSOS) objects. For cosmic events, this extrapolation should simply be that of a
straight line through the detector. It then compares the TSOS positions to the positions of SCT
clusters in the event, and to the SCT clusters that lie on tracks. If the TSOS is in the same
position as a cluster lying on a track then both the module and the track reconstruction are
efficient. If not, then the tracking is noted as inefficient. However, this does not exclude the
possibility that a cluster was observed in the position expected; there could be a cluster object
at that location that, for whatever reason, was not associated to a track. Thus, the algorithm
loops through all clusters to determine if a cluster exists in the location predicted in the TSOS,
and the module is deemed efficient if such a cluster is found, and inefficient if not.

Note that this algorithm is biased since for each layer it uses hits in that layer to determine
the efficiency. A more rigorous method that removes hits in each layer when investigating that
layer exists in the offline code, but is too slow to be run online.

The output of the efficiency tool can be displayed either as 2D η − φ maps of the mod-
ule/track efficiency per module (for each layer and side of the barrel) or as 1D histograms
showing the average efficiency in each layer.

SCTTrackMonTool

The track monitoring tool makes histograms of tracking quality information. The Athena
track fitting algorithms fit tracks to the clusters in the SCT that pattern recognition software
has identified as tracking clusters. There are then a series of quantities to which one may refer
in order to judge the quality of the fitted track. The ‘residual’, r, of a cluster is defined as
follows:

r = ptrack − pclus (4.1)

1The perigee of a track is the point of closest approach to the nominal interaction point (and thus the origin of
the ATLAS coordinate system). The perigee is specified by the following five parameters: the distance of closest
approach from the track to the z-axis d0, the z value at the point of closest approach z0, the azimuthal angle of the
particle momentum at the point of closest approach φ0, the polar angle of the momentum θ and the charge over
momentum magnitude q/p.
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where ptrack is the predicted position of a cluster on the track, and pclus is the observed
cluster position. The residuals are calculated using the local track parameters in the plane
representation2 and are calculated using the local X variable.

The ‘pulls’ are the residuals divided by the quadrature sum of the track prediction position
error and the actual hit position error:

p =
ptrack − pclus

√

σ2
track + σ

2
clus

(4.2)

The pulls and residuals are both retrieved and plotted by the SCTTrackMonTool, and one
can view both 2D η − φ maps and 1D summary histograms for each layer, in addition to 2D
η − φ maps of the RMS values of the residual and pull distributions. The tool also provides a
histogram of the track fit χ2 (divided by the number of degrees of freedom) and the number of
SCT hits per track.

SCTHitsMonTool

The hit monitoring tool makes histograms of hits in the SCT, as well as providing cluster
information. One can view 2D η − φ hit maps for each layer and side of the SCT, as well as
1D summary histograms. The tool generates plots of the cluster size for each layer and side,
and also provides plots of the number of hits vs the trigger type. For more detailed checks,
one can view hit information at the strip level for each module.

In order to look for anomalous hit patterns, the SCTHitsMonTool generates correlation
plots showing the η of hits in one layer vs the adjacent layer, and for one side of a module vs
the other side of a module. The same is done for φ, and one can also view self-correlation η
and φ plots for each layer and side.

SCTErrMonTool

The data coming from each optical link in the SCT is received by dedicated off-detector read
out boards called ‘read out drivers’ (RODs) that convert the information from the SCT to

2The track parameters may be given in several representations, with the local ‘at a plane’ parameters being
(locX, locY, φ, θ, q/p), where locX and locY are position parameters in an arbitrarily oriented plane. The last
three variables refer to the momentum of the particle producing the track; φ is the azimuthal angle, θ is the polar
angle and q/p is the charge to momentum ratio.
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a common ATLAS event format. This occurs in several stages, the first of which uses a
‘formatter’ to read and decode the information from the SCT. At this stage, there may be
errors in the bytestream, and these are flagged. The information is then passed to an ‘event
fragment builder’, that, amongst other things, compares the bunch crossing ID and LVL1
trigger ID of the module information to the central values governing the detector as a whole.
Any discrepancies are flagged.

There are thus a variety of errors that may arise, and the SCTErrMonTool plots these in 2D
η − φ maps for each layer and side, and as 1D summary histograms. Possible errors include:

1. BCID: The bunch crossing ID in the data header does not match the detector central
value.

2. LVL1ID: The level-1 trigger ID in the data header does not match the central value.

3. First Hit: The first hit in a cluster has an error. There are a variety of data taking
modes for the SCT, due to the fact the information is available for the previous-current-
next bunch crossing. Thus, one may specify a readout mode of the form ZZZ, where the
three Zs of the ‘hit pattern’ denote the three successive bunch crossings, and are referred
to as ‘time bins’. Possible selections for each time bin are 0 (no hit in that crossing), 1 (a
hit in that crossing) and X (either a hit or no hit in that crossing). If a hit is detected but
its hit pattern does not match that specified by the data taking mode, a hit error will be
registered. Persistent hit errors indicate miscalibration of the SCT timing with respect
to the bunch crossing.

4. Second Hit: The second hit in a cluster has an error.

5. Preamble: The event data did not begin with the standard preamble ‘11101’.

6. Formatter: Formatter errors are those detected in the data stream by the formatter,
before the event information is sent to the event fragment builder. Examples include
errors in the header or trailer of the stream, and errors in the link readout.

SCTNoiseMonTool

The SCT noise monitoring tool generates plots of the noise occupancy of modules in the SCT,
as 2D η − φ maps. The development of the tool is covered in detail in Section 4.4.
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4.3 SR1 cosmic commissioning tests

The main aim of the current round of improvements to the SCT Monitoring package was to
provide an effective monitoring system for use during the SR1 cosmics commissioning period
at CERN. These tests provided data for both the debugging of the tools and the final results
obtained from them.

4.3.1 Overview

The SCT was inserted into the TRT at CERN on 17 February 2006[56], after which work
commenced on a planned series of tests in the SR1 building at the CERN surface. There
were several aims, chief of which was simply to gain experience of running the detector in
a setup similar to that which will be used in the cavern from 2007. Getting the detectors
operational tested not only the components themselves but the services, offline software chain,
and the readout and trigger systems. Specific detector performance goals included testing the
combined system for cross talk and noise resulting from synchronous operation of the SCT
and TRT together, as well as checking issues related to grounding, heating and trigger rate.
Furthermore, the passage of cosmic rays through the detector provides an opportunity to test
the alignment of components. A picture from the ATLAS event display Atlantis is given in
Figure 4.1, showing a track passing through the top and bottom sectors of the SCT.

4.3.2 SR1 Layout

The SR1 cosmic tests involved the use of only a subset of the total detector modules. The final
setup is shown in Figure 4.2, and involved approximately one quarter of the SCT barrel (468
of the 2112 modules) and one eighth of the TRT barrel. Readout of the SCT was performed
using 12 RODs, and the detector was kept in a dry thermal enclosure throughout. Triggering
for cosmic runs was performed using the three scintillators shown in the figure. The scope
of the work was such as to include both standalone runs for the SCT and TRT, and combined
tests of both systems, and a concise summary is provided in reference[57].
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Figure 4.1: View from the ATLAS event display program Atlantis, showing a cos-
mic muon passing through the top and bottom sections of the SCT that were connected
during the SR1 cosmic commissioning tests in the summer of 2006.
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Figure 4.2: The SR1 cosmic setup, showing the two regions (top and bottom) of the
barrel that were commissioned by the end of the test period[57].
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4.3.3 Modes of operation

The tests performed at SR1 include both the online calibration tests referred to in Chapter 3
and so-called ‘physics’ runs in which all modules in the barrel are triggered simultaneously
by either a pulse at fixed frequency or the passage of a muon through the scintillators.

Of the physics runs, those triggered by the scintillators would be termed ‘cosmic’ runs,
and those triggered by a pulse would be referred to as ‘noise’ runs. A cosmic run will feature
a combination of tracking and noise hits, whilst the probability of catching a muon passing
through the detector during a noise run is sufficiently small that all hits seen in such a run can
be labelled as noise hits. Most of the analysis presented in this chapter involves the use of
noise runs rather than cosmic runs.

It is important to note that the ‘physics’ noise runs were originally taken with each channel
set to what was assumed to be a 1 fC threshold, using data from a previous SCTDAQ config-
uration file. This information turned out to be incorrect however, and subsequent runs were
taken using ‘trim target’ settings until a new response curve could be taken with a full 10 point
gain test (a new trim range test was not performed). The initial incorrect data has not been
used for analysis in this thesis.

4.4 Development of Noise Occupancy Tool

4.4.1 Overview and design

The noise occupancy monitoring tool functions in a similar way to the hits occupancy tool,
with the exception that it aims to produce maps from the noise hits per module rather than the
total number of hits. There are several ways to define a noise hit, and the choice made here is
to select hits that are not associated to any tracks in the event.

For each event, the tool firstly retrieves the collection of hits that were associated to tracks
in the event. These are known as the Reconstruction Input Objects (RIOs) on the track. After
running on all of the events, a 1D histogram is obtained for each module, containing the
number of RIOs in each strip of the module, and a 2D η − φ map with a bin for each module
is filled for each layer and side of the SCT. The tool then fills analogous histograms for all
‘X1X’ hits in the event, where the three characters denote the previous-present-next bunch
crossing, as defined earlier. All noise occupancy histograms are filled by taking the difference
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between these histograms and dividing by the number of events. 2D ‘module map’ histograms
are further divided by the number of strips in one side of a module in order to give an average
noise occupancy per strip for each module.

4.4.2 Debugging

The noise occupancy tool has been extensively debugged by comparing results to various
offline analyses performed by other members of the ATLAS collaboration, and by comparing
with the results of the online calibration tests described in Chapter 3.

Offline analyses

During the SR1 cosmic testing phase at CERN, many data sets were obtained under different
conditions in order to both gain experience of running the detector and to review the detector
performance. The large amounts of data generated were analysed by several members of
the ATLAS collaboration, thus enabling the author to make some simple cross checks of the
results of the noise occupancy tool. Of course, this does not exclude the possibility that all of
the noise analyses were wrong, and hence a comparison was also made to the data obtained in
the online calibration tests, as described in Section 4.4.2.

Several of the SR1 cosmic runs were analysed by Reisaburo Tanaka[58], and the results
were found to be consistent with those generated by the SCTNoiseMonTool. In addition, Ola
Oye analysed several of the data runs, and his noise occupancies were found to be in good
agreement with those generated by the noise monitoring tool.

Calibration tests

A more rigorous test of the SCTNoiseMonTool was obtained by comparing the output to the
results of the online noise occupancy calibration tests described in Section 3.4. Many of these
calibration tests were performed during the SR1 cosmic commissioning period, and the results
were stored in a database that is accessible via an interactive web display system.

In order to compare the SctNoiseMonTool results with the online results, one needs to use
a ‘physics’ noise run where the channel thresholds match those for which the online calibration
tests apply. There is thus a question as to whether to compare the online results with a trim
target run or an RC run.
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In order to resolve the question, it is necessary to consider the fine details of the calibration
noise occupancy scan. This sets up the threshold scan in units of mV relative to the trim target.
This voltage is then converted to a threshold in fC and this is done through the response curve.
At the end of the test, the threshold scan point nearest the 1.0 fC response curve point is
picked in order to obtain the noise occupancy at 1.0 fC. However, if the trim target settings
are slightly off (which they may well be in this case, since the trim target test was not rerun
after a new response curve was taken), that point might not be the closest point to 1 fC, as
the threshold scan points are generated using trim target information. Thus, one obtains the
noise occupancy at a threshold that is not quite 1 fC, and this should not be compared to a
‘physics’ run taken after the new response curve was obtained (where the thresholds are 1
fC). In other words, the online settings do not correspond exactly to a 1 fC threshold due to
an error that occurred during the data collection, and the physics runs whose thresholds match
the calibration thresholds most closely are the trim target runs. Note that this only applies to
runs taken during the SR1 testing period- comparison between SR1 physics data and pre-SR1
online data sets is valid.

For this reason, a comparison was made between noise run number 2900 and the calibra-
tion run number 2981. 2900 was taken on 12th June 2006, with the thresholds set to trim
target and the SCT in any hit mode, meaning that a hit in any of the three time bins will be
recorded. The noise software then selects all X1X hits. Calibration run 2981 was taken on the
16th June, and involved all 4 barrels though only a subset of the modules were read out. This
was the closest relevant noise run (in time) whose data was available on the DAQ web display.
The SctRodDaq software which implements the calibration test also selects X1X hits.

Figures 4.3 to 4.6 show the modulus of the difference between the physics noise occupancy
and the calibration noise occupancy, divided by the RMS of the calibration noise occupancy.
A plot is given for each barrel, and the occupancies shown are module averages. Thus, one is
essentially viewing deviations from the calibration data in units of the calibration RMS.

Excellent agreement is obtained for most modules, though there remain three modules
with a deviation greater than 3σ3. This may simply be due to statistical fluctuations, though
it is thought more likely that it results from a difference in the way that the calibration and

3It is noted that the numbers in Figures 4.3 to 4.6 are not distributed as one would expect for unit standard
deviation, with most of the deviations being between -0.5 and 0.5 (approximately). This is of little consequence
here, given that the main aim of the test is to identify outlying modules. A suggested explanation for the fact
that the variance is not unity is that the numbers are affected by the modulation of the noise occupancy across
each chip (visible in Figure 4.7). This modulation is clearly larger than the intrinsic variation in noise occupan-
cies (which is the thickness of the line in Figure 4.7), and thus the errors on the individual measurements are
overestimated by using the overall RMS.
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Figure 4.3: Histogram showing the absolute difference between the noise occupancy
from a physics run (2900) and the noise occupancy from a calibration run (2981),
divided by the RMS of the calibration run noise occupancy for barrel 3 (layer 0) of
the SCT. The x-axis shows η, whilst the y-axis shows −φ. The module at η = −4 and
φ = 8 has a 3.2σ discrepancy.

physics tools treat the data. In the calibration noise occupancy test, any strips that were not
successfully fitted with an S-curve are ignored for the purposes of the noise occupancy calcu-
lation, thus essentially vetoing very noisy strips. There is no way to replicate this procedure
in the physics code, as there is no access to threshold scan information for each strip (the data
is obtained at one threshold only). Hence, a simpler method of vetoing very noisy strips was
implemented- any strip with an occupancy of greater than 500×10−5 was ignored when filling
the noise histograms. This reduced the number of discrepancies to the present level, and it is
assumed that the remaining difference in behaviour between the calibration and physics results
is due to an imperfect correlation between ignored strips. This is difficult to check given that
there is no way to recreate the online masking exactly.

Given the close agreement of the vast majority of modules, however, it is argued that this
comparison provides comprehensive evidence that the SCTNoiseMonTool is performing as
expected, and is reporting accurate module noise occupancies for the SCT barrel region.
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Figure 4.4: As Figure 4.3 but for barrel 4 (layer 1). The module at η = 1 and φ = 7
has a 3.1σ discrepancy.
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Figure 4.5: As Figure 4.3 but for barrel 5 (layer 2).

4.5 SR1 cosmic commissioning results

4.5.1 Overview

Having been thoroughly tested, the SCTNoiseMonTool was then applied to various SR1 data
sets. A quick summary of the noise behaviour of the barrel SCT can be seen in Figure 4.7,
which shows the strip number for all hits in the first 10,000 events of data set 2900. This was
a noise run taken in ‘physics’ mode, with both the SCT and TRT powered and read out. Both
sub-detectors were triggered using a pulse of frequency 50 Hz and the thresholds of the SCT
modules were set to the trim target settings.

Figure 4.7 shows several features of the noise occupancy. Firstly, although most strips
have noise occupancies in a narrow range, there are a few strips that are vastly noisier. These
have been known about for some time, as shown by their presence in the calibration data,
seen in Section 4.4.2. Secondly, one can clearly identify the six chips of a wafer as the strip
number increases. Finally, there is a modulation in noise occupancy within one chip, with the
noise being higher toward the middle of the chip. This has been observed since the module
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Figure 4.6: As Figure 4.3 but for barrel 6 (layer 3).The module at η = −4 and φ = 9
has a 4.2σ discrepancy.
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Figure 4.7: The strip number distribution for all hits in the first 10,000 events of data
set 2900. The offline strip identifier goes from 0 to 767, and represents all strips in
one wafer (one side of a module).

prototype production era. Although the precise cause is unknown it is thought to be due to
the impedance of the power lines or ground lines not being sufficiently low. The chip edge
has wire bondings to the hybrid lines, but the chip centre can potentially be more greatly
affected from other channels switching on and off leading to a higher noise occupancy than
that observed at the edge.

Several tests were performed during the last weeks at SR1 in order to investigate specific
noise effects. These are summarised below, and the results of the noise tool are given for each.

4.5.2 Trigger rate scan

Run numbers 3064 to 3067 were performed under similar conditions, but with a different
trigger rate, in order to see whether the noise occupancy changed as a function of trigger rate.
The runs were all done with the new response curve settings, with modules set to a threshold
of 1 fC. The TRT was clocked but not triggered. A summary of the run details is given in
Table 4.1.

The SCTNoiseMonTool was used to obtain noise occupancy values for the data sets 3065
to 3067, with 3064 unfortunately lost due to a unfixable bug that occurred when uploading
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Run number Number of events Conditions
3064 20K 50 Hz trigger rate
3065 42K 500 Hz trigger rate
3066 90K 5 kHz trigger rate
3067 70K 50 kHz trigger rate

Table 4.1: Details of the noise runs taken at different trigger rates, for the purposes of
checking the variation in noise occupancy with trigger rate. All runs were taken with
a 1 fC threshold obtained using the response curve settings.

Run number
3065 3066 3067

Layer 0 Side 0 4.87(3.13) 4.94(3.14) 4.92(3.17)
Layer 0 Side 1 4.94(3.28) 5.01(3.28) 4.97(3.23)
Layer 1 Side 0 4.36(1.83) 4.33(1.81) 4.33(1.80)
Layer 1 Side 1 4.92(2.39) 4.89(2.37) 4.84(2.33)
Layer 2 Side 0 4.26(2.16) 4.26(2.12) 4.22(2.15)
Layer 2 Side 1 4.89(2.51) 4.90(2.49) 4.88(2.44)
Layer 3 Side 0 4.90(3.34) 4.89(3.31) 4.86(3.30)
Layer 3 Side 1 4.75(2.93) 4.78(2.96) 4.78(2.98)

Table 4.2: The mean (RMS) noise occupancy (scaled by 105) for the trigger rate scans
detailed in Table 4.1.

conditions data to the database for that data set4. The analysis was performed using the first
10,000 events of each run, and without the noisy strip veto introduced in Section 4.4.2. Ta-
ble 4.2 contains a summary of the results for each layer and side. It is concluded that the
trigger rate does not affect the noise occupancy.

4.5.3 Noise threshold scan

Noise run numbers 3069 to 3074 were taken at different thresholds (using the new response
curve settings), in order to check the response of modules as a function of threshold. The

4Technically speaking, the data set is fine, but it can no longer be read.
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Figure 4.8: Histograms showing the distribution of the ENC values (in number of
electrons) obtained for all active wafers in the SR1 data runs 3069-3074. Most wafers
fall below the acceptable limit of 1900 electrons, whilst 9 are above the required value,
as shown on the right.

triggers came from a pulse at a frequency of approximately 500 Hz, and the TRT was clocked
but not read out. Details are given in Table 4.3, and the analysis once more used only the first
10,000 events of each run. No veto was applied to noisy strips.

As stated in Chapter 3, a plot of ln(N) vs t2 should be a straight line for each module, and
the gradient of each line allows the equivalent noise charge for each module to be extracted.
The distribution of ENC values obtained for all wafers (i.e. one side of a module) is given
in Figure 4.8, where it is observed that all active modules in the setup give reasonable ENC
values, and hence obey Equation 3.3. An example of one of the straight line fits is given in
Figure 4.9. The ENC values obtained are roughly equivalent to those reported from calibration
runs, though an exact comparison is difficult to make due to differences in the way the data is
analysed.

The main question to answer regarding the ENC values is whether they are within ac-
ceptable limits. The noise occupancy specification limit of 5 × 10−4 demands that the total
equivalent noise charge should not exceed 1900 e−[59]. All of the ENC values presented here
are comfortably within this limit with the exception of those obtained for 9 wafers, which are
distributed across all of the barrels (with two of the wafers being in one module). On further
investigation with the strip level plots from the SCTNoiseMonTool, each of these turned out to
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Run number Number of events SCT threshold
3069 25K 0.9 fC RC
3070 50K 1.1 fC RC
3071 100K 1.2 fC RC
3072 232K 1.0 fC RC
3073 32K 1.05 fC RC
3074 49K 0.95 fC RC

Table 4.3: Details of the noise runs taken at different threshold values.

be due to one or more defective strips. A cross check against known defects in the calibration
data revealed that these are all known defects. When the analysis is run with a veto on strips
that have a noise occupancy greater than 500 × 10−5, there are no ENC values greater than
1900 e−.

1. Layer 1, Side 1, η = −4, φ = 9, wafer has one defective strip

2. Layer 2, Side 0, η = −2, φ = 6, wafer has one defective strip

3. Layer 2, Side 1, η = 5, φ = 30, wafer has one defective strip

4. Layer 2, Side 1, η = −3, φ = 33, wafer has two defective strips

5. Layer 3, Side 0, η = −3,φ = 11, wafer has one noisy strip

6. Layer 3, Side 0, η = −3,φ = 13, module has fifteen noisy strips in total

7. Layer 3, Side 0 (and Side 1), η = −4,φ = 41, module has fourteen defective strips in
total

8. Layer 3, Side 1, η = −5,φ = 38, module has two defective strips

4.5.4 Grounding issues

Run numbers 3084 and 3085 were performed with different grounding schemes. Run 3084
was run under normal conditions, whilst 3085 had cards installed in the power supply crates
to short the cable shields to the power supply chassis. These runs were taken with thresholds
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Figure 4.9: A plot of ln N vs t2 for one wafer of the barrel SCT. A straight line has
been fitted (see Equation 3.3), with a gradient p0 = −2.6± 0.2 (fC)−2 and intercept on
the x-axis p1 = −7.7 ± 0.2 (fC)2.
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3084 3085
Layer 0 Side 0 3.52(2.30) 3.51(2.29)
Layer 0 Side 1 3.62(2.38) 3.60(2.42)
Layer 1 Side 0 3.07(1.28) 3.11(1.29)
Layer 1 Side 1 3.51(1.70) 3.54(1.70)
Layer 2 Side 0 3.03(1.52) 3.04(1.56)
Layer 2 Side 1 3.51(1.79) 3.51(1.80)
Layer 3 Side 0 3.52(2.41) 3.50(2.39)
Layer 3 Side 1 3.41(2.14) 3.39(2.05)

Table 4.4: The mean (RMS) noise occupancy (scaled by 105) for the grounding runs
detailed in the text.

of 1 fC (using the new response curve settings), and both the SCT and TRT were triggered
from a pulse with an approximate frequency of 50 Hz.

Average occupancies for each layer and side of the SCT barrel are given in Table 4.4. It is
concluded that the grounding boards do not affect the noise occupancy.

4.5.5 BOC Coarse Delay Scan

Since the TRT and SCT were run together for the first time during the SR1 tests, an important
point to investigate is whether the TRT induces any noise in the SCT. Runs numbers 2869 and
2870 were devoted to answering this question, and were taken at a trigger rate of 50 Hz with
thresholds set to the trim target settings. In run 2869 the TRT was off, whilst in 2870 the TRT
was on.

The TRT starts reading out about 3.25 µs after a trigger. The SCT was therefore triggered
about 3 µs after triggering the TRT to search for pickup induced in the SCT by the TRT readout
cycle. The BOC Tx coarse delay was then scanned in steps of 75 ns in order to add extra delay
between the triggering of the SCT and the TRT. Each time a new value was assigned to the
coarse delay, the trigger word was set to a new value (updated in steps of 3). If no noise
pickup occurs, the noise occupancy should be flat when plotted against trigger word (which is
essentially a time variable here), as no extra noise occupancy will be observed when moving
around the point at which the TRT is read out.
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Plots of the noise occupancy vs trigger word for runs 2869 (TRT off) and 2870 (TRT on)
are given in Figure 4.10 for 1XX, X1X and XX1 hits. The analysis was performed with a veto
on strips with a noise occupancy greater than 500 × 10−5. The noise occupancy is flat in each
plot, and thus it is concluded that there is no evidence for noise pickup from the TRT.

4.5.6 Final Noise Occupancies

The distribution of noise occupancies for all active wafers in the SR1 tests is shown in Fig-
ure 4.11. The data were generated using the first 10,000 events of data set 3072, with the
module thresholds set to 1 fC using the new response curve settings. The analysis was per-
formed with a veto on strips with an occupancy greater than 500 × 10−5.

All occupancies lie below the design specification of 5×10−4, though there is slight increase
from previous tests of the barrels operating individually (a mean of 4.5 × 10−5 is quoted in
reference[37], compared to 4.76×10−5 here). Although it is possible in principle that this small
increase will scale badly with the number of modules that are connected, previous noise tests
performed with differing numbers of modules on the final SCT barrels showed no evidence
that the performance degrades in the large system[37]. It would thus appear that the SCT is
running comfortably within the limits set by its design specification.

A particular point of interest is that side 1 is noisier than side 0, as seen in Figure 4.12. This
has been observed in earlier test periods, and the precise cause is unknown. One suggestion
is that the lower faces of modules are exposed to light leaks originating within the barrel
assembly.

A final statement on the noise occupancy of the SCT will be available early next year when
the barrel is installed in the pit with its final grounding scheme.

4.6 Summary and future plans

A tool for the online monitoring of SCT noise occupancy has been developed and debugged
within the framework of a general online monitoring package. The tool reproduces the results
of previous calibration runs, as well as confirming the results of other offline analyses.

Running on the SR1 data sets has revealed that there seems to be no noise pickup from
the TRT, that the grounding boards used during testing had no effect on the noise occupancy
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Figure 4.10: Noise occupancy vs trigger word plots for runs 2869 (left) and 2870
(right), with the plots representing, from top to bottom, 1XX, X1X and XX1 hits. The
TRT was off during run 2869, and thus the data provide a series of calibration plots
with no noise pickup from the TRT. Run 2870 was performed with the TRT on.



82 Development of the SCT Monitoring Package

Noise occupancy
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-310×

N
u

m
b

er
 o

f 
w

af
er

s

0

20

40

60

80

100

Figure 4.11: The distribution of noise occupancies for all active wafers of the SCT
barrel detector, obtained using run number 3072 (the thresholds were set to 1 fC using
the new response curve settings). The distribution has a mean of 4.76 × 10−5 and an
RMS of 2.76 × 10−5.
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Figure 4.12: The distribution of noise occupancies for the active wafers of the SCT
barrel detector for side 0 (left) and for side 1 (right). The plots show data obtained in
run number 3072, with the module thresholds set to 1 fC using the new response curve
settings. The side 0 distribution has a mean of 4.62×10−5 and an RMS of 2.70×10−5,
whilst the side 1 distribution has a mean of 4.90 × 10−5 and an RMS of 2.80 × 10−5.



Development of the SCT Monitoring Package 83

and that the trigger rate does not affect the noise occupancy. Furthermore, a trigger rate scan
demonstrated that all modules obey the expected linear relationship between ln(N) and t2, and
that the ENC values for each module are within the design specification except for those with
known defects. The final noise occupancy values, with a veto on strips with noise occupancy
greater than 500 × 10−5, all lie within the design specification.

The SCT online monitoring package remains in continuous development, and the final
version will not be ready until 2007, when cosmic commissioning in the pit is due to start. The
most immediate requirement is to extend the package to include the end-caps, and there are
still decisions to be made regarding exactly how many histograms to include in the package,
and the precise form in which to present the noise occupancy information. It is also important
that the package can log defects in the ATLAS conditions database, so that problem strips can
be masked off when performing data analysis. Additionally, changes in the noise occupancy
over time need to be handled in an intuitive manner, so that shift workers can easily determine
sudden changes in strip performance that will need to be corrected before the next data run.

Notwithstanding the need for improvements, the package has most of the necessary algo-
rithms in place, and has already made significant contributions to monitoring during the SR1
cosmic commissioning period at CERN. The SCT barrel is currently being prepared for trans-
port into the ATLAS cavern, to be followed by 11 weeks of cabling. The end-caps are due to
be moved in early December 2006.

This chapter concludes the detector work presented in this thesis, and the focus now shifts
on to the particle measurements that may be obtained using the ATLAS detector as a whole.
The following chapters review the use of ATLAS in the search for supersymmetric particles,
and present a new method for using ATLAS data to constrain the parameters of the SUSY
Lagrangian.
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Chapter 5

Experimental Supersymmetry Searches at

ATLAS

Chapter 1 discussed the theoretical motivation for supersymmetry, and considered some of the
experimental constraints on the theory. The aim of this section is to review current strategies
and methods for (R-parity conserving) supersymmetry searches at the LHC, including original
studies that have been performed using existing techniques. By the end of this chapter, the
problems in the current approach will become obvious, and these will be addressed in the next
chapter.

5.1 General characteristics of SUSY events at ATLAS

It has already been found that, if supersymmetry is to provide a natural solution to the problems
of the standard model, one would expect to see sparticles at the LHC (see Chapter 1) and thus
much effort has been focused on developing strategies for SUSY searches in ATLAS. Owing
to the large number of parameters that arise from the unknown SUSY breaking sector of the
theory, it is very difficult to perform general analyses that encompass all phenomenological
possibilities, and hence practically all work to date has focused on particular ‘reduced’ models
such as mSUGRA or GMSB, following the strategy laid out in the ATLAS physics Technical
Design Report[25].

SUSY events are dominated by the production of gluinos and squarks, which will decay
through one or more intermediate particles before producing stable χ̃0

1’s that leave the detector
unseen. Thus, if weak scale supersymmetry exists one expects to see events with large missing
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energy, high jet multiplicity and one or more isolated leptons. These are quite general charac-
teristics, and should be enough to distinguish SUSY from the SM and thus formally ‘discover’
supersymmetry 1. Once it is established that ATLAS data are consistent with SUSY, one can
start to isolate specific processes in an attempt to measure sparticle masses, and subsequently
learn more about the SUSY Lagrangian.

There are essentially two categories of measurement one may make in ATLAS: inclusive

measurements, which involve variables taken over the whole event sample, and exclusive

measurements, in which one determines the properties of specific decay processes. Both of
these will prove essential in identifying the mechanism of SUSY breaking at the LHC, and
will be revisited many times in the following text. Thus, it is worth considering briefly some
key examples of each class of variable.

5.1.1 Inclusive measurements

Because inclusive measurements are taken over the whole event sample, they will be the first
measures used to try and identify the presence of SUSY in ATLAS events, as one should be
able to see deviations from the SM in only a few fb−1 of data. Examples include the missing
transverse energy in the event (Emiss

T ), the number of jets, the pT of the hardest jets, the mean
number of leptons, and variables that describe the shape of the event (e.g.sphericity, oblateness
and thrust, covered in appendix B). These discriminate between the SM and SUSY, and also
provide some sensitivity to the underlying SUSY model.

An important inclusive variable for SUSY discovery is the ‘effective mass’, Meff, originally
defined as follows:

Meff = Emiss
T + pT,1 + pT,2 + pT,3 + pT,4 (5.1)

where pT,i is the transverse momentum of the ith hardest jet in the event. Note that the def-
inition does not conventionally include leptons. Meff is correlated to the SUSY mass scale,
though work in[61] demonstrated that the best model independent measure of the effective
SUSY mass scale actually results from extending the jet sum to include all jets in the event.

1It is noted that there are, of course, other possible extensions to the SM that do not involve supersymmetry,
and so the discovery of SUSY will also involve demonstrating convincingly that any non-SM signatures observed
are actually due to sparticle decays and nothing else. A possible alternative model that has been considered
recently is that of Universal Extra Dimensions (UED), which may mimic SUSY signatures unless the spin of the
particles can be measured[60]. Specific comparisons between such possible models are beyond the scope of this
thesis.
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Hence, all references to Meff in this thesis will refer to the following definition:

Meff = Emiss
T +

∑

i

|pT,i| (5.2)

5.1.2 Exclusive measurements

Exclusive measurements are those performed on specific decay processes, such as particu-
lar sparticle decays or decay chains. Although weak scale SUSY should first be discovered
through the use of inclusive variables, any attempt to understand how SUSY is broken will re-
quire the measurement of particular sparticle masses and decay widths, and hence will require
the observation of more specific processes. For this reason, the bulk of the work performed
to date within the ATLAS collaboration that is relevant to measuring SUSY masses (and sub-
sequently the GUT scale parameters) has involved exclusive signatures, with much attention
paid to investigating different points in the reduced parameter spaces of mSUGRA, GMSB,
AMSB, etc, with a view to mapping their characteristics.

Although there is undoubtedly some merit in this approach, it is clearly limited by the fact
that there is no particular motivation for any of these reduced parameter sets, let alone for
one particular point within these model choices. Furthermore, as we shall see, even within
one particular model choice it will be difficult to obtain unambiguous mass measurements.
There is also a separate issue related to the fact that if exclusive data alone is used, one ignores
the wealth of useful information contained in inclusive variables. Nevertheless, the strategy
at least enables one to explore the often dramatic changes in phenomenology over the whole
parameter space, and the hope is that this will form a useful guide for the interpretation of
ATLAS data should SUSY be found.

In this chapter, I present two original examples of the use of exclusive signatures within
the mSUGRA parameter space, with the specific goal of measuring sparticle masses. The first
of these, performed on a point in the so-called ‘co-annihilation region’ will be used to demon-
strate how kinematic endpoints in invariant mass distributions can be used to reconstruct the
masses involved in the decay chain. The second example, performed in the ‘funnel region’ of
mSUGRA space, gives a concrete example of the fact that, even in a reduced parameter space
such as mSUGRA, one observes dramatically different phenomenologies as the parameters
are varied and hence cannot in principle generalise this kind of analysis to all points without
substantial further work. In the next chapter, I will address these problems by introducing a
method that combines inclusive and exclusive data.
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5.2 Co-annihilation region

5.2.1 Definition of co-annihilation model

Of the regions favoured by WMAP that are displayed in Figure 1.3, the region at low m0 and
extending to high m1/2 is the stau co-annihilation region, in which the stau is light enough to
have efficient co-annihilation with the lightest neutralino (indeed, the region runs along the
boundary that is excluded due to the fact that the stau would become the LSP). A point was
chosen for study in this region with the following mSUGRA parameters:

m0 = 70 GeV, m1/2 = 350 GeV

tanβ = 10, A = 0, µ > 0

The masses of the most relevant particles are contained in Table 5.1, whilst branching ratios
for some of the most significant decay processes are given in Table 5.2. Although similar to
the point 5 analysed in the ATLAS Physics TDR[25], this particular case is somewhat more
complicated owing to the small mass differences between the χ̃0

1 and the ẽR and between the
χ̃0

2 and the ẽL. This leads to the production of soft leptons, and these may be missed by the
ATLAS detector thus reducing the statistics in any resulting decay chain plot.

5.2.2 Monte Carlo event generation and detector simulation

The first step in analysing a point in the SUSY parameter space is to take the mSUGRA
parameters given above and calculate the mass spectrum of SUSY particles at the weak scale
by solving the renormalisation group equations. This was accomplished in this instance using
ISAJET v7.69 [62], in conjunction with ISAWIG. The latter produces an input file for the
HERWIG 6.5[63–65] Monte Carlo event generator, which produces simulated events.

These are then passed through the ATLFAST detector simulation, which simulates the ef-
fects of detector resolution for the ATLAS detector at the LHC. Jets are reconstructed using
a cone algorithm with a cone size ∆R = 0.4. Electrons, muons and jets were subject to a
minimum pT cut of 5, 5 and 10 GeV respectively.

Note that the ATLFAST reconstruction algorithms affect the ability to reconstruct leptons
and jets in close proximity, and this is potentially a source of systematic error in the endpoint
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Particle Mass/GeV
χ̃0

1 137
χ̃0

2 264
ẽL, µ̃L 255
ẽR, µ̃R 154
τ̃1 147
τ̃2 257
g̃ 832
ũL 760
ũR 735
d̃L 764
d̃R 733
b̃1 698
b̃2 723
t̃1 574
t̃2 749
h 116

Table 5.1: The most important particle masses at the mSUGRA point defined in the
text.

Process Branching Ratio
χ̃0

2 → l̃Rl 2%
χ̃0

2 → l̃Ll 29%
χ̃0

2 → τ̃1τ 18%
χ̃0

2 → τ̃2τ 2%
χ̃0

2 → χ̃0
1h 48%

Table 5.2: Branching ratios for important decay processes occurring at the mSUGRA
point defined in the text. l̃ is used to denote selectrons and smuons, whilst l denotes
electrons and muons.
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observations (particularly in the threshold position). This will also occur in full simulation,
though to a lesser extent. A study of these systematic effects in both the fast and full simulation
is long overdue, but is sufficiently complicated to warrant a separate study. It is important to
remember that this affects all previous endpoint analyses, and is not specific to that considered
here.

A sample corresponding to 100fb−1 was generated, representing one year of design lumi-
nosity.

5.2.3 Search for squark decay

Previous studies (for example, in[25]) have illustrated the procedure of searching for kinematic
edges in the various invariant mass distributions resulting from a given event. The procedure
is used here in conjunction with the decay:

q̃→ qχ̃0
2 → ql±l̃∓L → ql±l∓χ̃0

1 (5.3)

This is an excellent starting point for analysis due to the clear signature provided by the two
opposite-sign, same-flavour leptons. The left-handed slepton is considered here rather than
the right-handed slepton due to the much greater branching ratio BR(χ̃0

2 → l̃Le).

If one considers being in the rest frame of the squark, the invariant mass of the two de-
cay products is equal to the rest mass of the squark. The same logic applies to each of the
sparticles in the chain- the invariant mass of the decay products must have a maximum value.
Hence, the invariant masses of different combinations of decay products from the chain (e.g.
the two leptons, or the two leptons and the quark) have theoretical maxima whose precise
values are calculated by boosting between the rest frames of the sparticles in the chain and
working through the kinematic algebra. These maxima appear as edges in the invariant mass
plots associated with the decay products, and each edge position is a function of the sparticle
masses in the chain. Thus, by obtaining values for at least four edge positions in visible decay
distributions, one can measure the masses in the chain.

The following endpoints are expected to be observed in the invariant mass spectra associ-
ated with this decay chain (ψ̃ = m2

χ̃0
2
, q̃ = m2

q̃, l̃ = m2
l̃L
, χ̃ = m2

χ̃0
1
)[66]:
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(m2
ll)edge =

(ψ̃ − l̃)(l̃ − χ̃)
l̃

(5.4)

(m2
llq)edge =







































max
[ (q̃−ψ̃)(ψ̃−χ̃)

ψ̃
,

(q̃−l̃)(l̃−χ̃)
l̃

,
(q̃l̃−ψ̃χ̃)(ψ̃−l̃)

ψ̃l̃

]

except when l̃2 < q̃χ̃ < ψ̃2and ψ̃2χ̃ < q̃l̃2

where one must use(mq̃ − mχ̃0
1
)2.

(5.5)

(m2
lq)edge

max = max
[

(q̃ − ψ̃)(ψ̃ − l̃)
ψ̃

,
(q̃ − ψ̃)(l̃ − χ̃)

l̃

]

(5.6)

(m2
lq)edge

min = min
[

(q̃ − ψ̃)(ψ̃ − l̃)
ψ̃

,
(q̃ − ψ̃)(l̃ − χ̃)

(2l̃ − χ̃)

]

(5.7)

(m2
llq)thres =

2l̃(q̃ − ψ̃)(ψ̃ − χ̃) + (q̃ + ψ̃)(ψ̃ − l̃)(l̃ − χ̃) − (q̃ − ψ̃)
√

(ψ̃ + l̃)2(l̃ + χ̃)2 − 16ψ̃l̃2χ̃

4l̃ψ̃
(5.8)

where “min” and “max” refer to minimising and maximising with respect to the choice of
lepton. In addition, “thres” refers to the threshold that appears in the mllq distribution when
events are chosen such that the angle between the two lepton momenta exceeds π/2 in the
slepton rest frame, corresponding to medge

ll /
√

2 < mll < medge
ll .

5.2.4 Note on endpoint positions

The formulae for endpoint positions presented in Section 5.2.3 take a squark mass as input.
In reality not all squarks have the same mass, and so chains containing squarks with different
masses will have endpoints at slightly different positions. This effect manifests itself as a
smearing of the endpoints in any plots of experimental or simulated data. Plots of this kind
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are shown in Section 5.2.5 and when indicating the positions at which endpoints are expected
to be found in these plots, one is required to choose a “typical” squark mass for insertion
into the relevant endpoint formula. A 750 GeV “typical” squark mass is chosen here for this
purpose, although it should be borne in mind that the actual endpoints seen in the plots will be
somewhat smeared due the the non-degeneracy of the squark masses contributing to them.

5.2.5 Invariant mass distributions

Cuts

In order to see the above edges clearly, one must apply various cuts to the event data in order to
isolate a clean sample of the squark decay chain. Here, one can select events with the Opposite
Sign Same Flavour (OSSF) lepton signature described above, and one can also exploit the fact
that the required events have a large amount of missing energy (due to the departure from the
detector of two invisible χ̃0

1’s). Furthermore, one expects to obtain hard jets in SUSY events,
resulting from the decay of gluinos and squarks. All plots are obtained through the use of the
following cuts:

• Emiss
T > 300 GeV;

• exactly two opposite-sign leptons with pT > 5 GeV and |η| < 2.5;

• at least two jets with pT > 150 GeV;

Although the cuts chosen are similar to those used for point 5 in the ATLAS Physics TDR,
there are some exceptions. For example, one needs to impose a pT cut on the leptons in the
event due to the fact that ATLFAST is not parametrised properly for low pT leptons, and yet it
is essential to pick up soft leptons due to the small mass differences that crop up in the decay
chain. Hence, a compromise between these two factors must be chosen. Some plots are the
result of additional cuts, and these are given below.

The SM background for dilepton processes is generally negligible once these cuts have
been applied, as can be seen from Figure 20-11 in reference[25] in which the SM background
is less than 1 per cent of the SUSY signal, for a representative mSUGRA point 2. However,

2Of course, this does not guarantee that the SM background is negligible over the whole parameter space, as,
although the SM background does not change with the SUSY parameters, the SUSY signal may be weaker in
some areas. This should not affect the point studied here, however, and it is therefore assumed that the dominant
source of background is that of other SUSY processes.



Experimental Supersymmetry Searches at ATLAS 93

the OSSF lepton signature can be produced by SUSY processes other than the decay of the χ̃0
2.

One would expect these to produce equal amounts of opposite-sign opposite-flavour (OSOF)
leptons and hence one can often subtract the dilepton background by producing “flavour sub-
tracted plots” in which one plots the combination e+e− + µ+µ− − e+µ− − e−µ+. This is only
possible in cases where there are sufficient statistics, and was not possible for every plot below.

mll plot

As seen in Figure 5.1, a sharp edge is produced in the spectrum at ≈ 58 GeV, and this is a
very clear signature. There is, however, a second edge visible at ≈ 98 GeV, resulting from a
squark cascade decay featuring a right-handed selectron rather than a left-handed selectron.
In practise, it will be very difficult to assign these two edges correctly, and we see here a first
example of decay chain ambiguity. It will be observed in Chapters 6 and 7 that this is not
merely limited to choice of slepton, but could extend to other possibilities, and we therefore
need a more general approach than that used here in order to reconstruct masses.

mllq plot

This is produced by selecting events with exactly two leptons, and forming the invariant mass
mllq with each of the two highest pT jets. Given that the hardest jets in events containing
cascade decays of squarks and gluinos usually come from the processes q̃→ χ̃0

2q and q̃→ χ̃0
1q,

the lower of the two invariant masses formed in this way should lie below the llq edge defined
by Equation (5.5).

As shown in Figure 5.2, a clear endpoint is seen in the distribution at ≈ 600 GeV.

mthres
llq plot

This is reproduced in Figure 5.3, and is constructed by applying the cuts defined in Sec-
tion 5.2.5 along with the additional constraint that mll must exceed mmax

ll /
√

2. Furthermore,
because a threshold is expected, the higher of the two llq masses is chosen.

A threshold is clearly observed, though it is difficult to state its precise position due to un-
certainty in the expected shape of the edge and the manner in which it is modified by detector
effects. Also, the extra cut limits the statistics. There is in fact a series of thresholds resulting
from the presence of different squarks in the decay chains contained in the event sample (with
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Figure 5.1: The flavour-subtracted dilepton invariant mass plotted with the cuts de-
scribed in the text.

Figure 5.2: The llq invariant mass plot.
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Figure 5.3: The llq invariant mass threshold plot.

different squark masses). This essentially produces a smearing of the threshold, and there has
yet to be a satisfactory solution to this problem.

mmax
lq and mmin

lq plots

These are plotted by forming llq invariant masses with the two hardest jets in the event. The jet
from the lowest mass combination (which is our best guess for the quark emitted in the squark
cascade decay) is then used to form the lq invariant mass with each of the leptons in the events.
The maximum of these is plotted in the mmax

lq plot (shown in Figure 5.4) and the minimum is
plotted in the mmin

lq plot (shown in Figure 5.5). For the mmax
lq plot, events were selected using

the cuts defined above, but with the additional constraint that one of the llq invariant masses
formed with the two hardest jets must be above the llq endpoint, and the other must be below.

The mmin
lq plot has one additional cut: the dilepton invariant mass must be less than the value

of mmax
ll observed in Figure 5.1.

Both plots exhibit endpoints, and the edge is particularly abrupt in the mmax
lq histogram.

Although there are events beyond the endpoint in the mmin
lq plot (due to SUSY background

processes), there is nevertheless a convincing edge at ≈ 180 GeV.
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Figure 5.4: The lq max invariant mass plot.

Figure 5.5: The lq min invariant mass plot.
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Edge Predicted (GeV) Observed (GeV)
ll edge 57.64 57.5±2.5

llq edge 600.1 600±10
llq threshold 134.0 150±30
lq max edge 592.1 590±10
lq min edge 181.7 180±10

Table 5.3: Predicted and observed edge positions for the mSUGRA mass point de-
scribed in the text. Error estimates have been obtained ‘by eye’, and reflect a lack of
information regarding the precise shapes of the endpoints.

5.2.6 Comparison of observed and predicted edges

The edges predicted by Equations (5.4) to (5.8) are summarised in Table 5.3, where a common
squark mass of 750 GeV is used, and all other masses are taken from Table 5.1. The observed
positions of the endpoints are also given.

It is common when extracting the observed edges from plots such as those above to fit a
function to the endpoint in order to determine both the precision and the accurate position.
For the purposes of this analysis, the edges, and their estimated errors, have been determined
‘by eye’3 for several reasons. Firstly, not all edges can be fitted with functions (in the case of
the llq threshold, for example, the correct shape is not known). Indeed, recent work highlights
the need for caution in applying these functions too readily without first investigating the
theoretical shape of the distribution[67], as endpoints can often exhibit tails or ‘feet’ that will
be confused with SUSY background and hence may lead to inaccurate measurements. The
shapes of the endpoints for distributions involving quarks vary significantly over the parameter
space, introducing a model dependence into the precision with which one may realistically
measure endpoint positions and hence masses. Given that the purpose of this discussion is
merely to present a typical analysis based on exclusive data in order to discuss the limitations
of current techniques, however, it is sufficient here to reflect the current state of ignorance by
using the conservative errors given in Table 5.3. For those interested, the fitting of endpoint
functions has been done in work leading to reference [68] which contains estimates of the

3Endpoint positions were obtained by looking for places where the distributions suddenly start to decay into
the tail, and the errors were ascertained by looking at the shape of the distribution around this endpoint. Endpoints
that are less steep are assigned larger errors. This process, though crude, will not lead to incorrect results given
that the errors were assigned very conservatively. In fact, one would expect the final results to improve if more
care was taken over the assignment of these errors.
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precision expected if one were to take a more optimistic view.

5.2.7 Mass reconstruction

Having measured four endpoints and one threshold, one can in principle now try and recon-
struct the masses of the sparticles involved in the squark cascade decay chain. In order to do
so, it is necessary to assume that one has correctly identified the edges in the dilepton invariant
mass distribution, and that it is certain that the edges observed in each of the distributions are
indeed produced by the squark decay process outlined in Equation 5.3. These assumptions
lie behind almost all current ATLAS analyses, and will therefore be retained in this chapter
despite being somewhat unsatisfactory. An answer to this problem will be one of key devel-
opments presented in the next chapter. The endpoint equations will be solved using a Markov
Chain Monte Carlo method, details of which may be found in Appendix A. The technique
is an excellent way of efficiently exploring high dimensional parameter spaces, and will be a
crucial component of the analysis presented in Chapter 6.

The five endpoints observed in the previous section essentially provide an (over-constrained)
set of simultaneous equations in the four unknowns mq̃,ml̃L , mχ̃0

2
and mχ̃0

1
,and these can be

solved to determine the masses. Given a set of observed edges eobs, and a set of postulated
masses m, the ultimate goal is to evaluate p(m|eobs) and thus to find the regions of mass space
favoured by the data. The best way of doing this is to sample masses m from p(m|eobs), subse-
quently histogramming the samples to reveal directly the shape of the probability distribution.

Using Bayes’ Theorem we know that

p(m|eobs) ∝ p(eobs|m)p(m). (5.9)

The prior p(m) is chosen to be uniform4 over the mass space considered. This choice seems
a good as any other, and has the added benefit that plots of the posterior distribution p(m|eobs)
are also just plots of the likelihood p(eobs|m), permitting the effects of other priors p(m) to be
easily imagined.

4Some points m in mass space do not satisfy the hierarchy mq̃ > mχ̃0
2
> ml̃L

> mχ̃0
1
> 0 required by the

chosen decay chain. Under the model, then, these points yield p(eobs|m) = 0 and are vetoed. While this veto
is technically part of the likelihood (given the model) it simplifies later discussion of the likelihood in more
complicated scenarios if the veto is pulled out of the likelihood and moved into the prior p(m). In practise then,
the effective prior is uniform over all of the region of mass space in which the required hierarchy is present, and
zero elsewhere. The effect is the same as if the veto had been left in the likelihood, but the likelihoods will be
simpler to describe and define.
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One can sample from p(m|eobs) using the Metropolis Method as follows. First a mass point
m is chosen, and p(m|eobs) is evaluated using Equation (5.9). For the edges e1, e2, e3, e4, and
e5, the likelihood p(eobs|m) is given by the product

p(eobs|m) =
5

∏

i=1
p(eobs

i |m), (5.10)

where

p(eobs
i |m) ≈ 1

√

2πσ2
i

exp














−
(eobs

i − epred
i (m))2

2σ2
i















(5.11)

in which σi is the statistical and fit error associated with the edge measurement of edge ei, and
where eobs

i and epred
i (m) are respectively the observed and predicted positions of the edge. This

probability distribution assigns a weight p(m|eobs) to each point m in mass space, including
the errors associated with the endpoint measurements. Note that p(m|eobs) is the equivalent of
the P∗(x) defined in the appendix in Equation (A.2), as it is defined only up to an unknown
normalisation constant.

So, in order to plot the probability distribution, one follows the following steps of the
Metropolis Algorithm:5

1. A new mass point mproposal is suggested on the basis of the current point mcurrent. The
mass-space proposal distribution for the Metropolis Algorithm was chosen to be a 4-
dimensional Gaussian whose width in each dimension was 5 GeV and whose centre
was the position of the current point mcurrent. The width was chosen to match the typical
width of the lines in mass space, and should not effect the final result once convergence
has occurred.

2. p(mproposal |eobs) is evaluated at the proposed point.

3. A decision is made on whether to jump to the new point, or remain at the current point
on the basis of the ratio of p(mproposal|eobs) to p(mcurrent |eobs).

4. If a decision to not jump is made, then the next point in the chain mnext is again set equal
to mcurrent, otherwise it is set equal to mproposal. When proposals are rejected, therefore,
successive points in the chain are duplicates of each other.

5See Appendix A.3 for discussion of the motivations behind each of these steps, and for definitions of “pro-
posal functions” and the decision mechanism.
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5. All steps are repeated until the sampler has sufficiently explored the interesting regions
of parameter space.6

It is noted that in the real ATLAS detector, one might have a systematic shift of the endpoints
due to the jet energy scale error, and this is considered in Section 6.2.

5.2.8 Mass space plots

The Metropolis sampler ensures that points which are more likely are sampled more often.
One can observe the shape of the probability distribution by simply histogramming the sam-
pled points. This is a 4 dimensional shape in mass space, which can be viewed as a projection
onto each pair of axes. This is done in Figure 5.6, revealing that a lengthy region of param-
eter space is compatible with the edge data, and extra information is required to constrain
this further. Note that the endpoint equations discussed previously are sensitive principally to
mass differences, and hence one observes lines in each plane of the mass space, constraining
each mass only in terms of the others. Given that the endpoint data does not set the overall
mass scale, the system is able to wander to high masses without affecting the position of the
endpoints provided that the mass differences remain consistent. This is a limitation of the
endpoint approach, and will be addressed later.

Finally, it is noted that the lines are broader in the plots featuring squark masses, and this
is due to the fact that the end points were calculated using an average squark mass, whilst
the Monte Carlo events feature a range of squark masses. Hence the resolution is smeared
somewhat relative to the other masses.

5.3 Funnel region

We have now completed one example of the use of exclusive data to measure sparticle masses
in the ATLAS detector, and have met some of the problems associated with the method. It is
instructive at this point to look at another point in the mSUGRA parameter space that is also
consistent with the WMAP data and yet displays a different phenomenology.

As previously seen in Figure 1.4, one obtains a ‘funnel’ that is consistent with the WMAP
relic density limits as one increases tan β. This is due to the presence of a heavy Higgs boson

6For a discussion of the convergence tests used throughout this thesis, see Appendix A.5.
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Figure 5.6: The region of mass space consistent with the kinematic edge measure-
ments described in the text, obtained using a Markov chain sampler.
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whose mass mA is roughly twice that of the χ̃0
1, leading to enhanced χ̃0

1 annihilation. The
region is a particularly interesting case for the ATLAS experiment, because the decay chain
investigated previously (given in Equation 5.3) can no longer occur with a selectron or smuon
present in the chain due to their mass being larger than that of the χ̃0

2. However, one can instead
observe the following process in order to obtain a measurement of the stau mass:

q̃→ qχ̃0
2 → qτ±τ̃∓1 → qτ±τ∓χ̃0

1 (5.12)

Thus, in order to observe endpoints, one must look at tau-jet distributions which is problematic
for two reasons:

1. Tau reconstruction at ATLAS is much less efficient than electron or muon reconstruc-
tion, and is approximately of the order of 50% (compared to 90-100% for electrons and
muons).

2. Tau decays involve missing energy (due to the production of neutrinos) that leads to
distortion of the endpoint shape from the expected distribution.

This section presents plots analogous to those shown in Section 5.2.5.

5.3.1 Definition of funnel region model

A point was chosen for study in the funnel region with the following mSUGRA parameters:

m0 = 320 GeV, m1/2 = 375 GeV

tan β = 50, A = 0, µ > 0

This has a relic density Ωχh2 = 0.107 as calculated using the Micromegas 1.1.1 software
code[69], and is thus consistent with WMAP as well as being consistent with a measurement of
the branching ratio for the decay b→ sγ and recent measurements of the anomalous magnetic
moment of the muon 7. The masses of the most relevant particles are contained in Table 5.4,
whilst branching ratios for some of the most significant decay processes are given in Table 5.5.

7In addition to these constraints, it is possible to interpret recent data from the EGRET satellite experiment
as evidence of a dark matter annihilation signal in the form on an excess of Galactic gamma rays with energy
above 1 GeV[70]. This interpretation leads to a range of preferred neutralino masses, but has not been used in
this analysis owing to the uncertain nature of the result.
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Particle Mass/GeV
χ̃0

1 150
χ̃0

2 288
l̃L 412
l̃R 351
τ̃1 181
τ̃2 393
g̃ 895
ũL 867
ũR 842
d̃L 871
d̃R 840
b̃1 717
b̃2 779
t̃1 642
t̃2 798
h 116

Table 5.4: The most important particle masses at the mSUGRA funnel region point
defined in the text.

Process Branching Ratio
χ̃0

2 → τ̃1τ 48%
χ̃0

2 → χ̃0
1h 3.6%

χ̃0
2 → χ̃0

1Z0 0.8%
τ̃1 → χ̃0

1τ 100%

Table 5.5: Branching ratios for important decay processes occurring at the mSUGRA
funnel region point defined in the text.

HERWIG 6.505 and ISAJET 7.69 were used along with ATLFAST, as in the previous section.
One million signal events were generated, corresponding to 194 fb−1 of data.
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5.3.2 Tau-jet invariant mass distributions

Cuts

The cuts here are defined in a similar fashion as those used in Section 5.2.5, except that we
now apply selection cuts to taus rather than the lighter leptons. All plots below are obtained
through the use of the following cuts:

• Emiss
T > 300 GeV;

• exactly two opposite-sign taus with pT,1 > 100 GeV, pT,2 > 50 GeV (as reconstructed
by ATLFAST) and |η1,2| < 2.5;

• at least two non-tau jets with pT > 150 GeV;

One can also perform same sign tau subtraction on the plots, and this is done in all cases
below.

mττ plot

The ditau invariant mass is shown in Figure 5.7, though it must be remembered that the neutri-
nos from tau decays are not detected. An endpoint is expected at 125 GeV, and this is observed,
although the distribution is clearly distorted from the triangular phase space distribution that
is more closely observed in Figure 5.1. The tail of events past the endpoint results from SUSY
background processes, and it is seen that the most significant effect of the distortion of the end-
point shape is to confuse the position of the endpoint, and thus lower the precision with which
a measurement can be made. There currently exists no satisfactory solution to this problem,
and further work needs to be done to model the distortion effectively.

mττq plot

The mττq distribution is shown in Figure 5.8. As before, the invariant mass is formed with the
two hardest (non-tau) jets in the event, and the lowest of these is histogrammed. Once more
we see an endpoint that is consistent with the predicted value (in this case 690 GeV), although
the shape is easy to confuse with the tail resulting from background processes.
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Figure 5.7: The same sign subtracted ditau invariant mass plotted with the cuts de-
scribed in the text.

Figure 5.8: The same sign subtracted mττq invariant mass plotted with the cuts de-
scribed in the text.
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mmax
τq and mmin

τq plots

These are shown in Figures 5.9 and 5.10, and are both subject to an additional cut specifying
that the ditau invariant mass must be less than the endpoint observed in Figure 5.7 (taken to
be 127 GeV). mmax

τq and mmin
τq endpoints are expected at 640 and 400 GeV respectively, and both

plots are consistent with these values though the mmax
τq plot is more strongly affected by the tail

problem described above.

5.3.3 Discussion

The second example of endpoint analysis has demonstrated that, even within the mSUGRA
parameter space, one can observe dramatically different phenomenologies, and must in prin-
ciple develop new techniques in order to use exclusive analysis (or, at the very least, sub-
stantially modify existing techniques). The problem of having to observe endpoints involving
taus naturally leads to problems resulting from the tau reconstruction, which, coupled with
an irreducible tail of SUSY background, makes it much harder to obtain precise endpoint
measurements in tau-jet distributions 8. There are two ways of solving this problem:

1. Do a thorough study of the effect of tau reconstruction on endpoint shapes (itself com-
plicated by the fact that the shapes of the distributions themselves vary considerably
over the parameter space before one takes the distortion from tau reconstruction effects
into account, as seen in reference[67]).

2. Use other data in conjunction with the endpoint analysis in order to make up for the lack
of precision in the endpoint measurements.

Both of these are reasonable strategies, though it is the second that will be developed in
this thesis owing to the fact that it will also help to solve the problems encountered in the co-
annihilation region; chiefly the problems associated with ambiguous edges and with the lack
of constraint from endpoints on the overall mass scale.

8It is noted for completeness that such endpoints are sometimes visible even when channels involving the
lighter leptons are also open, and in such a case, one could improve the stau mass measurement using information
obtained through cascade decays featuring sleptons and smuons.
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Figure 5.9: The same sign subtracted mmax
τq invariant mass plotted with the cuts de-

scribed in the text.

Figure 5.10: The same sign subtracted mmin
τq invariant mass plotted with the cuts de-

scribed in the text.
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5.4 Summary

This chapter has reviewed the major characteristics of experimental supersymmetry searches
at ATLAS, and has presented two original examples of exclusive analysis within the mSUGRA
parameter space. It was seen that exclusive data alone cannot unambiguously determine SUSY
masses, even at a point where we would expect to see cascade decays of a form studied in
previous analyses. Furthermore, there are other points at which such processes cannot be
observed, and the funnel region example gives an indication of problems that can arise when
looking at alternative decays.

The Metropolis sampling algorithm has been introduced as a tool for efficiently exploring
parameter spaces of high dimensionality.



Chapter 6

Combination of Inclusive and Exclusive

Data

Thus far, it has been assumed that the strategy for SUSY searches in ATLAS will be of the
following form:

1. Use inclusive signatures to observe an excess over SM background, and thus formally
discover SUSY.

2. Select SUSY-like events, and search for exclusive processes with which to measure
sparticle properties.

3. Use these properties to infer details of the SUSY Lagrangian.

We have already seen, however, that, in the R-parity conserving case, exclusive signatures
alone are not guaranteed to give precise measurements of SUSY masses; the presence of
an invisible χ̃0

1 at the end of each decay chain forces one to use techniques like kinematic
endpoints that are sensitive to mass differences rather than absolute masses. Furthermore, one
may observe more than one endpoint in a given distribution, and there is then a struggle to
assign the endpoints to the sparticle decay chains that produced them. Encountering these
problems may even be considered a luxury- one could just as easily find oneself in a region
of parameter space where there are heavy scalars and thus cascade decays of the form shown
previously will not be observed, or in a region where very small mass differences in the chain
lead to soft leptons that cannot be detected.

109
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For this reason, this chapter is devoted to developing a method to combine inclusive and
exclusive measurements to directly constrain sparticle masses and SUSY parameters. This
has rarely been attempted before due to the difficulty of calculating the predicted values of
inclusive signatures at many points in parameter space. For example, whilst kinematic end-
point positions are given by simple analytic functions of sparticle masses (such as those given
in Equations 5.4 to 5.8), the calculation of a cross-section involves running a Monte Carlo
generator such as HERWIG in order to obtain an event sample, followed by putting the sample
through a suitable detector simulation, all of which takes time. Thus, investigating the varia-
tion of inclusive variables over a parameter space is non-trivial, and it is therefore hard to find
the regions of parameter space that are consistent with an inclusive measurement.1

The existence of a general method to combine exclusive and inclusive data would allow
one to simultaneously use all data from the ATLAS detector to constrain SUSY models2. If
endpoints are not visible, one can instead use other information that is available to try and
constrain the parameter space.

The method proposed in this chapter uses the Markov Chain Monte Carlo sampling tech-
nique introduced in the previous chapter along with a modification of the FORTRAN version
of HERWIG. Throughout, the major focus is on the problems encountered in the previous sec-
tion, namely:

1. The problem of setting the overall mass scale.

2. The problem of decay chain ambiguity when observing kinematic endpoints.

3. The problem of working in restricted model spaces.

In addition, the effect of an uncertainty on the jet energy scale at ATLAS will be examined in
detail, as an example of how to model systematic contributions to the experimental error.

Throughout the following chapter, it is necessary to assume a given SUSY model in order
to demonstrate the use of the analysis technique. I will make the arbitrary choice of examining
the co-annihilation model presented in the previous chapter, given that we already have some
idea of the measurements that can be obtained in this model. It is important to realise, however,

1For an endpoint calculation, it is sufficient to know the mass spectrum of a given point in parameter space-
this is obtained by solving the renormalisation group equations with the high scale parameters as input, and is a
much quicker process.

2In fact, one is not limited to using ATLAS data, but could include any other observables from relevant
experiments.
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that any model can be used with the following analysis, and, indeed, the next chapter will
consider a very different model.

6.1 Combination of signatures in mSUGRA

6.1.1 General remarks

In order to demonstrate how to combine inclusive and exclusive measurements at the LHC, I
will combine the endpoint information obtained for the co-annihilation model in the previous
chapter with one example of a inclusive signature. It should be possible for the ATLAS detec-
tor to measure the cross-section of events with missing pT greater than 500 GeV. Unlike the
endpoint information, this is sensitive to the overall mass scale of the theory; as the masses
of sparticles increase, the missing pT associated with the escaping neutralinos will increase,
but the total production cross-section will decrease and hence the high mass solutions encoun-
tered in the previous section will lead to missing pT cross-sections that are lower than the
value obtained at the co-annihilation point.

Exclusive and inclusive variables are combined by adding the cross-section information
to the definition of the probability function for the Markov Chain sampler that was defined
previously, though there is a subtlety here. It should be noted that up to now the analysis has
been model independent but, from here on in, some model will have to be assumed in order
to draw conclusions from the measurements. This is because endpoint data can be analysed
purely in the mass space S mass (hereafter “M”) defined by the weak scale masses, but inclusive
measurements must be compared to a given scenario (through the use of a suitable Monte
Carlo generator) before any conclusions can be drawn, and therefore must be analysed in the
space of parameters, S model of that model. This section investigates the constraints imposed by
a cross-section measurement on the parameter space S mS UGRA (hereafter “P”) of a particular
model, mSUGRA, in order to introduce the technique in a familiar context. The limitations of
this approach will rapidly become apparent and will be tackled in Section 6.2.

In view of this change of the constrained-space, (from the space of weak-scale masses
m ∈ M to the space of mSUGRA models p ∈ P) the description of the Metropolis algorithm
in Section 5.2.7 must, in this section, be considered re-written in terms of p(p|eobs) rather
than p(m|eobs). This is made more explicit in Section 6.2.2 when a further enlargement of the
constrained-space is made to accommodate uncertainty in the absolute jet energy scale.
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Figure 6.1: Variation of the cross-section of events passing a missing pT cut of 500
GeV in the m0 − m1/2 plane of mSUGRA

The cross-section in picobarns for events passing a missing pT cut of 500 GeV, for tanβ = 10
and positive µ, obtained using HERWIG. The value at the co-annihilation point is 2.03 pb.

6.1.2 Implementation

The starting point for this study is that the cross-section of events with missing pT greater
than 500 GeV can be measured at ATLAS. One can then pick points in the mSUGRA param-
eter space S mS UGRA, work out the mass spectrum, generate Monte Carlo events and work out
the cross-section of events passing this cut. Only certain points in the parameter space are
consistent with this measurement, and these will give a range of masses that are consistent.
Naively, the overlap of this region of the mass space with the region consistent with the edge
data will give the new region of mass space that is compatible with the ATLAS data. In fact,
since the end points are not entirely independent of the cross-section measurement, one needs
to include both sets of information in the final analysis in order to obtain the required region.
The ‘overlap’ picture is approximately true, however, given that the measurement of the cross-
section is not strongly related to the measurements of the edge positions, and is a useful guide
for preliminary investigation before the final analysis is carried out.

A plot of the missing pT cross-section in the m0, m1/2 plane for fixed tanβ and positive µ is
shown in Figure 6.1. As can be seen, there is a strong variation over the parameter space and
a measurement of even modest precision will be able to rule out large areas.

The full process of picking mSUGRA points and obtaining the cross-section of events that
pass the missing pT cut has been accomplished by successively running ISAJET, HERWIG and
ATLFAST, with 1000 events being generated at each point. This is rather time consuming,
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however, and a simple scan of the mSUGRA parameter space is unfeasible if any more than
two of the mSUGRA parameters are varied. For this reason, the Metropolis sampling tech-
nique introduced in the previous section is utilised once more and, indeed, it is here that the
power of the method becomes apparent. The algorithm has been used to map the interesting
region of the parameter space with fewer points than would be required in a scan in order to
obtain similar performance.

To demonstrate this, consider the following. There are four and a half parameters in the
mSUGRA parameter space, though A0 has been held constant for simplicity.3 Of the remain-
ing parameters, one is simply a sign (the sign of µ), and hence one sampling run was performed
with this sign positive, and another with it negative. In any one application of the software,
then, three parameters are varied – m0, m1/2 and tanβ – and even a coarse scan requiring 100
points along each axis would require one million points for each sign of µ. The Metropolis
algorithm maps the interesting regions of the space in approximately 15,000 points per sign of
µ, a dramatic improvement without which the analysis would have taken many months, if not
years.

Even with this improvement, it was still necessary to reduce the run time of HERWIG sig-
nificantly through the use of a parallel computer (see appendix C). Although the Metropolis
algorithm itself cannot be parallelised, Herwig can be adapted to run on a parallel machine
with the use of Message Passing Interface (MPI) code[71], thereby substantially reducing the
run time per point. This required a substantial effort, and is one of the main components
of making the problem of calculating inclusive variables at many points in parameter space
tractable.

Definition of Metropolis quantities for cross-section

The Metropolis algorithm for use with (only) the cross-section data is defined as follows. As
in the previous section, one requires the definition of the probability distribution p(p|σobs)
from which samples are to be taken, in which σobs represents the cross section measurement.
This necessitates the definition of a suitable prior p(p) on the model space P which again is
taken to be flat (but equal to zero for invalid values of any of the model parameters pi ∈ p).
Finally the Metropolis sampler’s proposal distribution must be modified to act on the model
space P rather than on the mass space M. The proposal distribution was again chosen to be
a multi-dimensional Gaussian centred on the current point p ∈ P. The widths of the proposal

3In retrospect there was no compelling reason to hold A0 fixed, and a later study is expected to look at the
effect of allowing A0 to vary and be measured by the data along with all the other model parameters.
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distribution in m0, m1/2 and tanβwere respectively usually 25 GeV, 25 GeV and 2, except when
both cross-section and edge constraints were in use simultaneously (only in Sections 6.1.3 and
beyond) in which case a smaller set of widths was used (5 GeV, 5 GeV and 2). The widths
were obtained through trial and error and will not affect the results once convergence has
occurred.

The sampled probability distribution p(p|σobs) follows a similar definition to that encoun-
tered previously for p(m|eobs). The analogue of Equation 5.10 is then just the single term
p(σobs|p) quantifying the cross-section likelihood according to:

p(σobs|p) ≈ 1
√

2πσ2
err

exp
(

− (σobs − σpred(p))2

2σ2
err

)

, (6.1)

where σerr is the error associated with the cross-section measurement and σpred(p) is the value
of the cross section expected at the point p in mSUGRA parameter space P. For the ‘measured’
cross-section, the value obtained from HERWIG using the correct mSUGRA parameters for our
mass point was taken, with an assumed error σerr of ten per cent which reflects the likely
experimental uncertainty4.

Certain regions of mSUGRA parameter space P are known to be unphysical – for example
there may be no electroweak symmetry breaking or there may be a charged LSP. In both cases,
ISAJET will detect this and fail to run. Furthermore there are points p for which HERWIG will
not run. When any of these problems occur the point p is taken to be unphysical and the
likelihood is multiplied by zero (as unphysical points cannot have generated the observed
data!).

Results in mSUGRA space (for cross-section information alone)

The results of the Markov Chain in mass space for positive µ can be seen in Figure 6.2, with
those for negative µ presented in Figure 6.3. The distributions look very similar in the m0,m1/2

4After the simulations had been completed, it was pointed out that the choice of σerr almost certainly un-
derestimates the theoretical uncertainty which will increase the error to something like thirty per cent. This will
affect all plots featuring nothing but cross-section information, in which the consistent region is certain to ex-
pand. This expansion cannot readily be quantified without further simulation, and will have to be the subject of
future studies. I do not expect the enlargement to give a significant effect in cases where the parameter space is
over-constrained through a combination of cross-section measurement with endpoint data, but would expect the
effect to be significant when exploring spaces with fewer constraints; i.e. those with larger numbers of param-
eters(Figures 6.16 and 6.17), or those without endpoint information (Figures 6.2 and 6.3). On the other hand,
ATLAS is now much more optimistic about cross-section measurements, which would tend to reduce σerr by
reducing the experimental error.
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Figure 6.2: The region of mSUGRA parameter space consistent with the measure-
ment of the cross-section of events with missing pT greater than 500 GeV, for positive
µ.

plane, reflecting a lack of sensitivity to the sign of µ. The tanβ distribution is approximately
flat for negative µ, whilst there is some insignificant preference for the ‘correct’ value of tanβ
in the positive µ case.

Results in mass space (for cross-section information alone)

It is now instructive to relate the results in Figures 6.2 and 6.3 to the weak scale mass space in
which we have already observed the regions consistent with the kinematic edge analysis. The
positive µ and negative µ data sets presented in Figures 6.2 and 6.3 have been evolved to the
weak scale using ISAJET and combined into a single data set by weighting each of the two
sets by the average likelihood of that set. This gives a region in mass space which is shown
in Figure 6.4, and is dramatically different from that obtained using the edge analysis (shown
in Figure 5.6). The overlap between the mass space region obtained from the cross-section
information (Figure 6.4) and the mass space region obtained using the edge data (Figure 5.6)
is shown in Figure 6.5, and was found by multiplying the previous data sets.

The overlap of the cross-section region with the edge data region has produced much
tighter constraints. It is worth noting that the region in Figure 6.5 can be projected onto
each pair of axes, and that this projection has a different size in each plane, with the smallest
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Figure 6.3: The region of mSUGRA parameter space consistent with the measure-
ment of the cross-section of events with missing pT greater than 500 GeV, for negative
µ.

being that in the plane of the neutralino masses. This could be used to remove some of the area
shown in the other planes, although the strictly correct procedure (followed in Section 6.1.3) is
to run a Markov Chain with the edge and cross-section information implemented at the same
time.

6.1.3 Further analysis

The overlap plots presented in the previous subsection give a rough idea of what to expect
from the combination of edge and cross-section information, but the approach is only approx-
imately valid given that the cross-section measurement is not independent of the kinematic
edge positions. Both measurements are dependent on the particle masses and, although the
endpoints are more sensitive to mass differences rather than absolute masses there is still some
weak correlation between the cross-section and the endpoints. In order to be fully rigorous,
one must run a Markov Chain whose probability density function combines both the cross-
section and the edge information at the same time – in other words one must sample this time
from p(p|eobs, σobs).

Accordingly, a Metropolis sampler of p(p|eobs, σobs) was set to explore the mSUGRA pa-
rameter space P.
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Figure 6.4: The region of mass space consistent with a measurement at 10% precision
of the cross-section of events with missing pT greater than 500 GeV, obtained using a
Markov chain sampler.
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Figure 6.5: The region of mass space consistent with a measurement at 10% precision
of the cross-section of events with missing pT greater than 500 GeV, overlapped with
a measurement of the squark decay kinematic endpoints obtained in Section 5.2.3.
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At each point p ∈ P the number of events passing the missing pT cut was obtained from
the ATLFAST output whilst the ISAJET mass spectrum was used to find the expected position
of the endpoints. This information was then compared to the ‘measured’ information (in
this case, the endpoints shown earlier, and the cross-section obtained through Monte Carlo
simulation of the co-annihilation mass point) in the definition of the probability weight for
each point p ∈ P. The likelihood p(eobs, σobs|p), the analogue of Equations (5.10) and (6.1), is
this time the product of the pair of them:

p(eobs, σobs|p) = p(σobs|p)
5

∏

i=1
p(eobs

i |m(p)). (6.2)

The same flat prior p(p) on mSUGRA space P was used as in Section 6.1.2. The likelihood
was multiplied by zero if the sparticle masses m(p) obtained at a point p were not consistent
with the mass hierarchy required for the squark decay chain to exist. The Metropolis algo-
rithm’s proposal distribution was the same as that used previously in Section 6.1.2. Chains
were run separately for positive and negative µ.

Results for cross-section and edge measurements together

The mSUGRA space results for cross-section and edge measurements are shown in Fig-
ures 6.6 and 6.7, with the results in mass space shown in Figure 6.8. Note that the precision
in the m0,m1/2 plane is greatly improved, and this is to be expected given that many points in
mSUGRA space are now rejected as they give the wrong mass hierarchy for the decay chain.
This leads to superb precision when the results are viewed in the weak scale mass space, a
fact that can be explained by realising that the dimensionality of our original parameter space
has been reduced. In Sections 5.2.3 and 5.2.7 the end point data were analysed in the weak
scale mass space (4 dimensions), and the cross-section data were considered in the mSUGRA
space. By shifting the end point data to the mSUGRA space, the fit now occurs in a space
where there are only really two parameters that control the Markov chain (as we are mostly
sensitive only to m0 and m1/2), and this improves the precision even before the cross-section

measurement is added. However, the fact that there is an excellent level of constraint imme-
diately implies that we are no longer restricted to looking at the mSUGRA model, and in fact
illustrates the power of the technique.

Hence it is observed that we have obtained solutions to the three problems posed at the start
of the chapter. The cross-section measurement is sensitive to the mass scale, and thus improves
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Figure 6.6: The region of mSUGRA parameter space consistent with the measure-
ment of the cross-section of events with missing pT greater than 500 GeV and with
the endpoint measurements obtained in Section 5.2.3, for positive µ.

mass measurements. Furthermore, there is enough constraint on the system to start looking
beyond mSUGRA, and to investigate the effects of ambiguity in the determination of the decay
chain. This ambiguity has only rarely been considered before (see for example[66, 67]), and
is investigated in Section 6.2.3.

6.2 Generalising mSUGRA

6.2.1 Background

It has been shown so far that one can sample from the mSUGRA parameter space using both
kinematic endpoint data and a simple cross-section measurement. Endpoint data alone gives
more than adequate precision within the framework of mSUGRA, provided one samples the
mSUGRA parameter space and assumes that one has identified the particles in the decay chain
correctly. The aim of this section is to generalise this analysis to include both ambiguity in
the decay chain and more general assumptions about the mechanism of SUSY breaking. The
effect of a jet energy scale error on the endpoint positions is also investigated, thus demon-
strating how one would include correlated experimental effects in the analysis.
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Figure 6.7: The region of mSUGRA parameter space consistent with the measure-
ment of the cross-section of events with missing pT greater than 500 GeV and with
the endpoint measurements obtained in Section 5.2.3, for negative µ.

6.2.2 Effect of a jet energy scale error

As we saw in Section 2.2.5, ATLAS does not measure the energy of jets perfectly, but instead
has some energy scale error. Given that most of the endpoints feature a quark jet, it is worth
investigating the effect of the energy scale error on the positions of the endpoints, and the
subsequent effect on the precision obtained in the mSUGRA parameter space.

Firstly, it is noted that for jets whose energy exceeds 70 GeV (the likely energy of the
jet contributing to the endpoint plots given the relatively large mass difference between the
squarks and the neutralinos), the energy scale error is expected to be of the order of 1 per
cent[25]. This is much lower than the errors attributed to the endpoints that arise from mis-
measurement, and hence the effect will not cause a discernible difference to the results. Nev-
ertheless the following analysis serves as a practical example of how one can incorporate
experimental effects into the analysis.

To accommodate the effect of an unknown shift s in the absolute jet energy scale, a param-
eter s is added to the set explored by the sampler. In other words, the sampler now wanders
around the extended space Q = P⊗S defined as the product of the mSUGRA parameter space
P = {p} with the set S of possible values of s. At each point q = (p, s) ∈ Q the masses m(p) of
the particles in the decay chain are worked out. A calculation of the “idealised” positions of
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Figure 6.8: The region of mass space consistent with a measurement at 10% preci-
sion of the cross-section of events with missing pT greater than 500 GeV combined
with the endpoints measured in Section 5.2.3, obtained using a Markov chain sampler
in mSUGRA space. The two bands arise from the fact that the data are a weighted av-
erage of the two initial data sets taken with positive and negative µ. The data demon-
strate that there is a negative µ solution that is not substantially less likely than the
positive µ solution, and in which the masses are slightly different.
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the edges corresponding to these masses is performed (as before) but these are then moved by
the amount predicted by the current hypothesis s for the absolute jet energy scale correction.
The resulting modified edge positions epred = epred(q) = epred(m(p), s), which now depend on
s, are the values which are used in the new version of Equation (5.11).

Having extended P to the larger space Q, our goal is now to sample not from p(p|eobs) but
from p(q|eobs). The latter is proportional to p(eobs|q)p(q). The first term p(eobs|q) may be cal-
culated almost exactly as before in Equation (5.11) but with the new modified edge positions
epred(m(p), s) described above. The last term p(q) may be decomposed by independence into
two parts: p(p)p(s). The first of these, p(p), is the mSUGRA-space prior which has already
been seen,5 while the other, p(s), is the expected distribution of the final uncertainty in the
absolute jet energy scale. Following[25], p(s) is taken to be a Gaussian of width 1%.

In order to determine the particular amounts δi by which the ith endpoint should be shifted
for a given jet energy scale correction factor s, a toy Monte Carlo simulation is run at that
point and for that edge.6 This is done once with and once without the correction factor s

multiplying the jet energies. The positions of the endpoints are compared in the two cases.
Different endpoints are shifted by different fractions of the energy scale error s.

The results including uncertainty in the jet energy scale are shown in Figures 6.9 and 6.10
for positive and negative µ respectively and are comparable to those obtained previously (Fig-
ures 6.6 and 6.7) when uncertainty in the jet energy scale was not considered.

6.2.3 Chain ambiguity in mSUGRA

In order to investigate the effect of chain ambiguity on the mSUGRA parameter space, the
edge data from Section 5.2.3 are here used in an mSUGRA fit without the assumption that the
particles in the decay chain have been identified correctly. There are relatively few processes
that can give the characteristic endpoints associated with the squark cascade decay, and it
should be sufficient merely to extend the decay given in Equation 5.3 to include the possibility
that any two neutralinos may be produced in the decay (provided of course that the one further
down the chain is lighter than that higher up the chain) and that the slepton can be either left
or right-handed. This gives twelve possible mass hierarchies, and each of these gives a series

5It must be remembered that, as in earlier sections, the likelihood p(eobs|q) will be zero (given the model) at
points where the masses of the particles in the chain do not obey the necessary mass hierarchy. It is computa-
tionally easier to place this veto into the prior p(p) as before.

6Strictly speaking the toy Monte Carlo simulation is only needed for the llq edge and the llq threshold as the
shifts in the edge positions for the other edges are linear in

√
s and may be calculated analytically.
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Figure 6.9: The region of mSUGRA parameter space consistent with the endpoint
measurements obtained in Section 5.2.3, for positive µ, with a 1 per cent jet energy
scale error included. The sampler was run using endpoint data only.
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Figure 6.10: The region of mSUGRA parameter space consistent with the endpoint
measurements obtained in Section 5.2.3, for negative µ, with a 1 per cent jet energy
scale error included. The sampler was run using endpoint data only.
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of possible endpoints in the mass spectra. This assumes that the only ambiguity arises from
two body processes- in fact it may be possible for processes involving a three body decay to
mimic the observed signal. This is considered in Chapter 7.

If we label the Na different mass assignments with a tag ai, the likelihood for the i-th
observed edge at each point p in the mSUGRA parameter space P now becomes:

p(eobs
i |p) =

Na
∑

j=1
p(eobs

i |p, a j)p(a j)

=

Na
∑

j=1
p(eobs

i |ma j(p))p(a j) (6.3)

where p(ai) is the prior for the mass assignments, and Na gives the number of assignments
open at that point in parameter space. If we assume that each of the assignments is equally
likely, the prior p(ai) is simply 1/Na. The term p(eobs

i |mai(p)) is calculated using Equa-
tion (5.11) with the masses corresponding to the assignment ai.

Equation (6.3) makes the conservative assumption that any observed edge could have come
from any observed chain (i.e. not necessarily from the same chain as that generating a different
observed edge). Furthermore (but less realistically) it assumes that there is no correlation
between the chains generating each of the edges, whereas in many parts of parameter space it
is highly likely that there is only one dominant chain. It is thus arguable that Equation (6.3)
should be replaced by the stronger statement

p(eobs|p) =
Na
∑

j=1
p(eobs|p, a j)p(a j)

=

Na
∑

j=1
p(eobs|ma j(p))p(a j) (6.4)

which says that all the observed edges were the result of the same (albeit unknown and uniden-
tified) chain of sparticles. I choose to present results using (6.3) rather than (6.4).

The results for positive µ are seen in Figure 6.11, whilst those for negative µ are in Fig-
ure 6.12. The precision is worse than that encountered previously, but not by much. It appears
that there are two favoured regions in each plot, rather than the single region encountered
previously. Further investigation reveals that one of these features a decay chain with a left
handed slepton whilst the other features a decay chain with a right handed slepton.

The next step is to view the regions in the weak scale mass space that correspond to the
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chosen mSUGRA points, and here there is a problem. Since we are now assuming that we do
not know exactly which particles are in the decay chain, one can no longer take the points in the
mSUGRA plane and claim that they give the masses of the lightest two neutralinos and the left
handed slepton. Instead, it is merely possible to say that we have measured a neutralino-like
object and a slepton-like object, but that more facts are needed to make a stronger statement.

It is possible, however, to use some other information to learn more about the particles in
the decay chain. For a start, one can look at the width of the distribution for each mass (mχ̃0

1
,

mχ̃0
2
, etc) that results from the mSUGRA points and use these widths as a qualitative guide.

If the endpoints are really caused by a single mass hierarchy, the masses in this chain should
generally fit the data better than other hierarchies, and this will manifest itself in a smaller
spread of masses for the masses involved in the correct hierarchy. In the present case, the
endpoints should all be caused by a decay chain featuring the lightest two neutralinos and
the left handed slepton, so one expects these masses to have narrower distributions. This is
indeed the case for the neutralinos, as seen in Figure 6.13, though the selectron results are less
different. Note that these should not be confused with mass measurements; we are merely
trying to get a hold on which decay chains are most likely to fit with the results.

There are other things that can be done. Having selected a region of the mSUGRA pa-
rameter space, one can look within that region at the branching ratios for the different possible
mass hierarchies, after which it might be found that there are not enough events of a given type
to be consistent with the observed endpoints. Therefore, although a decay chain featuring a χ̃0

3

and χ̃0
2 may fit a given endpoint slightly better than the correct chain, it might be impossible

for that chain to produce an endpoint with the same number of events present as has been
observed. This, in conjunction with the width of the mass distributions, might be enough to
confirm that the decay chain must be of the correct type, but it would be foolish to make this
assumption without first considering all the options.

Given that the region in mSUGRA space has not substantially increased in size, the cross-
section information will not be added at this stage. Instead, I will investigate the effect of
relaxing some of the assumptions of the mSUGRA model.
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Figure 6.11: The region of mSUGRA parameter space consistent with the endpoint
measurements of Section 5.2.3, without the assumption that the neutralinos and slep-
ton in the squark decay chain have been correctly identified. For full details, see text.
Results are shown for positive µ.

0 100 200 300 400 500 600 700 800 90010000

100

200

300

400

500

600

700

800

900

1000

 (GeV)0m

 (
G

eV
)

1/
2

m

20 40 60 80 100 120 140300

310

320

330

340

350

360

370

380

390

400

 (GeV)0m

 (
G

eV
)

1/
2

m

0 10 20 30 40 50 60 70 80 90 1000

1000

2000

3000

4000

5000

6000

7000

βtan

N
u

m
b

er
 o

f 
ev

en
ts

Figure 6.12: The region of mSUGRA parameter space consistent with the endpoint
measurements of Section 5.2.3, without the assumption that the neutralinos and slep-
ton in the squark decay chain have been correctly identified. For full details, see text.
Results are shown for negative µ.
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Figure 6.13: The mass distributions obtained from the mSUGRA decay chain, in
which one has not assumed that the particles in the decay chain have been identified.
These are not to be confused with mass measurements!



Combination of Inclusive and Exclusive Data 129

6.2.4 A non-universal SUGRA model

Background

The mSUGRA model assumes universality of the scalar and gaugino masses at the GUT scale,
and also unifies the trilinear couplings at the GUT scale. Although this helps in reducing the
SUSY breaking parameter set to a manageable level, reality may present a more complicated
case. Hence, there is a very strong motivation for developing techniques that are either model
independent or are at least able to tackle some more general SUSY models.

In this subsection, the effect of relaxing the assumption of universal GUT scale gaugino
masses is examined, whilst still retaining the chain ambiguity and jet energy scale effects
encountered in the Sections 6.2.2 and 6.2.3. It is important to realise that this is merely a first
example of the use of the techniques developed here; one could just as easily relax more of the
mSUGRA assumptions provided that one has made enough measurements to provide suitable
constraints on the resulting model.

Kinematic edge constraints on non-universal SUGRA

The parameter set for the SUGRA model now becomes m0, tanβ, A0, sgn(µ), M1, M2 and M3,
where M1, M2 and M3 are the GUT scale gaugino masses. A Metropolis sampler was used
to sample from this parameter space (along with the jet energy scale error s), with the mass
spectrum of each point found using ISAJET 7.69. Chain ambiguity was incorporated in the
same way as described in Section 6.2.3. The results are seen in Figures 6.14 and 6.15: it
should be noted that the previous m0 vs m1/2 plot has been superseded by three plots against
the various GUT scale gaugino masses. The plots shown contain 800,000 points, after which
the sampler was still clearly exploring new areas of the parameter space. Thus the plots are
not final (i.e. they have not yet “converged”) but they are sufficient to show that the endpoint
data alone do not provide sufficient information to adequately constrain the non-universal
SUGRA model, and so we have indeed reached a point where we need to consider additional
measurements – such as the cross-section.

Kinematic edge data and cross-section constraints on non-universal SUGRA

A further Metropolis sampler was used to explore the parameter space of the non-universal
SUGRA model using both the cross-section information and the edge data in the definition
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of the probability weight for each point. The results for positive µ are seen in Figure 6.16,
whilst those for negative µ are seen in Figure 6.17, and the difference from the plots described
above is immediately apparent. The system is much more tightly constrained, and it has not
wandered too far from the region corresponding to an mSUGRA model in which M1, M2 and
M3 are degenerate. One can convert this GUT scale region to a region in mass space as before
(see Figure 6.18), though with the previous disclaimer that we have not yet identified which
of the particles are involved in the decay chain but merely the range on the various masses that
might be involved. Further work in the form of Monte Carlo studies targeted in the selected
region at the GUT scale might possibly identify which masses are involved and hence improve
the precision further, a study that is perfectly feasible given the relatively small extent of the
region allowed by the data.

The results presented here are very encouraging, however, showing that even with only
one extra observable one can afford to be more honest about the general lack of information
regarding decay processes whilst still obtaining adequate precision within the framework of
mSUGRA, and reasonable precision in a more general model.

6.3 Summary

Markov Chain sampling techniques have been used to combine kinematic endpoint measure-
ments with a cross-section measurement in order to obtain precision SUSY mass measure-
ments in simulated ATLAS data. Previous analyses have been extended to include ambiguity
in the decay chain responsible for the endpoints, and a preliminary study has been made of a
non-universal SUGRA model. Throughout it has been shown that the precision of mass mea-
surements is greatly improved through the use of inclusive data, and the technique described
offers a rigorous and general approach to the problem of constraining SUSY at the LHC. Rea-
sonable precision has been obtained even with a fairly conservative estimate of the errors on
the endpoints themselves.

The work described here is the first step toward what is hoped will be a powerful technique
for future analysis. By collecting inclusive observables, one can start to look at more and
more general models, with the final result limited only by the ability of physicists to come up
with new pieces of information. At the very least, the Markov Chain approach is a powerful
framework for combining information and exploring multi-dimensional parameter spaces in
an efficient manner. The modification of HERWIG documented in appendix C is an essential
part of this analysis, and is a powerful tool.
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Figure 6.14: The region of the non-universal SUGRA parameter space consistent
with the endpoint measurements of Section 5.2.3, with chain ambiguity included.
Results are shown for positive µ. The Markov Chain has not converged.
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Figure 6.15: The region of the non-universal SUGRA parameter space consistent
with the endpoint measurements of Section 5.2.3, with chain ambiguity included.
Results are shown for negative µ, and the Markov Chain has not converged.
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Figure 6.16: The region of the non-universal SUGRA parameter space consistent
with the endpoint measurements of Section 5.2.3 and the cross-section measurement,
with chain ambiguity included. Results are shown for positive µ. The Markov Chain
has converged.
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Figure 6.17: The region of the non-universal SUGRA parameter space consistent
with the endpoint measurements of Section 5.2.3 and the cross-section measurement,
with chain ambiguity included. Results are shown for negative µ. The Markov Chain
has converged.
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Figure 6.18: The region of mass space corresponding to the non-universal SUGRA
parameter space region obtained in the text. The Markov Chain has converged.
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As a final note, it is worth remarking that the technique is not limited solely to data obtained
at the LHC. Any piece of relevant data is potentially useful, with obvious examples being
cross-section limits for rare decay processes, and dark matter measurements that are currently
already being used to set limits on theories (see, for example, references[72],[73] and[74]).
This data may prove to be essential when one starts to explore models with greater numbers
of parameters.



Chapter 7

NUHM models

Chapter 6 introduced a method for exploring SUSY parameter spaces with, in principle, an
arbitrary number of parameters, whilst also demonstrating how to include effects such as errors
on the jet energy scale and decay chain ambiguity. In the process, a short investigation of a
model with non-universal gaugino masses was performed in order to demonstrate the utility
of the method.

The purpose of this chapter is to briefly investigate another class of SUSY model, in which
the GUT scale Higgs masses are non-universal (NUHM models). There has been much inter-
est in these recently as viable extensions of mSUGRA since, although one can devise relatively
strong theoretical motivations for gaugino mass universality at the GUT scale, there is no rea-
son why the soft supersymmetry-breaking scalar masses of the electroweak Higgs multiplets
should be universal. It is thus particularly important to consider models in which one breaks
the degeneracy of these masses, and a set of benchmark points consistent with current mea-
surements of the dark matter relic density, the b → sγ decay branching ratio and gµ − 2 was
presented in reference[75]. Furthermore, it was observed in reference[76] that relatively rare
phenomena in the mSUGRA parameter space become much more ‘mainstream’ in NUHM
models, and hence they make important cases for study, given that they are not excluded ex-
perimentally.

For a Markov Chain enthusiast, NUHM models offer an interesting testing ground for new
effects that are not commonly encountered in mSUGRA. For some model choices, decays
featuring chains of successive two body decays are not present, and yet it is possible to observe
decay chains involving a combination of two and three-body decays. Thus, it should still be
possible to measure masses by the standard method of searching for kinematic endpoints, but
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one first needs to derive expressions for their expected position. This introduces an extra layer
of ambiguity when attempting to assign decay processes to the edges observed in invariant
mass distributions, and requires an extension of the decay chain ambiguity work presented in
Section 6.2.3. Cascade decays featuring the three-body decay mode could also occur in, for
example, mSUGRA models 1, though they apparently have not been studied before.

The aims of this chapter are to investigate the collider phenomenology of an NUHM model,
and to look at how the presence of the additional endpoints affects the decay chain ambiguity.
Section 7.1 summarises the particular choice of NUHM model used in this chapter, reviewing
both the mass spectrum and the relevant decay channels. The three-body endpoint positions
for a general decay are derived in Section 7.2, and are applied to the NUHM model in Sec-
tion 7.3. Section 7.4 discusses the prospects for more detailed analysis of the NUHM model,
and considers how one should extend the decay chain ambiguity work discussed in the previ-
ous chapter.

7.1 Selection of NUHM model

The NUHM parameter space is related to that of mSUGRA by the addition of two extra pa-
rameters that express the non-universality of the two MSSM Higgs doublets. These can be
specified at the GUT scale as the masses m2

Hu
and m2

Hd
, or alternatively the conditions of elec-

troweak symmetry breaking allow one to trade these for the weak scale parameters µ and mA.
In selecting a model for study, the benchmark model γ in reference[75] was found to be partic-
ularly interesting. The two body decay modes of the χ̃0

2 are not allowed, and hence one will not
observe the characteristic two body endpoints seen in a variety of mSUGRA parameter space
points but, rather, will have to develop other strategies for analysis. It is compatible with all
current experimental constraints arising from, e.g. WMAP and limits on the branching ratios
of rare decays, and is specified as follows:

m0 = 328 GeV, m1/2 = 247 GeV

tan β = 20, A0 = 0, |µ| = 325 and mA = 240

with a top quark mass of 178 GeV, and µ greater than zero.

1A suitable mSUGRA model for study would be obtained by taking the parameters of the NUHM benchmark
point studied here and setting the GUT scale Higgs masses to the universal scalar mass m0.
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Figure 7.1: The cascade decay chain on the left, including a three-body decay, will
give rise to kinematic endpoints. On the right, the same decay is shown but with the
two leptons treated as a single object L, and with the sparticle symbols replaced by
the notation used in the text.

ISAJET 7.72[77] has been used to generate the mass spectrum and decay information for
the point, and the results are summarised in Tables 7.1, and Tables 7.2 and 7.3 respectively. In
addition, HERWIG 6.5[65] was used to estimate a total SUSY production cross-section of 33
pb at this point. This differs from that given in reference[75] (where a sum of the g̃g̃, g̃q̃ and
q̃q̃ cross-sections gives 55 pb), though is consistent with the fact that the Herwig calculation is
only performed to leading order, whereas reference[75] quotes a next to leading order result.

The most relevant part of the decay table concerns the decay modes of the χ̃0
2, and Table 7.2

shows that one does not obtain two body decays to sleptons, but rather has three-body decays
to quarks or leptons. Given that there are appreciable branching fractions for squark decays
featuring χ̃0

2’s one will obtain decay chains of the form shown in Figure 7.1, and thus should be
able to observe kinematic endpoints in lepton-jet invariant mass distributions using a similar
method to that which has been previously documented for chains of successive two body
decays. Each maximum will occur at a position given by a function of the three sparticle
masses in the decay chain. Note that although the branching ratio for the decay χ̃0

2 → χ̃0
1l+l− is

small, the large SUSY production cross-section will guarantee a reasonable sample of events
(approximately 3000 events for an initial ATLAS sample of 30 fb−1).
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Particle Mass/GeV
χ̃0

1 95
χ̃0

2 179
χ̃0

3 332
χ̃0

4 353
χ̃±1 179
χ̃±2 353
ẽL 377
ẽR 329
ν̃e 368
τ̃1 315
τ̃2 378
ν̃τ 365
g̃ 615
ũL 631
ũR 624
d̃L 636
d̃R 617
b̃1 560
b̃2 604
t̃1 455
t̃2 614
h0 116
H0 242
A0 240
H± 255

Table 7.1: The mass spectrum of the NUHM point defined in the text, as given by
ISAJET 7.72.
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Decay Mode BR
χ̃0

2 → χ̃0
1qq̄ 62%

χ̃0
2 → χ̃0

1bb̄ 19%
χ̃0

2 → χ̃0
1l+l− 3.5%

χ̃0
2 → χ̃0

1τ
+τ− 2.7%

χ̃0
2 → χ̃0

1νlν̄l 7.9%
χ̃0

2 → χ̃0
1ντν̄τ 3.9%

χ̃0
3 → χ̃±1 W 62%
χ̃0

3 → χ̃0
1Z 14%

χ̃0
3 → χ̃0

2Z 21%
χ̃0

3 → χ̃0
1h 2.7%

χ̃0
4 → χ̃±1 W 67%
χ̃0

4 → χ̃0
1Z 3.4%

χ̃0
4 → χ̃0

2Z 2.7%
χ̃0

4 → χ̃0
1h 9.1%

χ̃0
4 → χ̃0

1H 1.2%
χ̃0

4 → χ̃0
2h 16.5%

χ̃±1 → χ̃0
1W± 99%

χ̃±2 → χ̃0
1W± 9.7%

χ̃±2 → χ̃0
2W± 39%

χ̃±2 → χ̃±1 Z 30%
χ̃±2 → χ̃±1 h 20%

Table 7.2: The dominant chargino and neutralino decay processes at the NUHM point
defined in the text, as given by ISAJET 7.72, where q denotes a quark from the first
two generations, and l is a lepton from the first two generations.
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Decay Mode BR Decay Mode BR Decay Mode BR
(ũL, c̃L)→ χ̃0

2q 30% (ũR, c̃R)→ χ̃0
1q 96% g̃→ b̃1b 81%

(ũL, c̃L)→ χ̃0
4q 2% (ũR, c̃R)→ χ̃0

2q 1% g̃→ b̃2b 4%
(ũL, c̃L)→ g̃q 1.5% (ũR, c̃R)→ g̃q 2.3% g̃→ χ̃±1 qq̄ 6.8%
(ũL, c̃L)→ χ̃+1 q 63% g̃→ χ̃0

1qq̄ 2.2%
(ũL, c̃L)→ χ̃+2 q 2.5% g̃→ χ̃0

2qq̄ 3.4%

(d̃L, s̃L)→ χ̃0
1q 2.1% (d̃R, s̃R)→ χ̃0

1q 98%
(d̃L, s̃L)→ χ̃0

2q 30% (d̃R, s̃R)→ χ̃0
2q 1%

(d̃L, s̃L)→ χ̃0
4q 2.7%

(d̃L, s̃L)→ χ̃−1 q 56%
(d̃L, s̃L)→ χ̃−2 q 8%

b̃1 → χ̃0
1b 3.6% t̃1 → χ̃0

1t 17%
b̃1 → χ̃0

2b 26% t̃1 → χ̃0
2t 13%

b̃1 → χ̃0
3b 2.2% t̃1 → χ̃+1 b 50%

b̃1 → χ̃0
4b 2.3% t̃1 → χ̃+2 b 20%

b̃1 → χ̃−1 t 36%
b̃1 → χ̃−2 t 26%
b̃1 → t̃1W 3.8% t̃2 → t̃1h 7%
b̃2 → χ̃0

1b 13% t̃2 → χ̃0
1t 1.8%

b̃2 → χ̃0
2b 2.4% t̃2 → χ̃0

2t 8.5%
b̃2 → χ̃0

3b 13% t̃2 → χ̃0
3t 9.5%

b̃2 → χ̃0
4b 14% t̃2 → χ̃0

4t 27%
b̃2 → χ̃−1 t 3.2% t̃2 → χ̃+1 b 22%
b̃2 → χ̃−2 t 46% t̃2 → χ̃+2 b 21%
b̃2 → t̃1W 8.2% t̃2 → t̃1Z 7%

l̃L → χ̃0
1l 12% l̃R → χ̃0

1l 99% ν̃l → χ̃0
1νl 17%

l̃L → χ̃0
2l 33% ν̃l → χ̃0

2νl 24%
l̃L → χ̃−1 νe 54% ν̃l → χ̃+1 l 59%
τ̃1 → χ̃0

1τ 81% τ̃2 → χ̃0
1τ 16% ν̃τ → χ̃0

1ντ 17%
τ̃1 → χ̃0

2τ 6.9% τ̃2 → χ̃0
2τ 32% ν̃τ → χ̃0

2ντ 24%
τ̃1 → χ̃−1 ντ 12% τ̃2 → χ̃−1 ντ 50% ν̃τ → χ̃+1τ 60%

Table 7.3: The dominant sfermion decay processes at the NUHM point defined in the
text, as given by ISAJET 7.72, where q denotes a quark from the first two genera-
tions, and l is a lepton from the first two generations.
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7.2 Kinematic endpoint derivation

7.2.1 Introduction

In this section, the decay q̃ → qχ̃0
2 followed by χ̃0

2 → l+l−χ̃0
1 (shown in Figure 7.1) is studied.

As with the two body case, such decays are fairly easy to select given that one can look for
events with opposite-sign-same-flavour (OSSF) leptons, combined with the missing energy
from the undetected neutralinos 2. By taking different combinations of the visible decay prod-
ucts, one can form various invariant masses; mll, mllq, mmax

lq and mmin
lq , where mmax

lq is the higher
of the two mlq invariant masses that can be formed in the event, and mmin

lq is the lower. These
will have maxima resulting from kinematic limits, whose position is given by a function of
mq̃, mχ̃0

2
and mχ̃0

1
, and these are derived for each case below.

In the following derivations, bold type is used for three momenta, and four vector quantities
are denoted by explicitly showing Lorentz indices. Squared masses are represented by a non-
bold character (e.g. c = m2

q̃).

7.2.2 mll endpoint

The endpoint of the mll distribution results from the three-body decay of the χ̃0
2, and is given

trivially by the mass difference between the χ̃0
2 and the χ̃0

1:

(m2
ll)max = (mχ̃0

2
− mχ̃0

1
)2. (7.1)

7.2.3 mllq endpoint and threshold

The calculation of the mllq endpoint presented here follows the method given in appendix E
of[66] by treating the decay as shown in Figure 7.1, where the two leptons are combined into
a single object L, with an invariant mass given by mll. It is known from the dilepton invariant
mass that mll ≡ mL must lie within a specific range:

mL = λ(ma − mz), λ ∈ [0, 1] (7.2)

2Note that this does not preclude the possibility of selecting the usual two body cascade process, and ways to
resolve this ambiguity are considered in Section 7.4.



144 NUHM models

If one looks at the decay of Figure 7.1 in the rest frame of a, one can conserve four momentum
to obtain the following expressions for the three momenta of q and L:

L2 = z2 = [m2
L,m

2
a,m

2
z ] (7.3)

q2 = c2 = [0,m2
a,m

2
c] (7.4)

where

[x, y, z] ≡ x2 + y2 + z2 − 2(xy + xz + yz)
4y

(7.5)

and the quark has been treated as massless.

In general, the invariant mass of q and L is given by

m2
qL = gµν(Lµ + qµ)(Lν + qν) (7.6)

= m2
L + 2|q|(EL − |L|cosθ) (7.7)

in the case where q is massless, and where θ is the angle between L and q in the rest frame of
a. The maximum will occur when cos θ is equal to -1, and hence L and q are back to back in
the a rest frame. Combining this with the knowledge of L and q from Equations 7.3 and 7.4,
one obtains the expression for the endpoint of the mllq distribution in terms of mL:

(mllq)2 = Lm +
(c − a)

2a

[

Lm − (z − a) +
√

((a + z) − Lm)2 − 4az
]

(7.8)

where Lm = m2
L, c = m2

c , a = m2
a and z = m2

z . Lm can take any value in the range specified
by Equation 7.2, and one now needs to maximise Equation 7.8 by considering separately the
cases where λ = 0, 0 < λ < 1 and λ = 1. After doing this, two possible expressions for the
maximum of the mllq distribution are obtained:

(m2
llq)max =























(mq̃ − mχ̃0
1
)2 if m2

χ̃0
2
> mq̃mχ̃0

1

(m2
q̃ − m2

χ̃0
2
)(m2

χ̃0
2
− m2

χ̃0
1
)/m2

χ̃0
2

otherwise.
(7.9)

In addition to finding an edge in the mllq distribution, one can observe a threshold. Equation 7.7
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Figure 7.2: The two rest frames involved in the squark cascade decay.

has a minimum when cos θ is equal to 1, in which case one obtains a minimum value of mllq:

(mmin
llq )2 = Lm +

(c − a)
2a

[

Lm − (z − a) −
√

((a + z) − Lm)2 − 4az
]

(7.10)

If Lm lies at the lower end of its allowed range, then Lm = mmin
llq = 0. However, one can raise

the minimum value of mllq by looking at the subset of events for which Lm is greater than some
arbitrary cut value. This will then give an observable threshold in the mllq distribution.

7.2.4 mmax
lq and mmin

lq endpoints

In the case of the mllq endpoint, it has been shown that there are in fact two expressions, each
of which applies in a specific region of mass space. In anticipation of this, a general method
was used to perform the calculation in order to avoid missing one of the solutions.

The mmax
lq endpoint is conceptually much easier, however, as one only has to maximise the

invariant mass that can be made from one of the leptons. The two sequential decays are shown
in Figure 7.2, which shows the effect of a boost from the q̃ rest frame to the χ̃0

2 rest frame. Any
maximum in the mlq invariant mass must arise from having the relevant lepton (the ‘interesting
lepton’) back to back with the quark in the χ̃0

2 rest frame. One can thus consider three extreme
cases for the configuration of the leptons and χ̃0

1 in the χ̃0
2 rest frame:

1. The χ̃0
1 is produced at rest, and the two leptons are back to back with one of them anti-

parallel to the quark.

2. One of the leptons is produced at rest, and so the χ̃0
1 is produced back to back with the
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other lepton, with the interesting lepton being anti-parallel to the quark.

3. None of the particles from the three-body decay is produced at rest, in which case
we will get the highest invariant mass by having the interesting lepton emerging anti-
parallel to the quark, and the other two particles travelling in the same direction as the
quark.

Obtaining the mlq endpoint is simply a case of working out which of these gives the highest
invariant mass. A short calculation gives:

(m2
lq)max

max =

(m2
q̃ − m2

χ̃0
2
)(m2

χ̃0
2
− m2

χ̃0
1
)

m2
χ̃0

2

(7.11)

The mmin
lq endpoint is harder to obtain than the mmax

lq endpoint, given that one wants the max-
imum value of the smallest mlq invariant mass it is possible to form in an event. A similar
approach to that used in the previous subsection is applied, whereby the decay configuration
that will give the maximum is visualised before working out the endpoint.

In this case, it has been proved that there is a local mmin
lq maximum when the two leptons are

produced parallel in the χ̃0
2 rest frame, travelling anti-parallel to the χ̃0

1 (which therefore travels
parallel to the quark). Note that this does not exclude the possibility of other local maxima,
but numerical simulation has not revealed any. Therefore, this configuration is assumed to
give the global maximum of mmin

lq
3.

A short calculation gives:

(m2
lq)max

min =

(m2
q̃ − m2

χ̃0
2
)(m2

χ̃0
2
− m2

χ̃0
1
)

2m2
χ̃0

2

(7.12)

7.2.5 Summary

Having obtained endpoints for the mll, mllq, mmax
lq and mmin

lq distributions, it can be seen that
the expressions are very similar. The ratio of the mmax

lq and mmin
lq endpoint positions will al-

ways be
√

2, and, in a particular mass region, the mllq endpoint is coincident with the mmax
lq

endpoint. This ultimately means that there may not be enough information to precisely deter-
3Other local maxima, were any to exist, would occur in configurations in which mmin

lq is equal to mmax
lq but in

which the moduli of the three momenta of the leptons are unequal (but coplanar with the quark) in the rest frame
of the heavier neutralino.
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mine the mass differences involved in the decay chain, a point that will be discussed further in
Section 7.4.

7.3 Observation of three-body endpoints in NUHM model

Having derived the endpoints for the process depicted in Figure 7.1, it is interesting to look at a
concrete physics example by performing a Monte Carlo study of the NUHM model described
in Section 7.1.

7.3.1 Event generation and simulation

The mass spectrum and decay table of the NUHM point were taken from ISAJET 7.72 using
the ISAWIG interface. 3,300,000 signal events were subsequently generated using HERWIG
6.5 (corresponding to an integrated luminosity of 100 fb−1). This implements three-body
decays of SUSY particles with spin correlations, with the decays of interest here being:

1. χ̃0
2 → Zχ̃0

1 → l+l−χ̃0
1

2. χ̃0
2 → ll̃→ l+l−χ̃0

1

where the Z and the slepton are off-shell. These generated events are then passed through the
ATLFAST detector simulation (from the same release), whose jet cone algorithm used a cone
with ∆R = 0.4. Electrons, muons and jets were subject to a minimum pT cut of 5, 6 and 10
GeV respectively.

7.3.2 Selection cuts

In order to observe clear endpoints from the cascade decay process, it is necessary to first
isolate a clean sample of squark decay events. As in the two body case, one can select events
with two OSSF leptons and a large amount of missing energy, and can also exploit the fact that
one expects hard jets in SUSY events. Hence, all plots that follow are subject to the following
cuts:

• Emiss
T > 300 GeV;
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• exactly two opposite-sign leptons with pT > 5 GeV for electrons and pT > 5 GeV for
muons, with |η| < 2.5;

• at least two jets with pT > 150 GeV;

There are of course many SM processes that contribute to the dilepton background in any
SUSY analysis, though it has been shown that these are highly suppressed once an OSSF cut
is used in conjunction with cuts on lepton and jet pT , and on missing energy. Although there
is in principle still a tail of SM events that can contribute, it has found to be negligible in the
past (see, for example, reference[78]), and a full study of this background is considered to be
beyond the scope of this thesis. In addition to the SM background, it has already also noted
that the OSSF lepton signature can be produced by SUSY processes other than the decay of
the χ̃0

2. and that this can often be subtracted by producing “flavour subtracted plots” in which
one plots the combination e+e− + µ+µ− − e+µ− − e−µ+. Each of the plots presented below has
been flavour subtracted and some are subject to additional cuts which are stated in the text.

A 610 GeV “typical” squark mass is chosen here for the calculation of endpoints.

7.3.3 Invariant mass plots

mll plot

The mll distribution is shown in Figure 7.3. 4566 events survive after cuts and background
subtraction, though the effect of the trigger which may cut more harshly on lepton pT has
not been considered. Using the mass spectrum given in Section 7.1, one expects to find an
endpoint at approximately 80 GeV, and this is clearly visible.

The shape of the distribution is very different from the triangular shape normally encoun-
tered in the case of successive two body decays (resulting from the phase space for that pro-
cess), and this might prove important when attempting to distinguish three-body from two
body decays. This is considered further in Section 7.4.

mllq plots

As soon as one starts to form invariant masses involving quarks, it is important to consider how
to select the correct quark from the cascade decay. As seen earlier, a reasonable assumption is
that the two hardest jets in the event will come from squark decay on either side of the event,
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Figure 7.3: The mll distribution for the NUHM model defined in the text, with flavour
subtraction.

Figure 7.4: The flavour subtracted mllq distribution for the NUHM model defined in
the text, constructed by taking the lowest mllq invariant mass that can be formed from
the two hardest jets in the event.

and if one takes the lowest of the two mllq invariant masses formed from the two hardest jets
in the event, this should lie below the mllq endpoint. The distribution of this mllq is shown in
Figure 7.4, and there is a visible endpoint consistent with the predicted value of approximately
490 GeV. The plot contains the same number of events as the mll plot, as the cuts are the same.

In order to obtain a further constraint on the physical model underlying the data, a threshold
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Figure 7.5: The flavour subtracted mllq threshold plot, constructed using the highest of
the mllq invariant masses that can be formed from the two hardest jets in each selected
event.

is constructed in the mllq distribution. Here, the choice is made to follow the convention used
in the study of successive two body decays, and thus to examine the subset of events for which
mll > mmax

ll /
√

2. Substituting mmax
ll /
√

2 in place of Lm in Equation 7.10 gives the following
threshold:

(mmin
llq )2 =

(
√

a −
√

z)2

2
+

(c − a)
4a

(

3a − z − 2
√

az −
√

a2 + z2 + 4
√

az(a + z) − 10az

)

(7.13)

where c = m2
q̃, a = m2

χ̃0
2

and z = m2
χ̃0

1
. Traditionally (i.e. in chains with successive two-body

decays) this additional constraint requires, somewhat arbitrarily, that the angular separation of
the two leptons in the rest frame of the slepton be greater than a right angle. For the three-body

neutralino decay considered in this chapter, that geometrical interpretation is lost, but this is
of no serious consequence.

A plot of the mllq distribution is given in Figure 7.5, where, because a threshold is being
searched for, the highest of the two mllq invariant masses formed with the two hardest jets in
the event is used to make the plot. 4172 events are contained in the plot. A threshold structure
of some form is clearly observed, though it is difficult to ascertain the precise position, as the
shape of the edge is not yet a well understood function of the sparticle masses and cut-induced
‘detector’ effects. To use the constraint from this edge to the full, it may be necessary to repeat
the analysis of reference[79] in the context of a three-body final decay. The predicted value is
approximately 240 GeV.
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mlq plots

The mmax
lq distribution is plotted by forming mllq invariant masses with the two hardest jets in

the event. The jet from the lowest mass combination (which is the best guess for the quark
emitted in the squark cascade decay) is then used to form the mlq invariant mass with each
of the leptons in the events. The maximum of these is plotted in the mmax

lq plot (shown in Fig-
ure 7.6), where there is an additional cut that the dilepton invariant mass in each selected event
must be less than the dilepton endpoint. 4161 events are in the plot. There is an endpoint pre-
dicted at about 490 GeV (we are in the mass region where it should appear at the same position
as the mllq endpoint) and this is consistent with the plot, though it is difficult to identify the
endpoint due the fact that the shape is easily confused with the tail. If detector effects are
removed and the shape of the distribution is observed in a clean environment in which there
is only one squark mass and one only considers the effect that phase space has on the shape
of the distribution near the endpoint (Figures 7.7 and 7.8) then it is seen that the endpoint is
only approached quadratically. Although a full analysis of the tail would probably require full
simulation (and thus a separate study), an attempt has been made to determine how much is
caused by detector smearing, and how much is caused by background SUSY processes. Fig-
ures 7.9 to 7.11 examine the mmax

eq distribution, showing the Monte Carlo truth plot, the plot
obtained by selecting events on the basis of truth but with the particles reconstructed by the
ATLFAST detector simulation, and finally a plot which contains only SUSY background pro-
cesses. The tail does not predominantly arise from detector smearing (which will nevertheless
smear the endpoint), but has instead a large contribution from the SUSY background. There
is also a combinatoric background related to the wrong choice of squark, but this is harder to
isolate.

The mmin
lq plot is constructed in a similar fashion to the mmax

lq plot, with the exception that
the lowest of the two possible mlq combinations is plotted for each event. The result is shown
in Figure 7.12, where there is an additional cut; one of the mllq invariant masses formed from
the two hardest jets in the event must lie below the approximate observed position of the mllq

endpoint, whilst the other must lie above, leaving 1664 events in the plot. This removes much
of the tail due to incorrect squark choice, and leaves a very clean endpoint at the predicted
value of approximately 350 GeV 4.

4Note that this extra cut is not possible in the case of the mmax
lq endpoint, as the mmax

lq distribution is highly
correlated to the mllq distribution (the events at the endpoint are the same in both cases). Hence, performing this
cut on the mmax

lq distribution artificially removes any events beyond the endpoint.
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Figure 7.6: The flavour subtracted mmax
lq distribution for the NUHM model defined

in the text, constructed by taking the jet (from the two hardest jets in the event) that
gives the lowest mllq invariant mass and forming the highest invariant mass that one
can make with the two leptons in the event.

0 100 200 300 400 5000

Figure 7.7: A calculation of the shape of an example mmax
lq distribution (for particle

masses of mχ̃0
1
= 95 GeV, mχ̃0

2
= 179 GeV and mq̃ = 610 GeV similar to those in the

NUHM model defined in the text) using the approximation in which all particles are
taken to be scalars, i.e. phase-space only. The calculation assumes 100% acceptance
and does not model any detector effects. mmax

lq values are in GeV.
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Figure 7.8: A zoomed view of the mmax
lq phase space distribution (left) in the vicin-

ity of the end point (mlq)max
max, the position of which is given by the vertical line at

494.24 GeV. mmax
lq values are in GeV.

Figure 7.9: The truth distribution for the mmax
eq invariant mass, taken from the Herwig

event record as recorded in ATLFAST. The plot exhibits a clean edge with no tail.
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Figure 7.10: The mmax
eq distribution obtained by selecting events on the basis of Monte

Carlo truth information, but with the electrons and jets reconstructed by ATLFAST. The
plot has a slightly higher endpoint than the truth distribution, but no significant tail.

Figure 7.11: The mmax
eq distribution obtained using events with no decay of the form

χ̃0
2 → χ̃0

1e+e−, representing the contribution to the plot from SUSY background pro-
cesses.
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Figure 7.12: The flavour subtracted mmin
lq distribution for the NUHM model defined

in the text, constructed by taking the jet (from the two hardest jets in the event) that
gives the lowest mllq invariant mass and forming the lowest invariant mass that one
can make with the two leptons in the event.

7.4 Discussion

Having collected a series of endpoint plots and derived the edge positions in terms of the
sparticle masses involved in the decay chain, one ought in principle to be able to reconstruct
the masses in the chain. This is not as simple as it first appears, however, for the following
reasons:

1. The NUHM point studied here is in the mass region where the mmax
lq endpoint is in the

same position as the mllq endpoint, and it is also known that the mmin
lq edge is related

to these other two merely through multiplication by a constant factor. Discounting the
poorly measured threshold, there are thus only two equations in three unknowns (the mll

endpoint can be used as the second equation), and there is not enough information to
constrain the masses.

2. The observation of endpoints does not reveal anything about the decay process that pro-
duces them, and the shapes of the lepton-jet invariant mass distributions in this chapter
are not dissimilar to those produced by chains of successive two body decays. Hence,
one needs to consider how one would in principle distinguish between the two cases to
be certain that the correct masses are being reconstructed.
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The adequate solution of these problems is unfortunately too involved to be considered for
inclusion in this thesis, and will have to wait for a subsequent study. However, the following
discussion will suggest possible answers to both.

7.4.1 Mass reconstruction

In order to reconstruct the sparticle masses in the three-body process, one will need to supply
extra constraints. One possible method involves going one step higher in the decay chain, and
searching for decays of the form:

g̃→ q̃q→ χ̃0
2qq→ χ̃0

1qqll (7.14)

This will give more endpoints, and hence will provide direct constraints on the masses of
the system. This is similar to an approach used for two body decays[80], and would have
the advantage of providing a measurement of the gluino mass. The problem here is that the
NUHM model has a relatively light gluino, which is lighter than the squarks of the first two
generations. Hence, the method will only be applicable to decay chains involving stop and
sbottom squarks, and we see that whilst this approach may be helpful in some cases it is
certainly not generally applicable to all regions of parameter space.

Another approach is to use other observables to constrain sparticle masses. The work pre-
sented in the previous chapter demonstrated that one can obtain a dramatic improvement in
mass measurements by combining exclusive data (such as endpoint information) with inclu-
sive observables (such as the cross-section of events passing a missing pT cut, to give one
example). This analysis could be repeated here, and with enough inclusive observables one
could obtain good measurements of the sparticle masses involved in our cascade process. This
has the advantage of being generally applicable regardless of the mass spectrum, though it
relies on specifying a particular SUSY model in which to perform the analysis. Given that
the distinguishing feature of NUHM models is a more complicated Higgs sector (with non-
degenerate Higgs mass parameters), these extra constraints must be Higgs related.

7.4.2 Decay chain ambiguity

It has already been remarked that it is not trivial to distinguish three-body endpoints from
two body endpoints, and hence the observation of endpoints alone is not enough to be able to
reconstruct masses. This adds an extra layer of ambiguity to that investigated in Section 6.2.3,
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and there follow some suggestions for how this might be resolved.

Previous sections have illustrated one characteristic feature of three-body decay chains;
the ratio of the mllq and mmin

lq endpoint positions is always
√

2. Provided one can obtain precise
measurements of these quantities, one would have a clue that three-body processes were being
observed, although this could easily be faked by two body decays that conspired to produce
endpoints in similar positions.

For an extra clue, consider that although the shapes of the lepton-jet distributions in three-
body decays are not dissimilar to those encountered in two body processes, this is not true
of the mll distribution, and hence there is potentially some information contained in the shape
of the dilepton distribution. In the two-body case, one obtains a triangular shape that is iden-
tical to the phase space distribution. In contrast, the three-body distribution in Figure 7.3 is
heavily peaked toward the endpoint. Unfortunately, this is unlikely to be true over the whole
of parameter space; the three-body decay proceeds via an off-shell Z or slepton, and the mll

distribution is peaked toward the endpoint when the endpoint (which is the same as the mass
difference between the χ̃0

2 and the χ̃0
1) approaches, for example, the Z mass, such that the shape

will depend heavily on the SUSY point. Furthermore, a previous study investigated the effect
on the mll shape of incorporating the matrix element for the three-body decay process in ad-
dition to the phase space, for different points in mSUGRA parameter space, and although for
some points it dramatically altered the pure phase space result there were other points where
the three-body and phase space shapes were virtually indistinguishable[81].

To summarise, physicists may be fortunate enough to find that Nature presents a point at
which they can distinguish three-body decays from two body processes simply by looking
at the endpoint shapes and positions, but this is certainly not guaranteed. For this reason, a
better approach to the problem of mass reconstruction is to use the Markov Chain techniques
presented in Chapter 6, where no assumption is made about the processes causing the observed
endpoints. This allows the selection of a region of the parameter space consistent with the data
which can be used as a basis for further investigation, in a way directly analogous to that used
in Section 6.2.3.

7.5 Summary

The expressions for the position of the kinematic endpoints arising in cascade decays featuring
a two body decay followed by a three-body decay have been derived, and have been applied to
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the lepton-jet invariant mass distributions given by a squark decay process. This has involved
the first analysis of an NUHM model as it would appear within the ATLAS detector, and, using
standard cuts, it has been possible to observe endpoints in simulated data that are consistent
with the predicted positions. It is thus concluded that the technique is a viable extension of
the current method used in chains of two body decays.

The existence of models similar to that studied here is of great relevance to the work
presented in Chapter 6. The mass reconstruction is hampered by both a lack of constraint
from the endpoint equations themselves, and the problem of distinguishing three-body from
two body decay processes. In the case of the NUHM benchmark point γ, one would be able
to identify the decays as three-body decays by using the shape of the dilepton invariant mass
distribution, though this is not expected to be generally true over the whole of the parameter
space.



Chapter 8

Summary

The Standard Model of particle physics is an immensely successful theory of Nature, but it
has obvious deficiencies. There are strong hints that new physics will appear at the TeV scale.

This thesis has looked at both the machinery required to find this new physics, and the
analytical method by which one of the proposed new theories might be found. The Large
Hadron Collider is an excellent discovery machine, and represents a new frontier in high
energy physics. The discovery of new particles requires the accurate identification of decay
products such as leptons and jets, as well as precise measurements of particle momenta. These
are both greatly enhanced by having precise measurements of particle tracks, and this thesis
has contributed to these efforts by developing monitoring software for the semi-conductor
tracker of the ATLAS detector. This has been tested against existing calibration data, and
has already made measurements of the noise occupancy under the various conditions imposed
during the SR1 cosmic commissioning tests at CERN. It was found that all SCT modules are
operating within the design specification, once a few problem strips with noise occupancy
greater than 500 × 10−5 have been removed. There is no evidence that the SCT picks up noise
from the TRT readout cycle or that the trigger rate affects the noise occupancy. In addition,
experiments with two different grounding schemes revealed no effect on the noise occupancy.
The monitoring software is in continuous development, and suggestions for the improvement
of the package have been provided.

If supersymmetry really does present an elegant solution to the problems of the Standard
Model, then sparticles ought to be observed at the LHC. It is, however, non-trivial to take
ATLAS data and reconstruct the parameters of the supersymmetric theory, or even to measure
the masses of sparticles.
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160 Summary

This thesis has tried to cultivate a general approach to SUSY parameter measurement, and
has succeeded in advancing the current approach which involves studying benchmark points in
models with a reduced set of parameters. The current technique has been illustrated with two
model points from the mSUGRA parameter space, involving two distinct phenomenologies.
It was found that there are unavoidable ambiguities in the assignment of cascade decay chains
to kinematic endpoints, and furthermore that these endpoints are mostly sensitive to sparticle
mass differences rather than the absolute masses.

To address these problems, a Markov Chain Monte Carlo sampling technique has been
used to combine the endpoint data with a cross-section measurement. Not only does this
solve the problem of setting the mass scale (because the cross-section is correlated to the mass
scale), but it also allows decay chain ambiguity to be included whilst allowing the analysis to
be performed in models with arbitrary numbers of parameters. This approach is in principle
completely general, though it relies on having an adequate level of constraint on the parameter
space through a suitable series of measurements. The work presented here may be considered
a proof of principle, and it still remains to develop a series of variables, and to implement
these in the presence of Standard Model background.

The final chapter of this thesis examined a SUSY model with non-universal Higgs masses,
and found that the decay chain ambiguity must be extended to include the possibility of cas-
cade chains featuring three body decays of the χ̃0

2. The kinematic endpoint positions for this
decay have been calculated, and have been tested on simulated data for a sample model.

The work presented here can obviously be extended and refined further, but it has already
demonstrated a powerful technique that may be used on ATLAS (and other) data over the next
10 years in order to learn as much about SUSY as possible.



Appendix A

Markov Chain Sampling

There follows a brief review of the relevant techniques involved in the Markov chain methods
used in our analysis. For a more comprehensive explanation, see reference[82]).

A.1 Markov Chains

Let Xi be a (possibly infinite) discrete sequence of random variables. X1, X2,... is said to have
the Markov property if:

P(Xi+1 = xi+1 |Xi = xi, Xi−1 = xi−1, ..., X1 = x1) = P(Xi+1 = xi+1 |Xi = xi) (A.1)

for every sequence x1, ..., xi, xi+1 and for every i ≥ 1. A sequence of random variables with the
Markov property is called a Markov Chain.

Suppose i is a discrete step in a time variable. The Markov property is then equivalent to
stating that, given a present element of the sequence Xi, the conditional probability of the next
element in the sequence is dependent only on the present. Thus, at each time i the future of
the process is conditionally independent of the past given the present.

A.2 Sampling and probability distributions

Suppose we wish to determine a probability distribution P(x); for example, the posterior prob-
ability of a model’s parameters given some data. It is assumed in general that x is an N-
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dimensional vector and that P(x) can be evaluated only to within a normalisation constant Z;
i.e. we can evaluate the function P∗(x) where:

P(x) = P∗(x)
Z

(A.2)

Although P(x) cannot be obtained analytically, we can in theory solve the problem by
sampling from P(x) and plotting the results. Two immediate problems present themselves;
the first is that Z is in general unknown. The second, which holds true even if we know Z,
is that it is not obvious how to sample from P(x) efficiently without visiting every position
x. We would like a way to visit places in x-space where P(x) is large in preference to places
where P(x) is small, thus giving a description of the probability distribution with a minimum
of computational effort.

A.3 The Metropolis-Hastings Algorithm

The above problem can be solved through the use of Markov Chain Monte Carlo methods, one
example of which is the Metropolis-Hastings algorithm. This makes use of a proposal density
Q which depends on the current state of a system, which we label x(t). (This state is really a
point in a Markov Chain, and may be, for example, a particular choice of the parameters in the
model whose probability distribution we are trying to sample). The density Q(x′; x(t)) (where
x′ is a tentative new state, or the next point in the Markov chain) can be any fixed density from
which it is possible to draw samples; it is not necessary for Q(x′; x(t)) to resemble P(x) for the
algorithm to be useful, and it is common to choose a simple distribution such as a Gaussian.

Assuming that it is possible to evaluate P∗(x) for any x as above, the first step in the
Metropolis-Hastings algorithm is to generate a new state x′ from the proposal density Q(x′; x(t)).
The decision on whether to accept the new state is made by computing the quantity:

a =
P∗(x′)Q(x(t); x′)
P∗(x(t))Q(x′; x(t))

(A.3)

If a ≥ 1 the new state is accepted, otherwise the new state is accepted with probability a. It
is noted that if Q is a simple symmetric density, the ratio of the Q functions in Equation (A.3)
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is unity, in which case the Metropolis-Hastings algorithm reduces to the Metropolis method,
involving a simple comparison of the target density at the two points in the Markov Chain.

If Q is chosen such that Q(x′; x) > 0 for all x, x′, the probability distribution of x(t) tends
to P(x) = P∗(x)/Z as t → ∞. Thus, by choosing points via the Metropolis algorithm and
then plotting them, we have achieved our goal of obtaining a description of P(x) in an efficient
manner.

A.4 The Metropolis Algorithm as a Markov Chain Monte

Carlo method

Note that the presence of the caveat t → ∞ implies that there is an issue of convergence in
the application of the Metropolis algorithm, and this is to be expected from the Markov Chain
nature of the method. Each element in the sequence x(t) has a probability distribution that is
dependent on the previous value x(t−1) and hence, since successive samples are correlated with
each other, the Markov Chain must be run for a certain length of time in order to generate
samples that are effectively independent. The exact details of convergence depend on the
particular P(x) being sampled, and on the details of Q, and hence there is some element of
tuning involved in getting the algorithm to run successfully.

As a final note, it is worth stating that the purpose of definition (A.3) is to ensure that the
Markov Chain used in the Metropolis method is reversible. By this it is meant that the chain
satisfies the principle of detailed balance, i.e. that the probability T (xa; xb) of the chain making
a transition from a state xa to a state xb is related to the reverse transition via T (xa; xb)P(xa) =
T (xb; xa)P(xb). This property is necessary if we require the distribution of samples from the
chain to converge to P(x).

A.5 Convergence of Markov Chains

Assessing whether a Markov Chain has converged often involves intuition. For example, if
one has a firm knowledge of the likely shape of the probability distribution being sampled
(limited to the knowledge that there is only one minimum for example), one can watch the
progression of the size of the region that has been sampled and obtain a reasonably good
estimate of when the system has converged. This is not particularly scientific, however, and
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it is useful to employ a quantitative test of convergence whilst bearing in mind that no test is
completely definitive. I have chosen the relatively simple technique of observing the variation
in the mean of the parameter whose convergence one wishes to test, as demonstrated below
for the mSUGRA data presented in Chapter 4.

Figures 6.2 and 6.3 display the region of mSUGRA parameter space consistent with the
cross-section of events with missing pT greater than 500 GeV. Three parameters were varied
in the study (m0, m1/2 and tanβ), and the mean of each of these parameters can be plotted
against ‘time’1. Convergence can be said to occur when the mean tends toward a constant
value, though one has to assume that there is no hidden region of high probability that the
sampler failed to find. If a narrow region of high probability is located far from the region
that is currently being explored, the probability of the sampler reaching that region is very
small. Although it will eventually be found it is not clear how to ensure that this has occurred
at any given point in time. Strategies to address this problem include the use of some prior
knowledge about the probability surface being explored, and the use of proposal functions that
tend to increase the probability of occasionally moving through a greater distance in parameter
space.

Results are shown in Figures A.1, A.2 and A.3. The sampler was started at a point far
from the true point, and in each case one can observe a rapid move toward a region of higher
probability, followed by a gradual convergence. The final mean value does not necessarily
correspond to the correct value; in the case of positive µ this is because the endpoints are mis-
measured whilst in the negative µ case there is in fact no correct mean parameter value as the
model being investigated has positive µ. The same method was used to assess the convergence
of all other data sets in the main body of the text.

It is noted that the case for the convergence of tanβ is less compelling than that for the
other parameters, and it is suggested that this is a reflection of the fact that the constraints used
in the analysis have little dependence on tanβ. A flat distribution in tanβ should ultimately
arise from the sampling, and it takes a relatively long time to establish given the poor level of
constraint. Essentially, this illustrates that a knowledge of the underlying physics is often as
useful as quantitative tests in establishing the behaviour of a system near convergence.

SUSY models in general present quite a challenge to sampling algorithms, as the proba-
bility surfaces can in principle have lots of discrete minima (see, for example, reference[83]).
Therefore, any convergence test must be coupled with the knowledge that the system has suc-
cessfully located all minima in the problem. A crude way to do this is to start the sampler

1the time variable actually labels successive points in the Markov Chain.
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Figure A.1: The variation of the mean m0 value with time for the mSUGRA data
presented in Figures 6.2 and 6.3. Positive µ data is shown on the left, whilst negative
µ data is on the right.
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Figure A.2: The variation of the mean m1/2 value with time for the mSUGRA data
presented in Figures 6.2 and 6.3. Positive µ data is shown on the left, whilst negative
µ data is on the right.
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Figure A.3: The variation of the mean tanβ value with time for the mSUGRA data
presented in Figures 6.2 and 6.3. Positive µ data is shown on the left, whilst negative
µ data is on the right.

running in lots of different places, or to have some prior physical intuition regarding the pa-
rameter space. A general, rigorous and elegant solution to this problem is impossible, and the
development of an adequate coping strategy is at the frontier of current research efforts.



Appendix B

Event Shape Variables

Events in the ATLAS detector may simply involve standard model particles and interactions,
or may involve new physics. The shape of an event is related to the underlying physics causing
the event, and it is often possible to obtain at least some level of discrimination between
different underlying theories on the basis of event shape information. Several event shape
variables have been defined in the past, and a brief list is provided here (for more details, see
reference[84]). All of the these are inclusive variables.

B.1 Sphericity

Sphericity is constructed from the normalised tensor:

S ab =

∑

i pi
a pi

b
∑

i |pi|2 (B.1)

where the sum index i runs over the particles in the event, a and b run from 1 to 3 (i.e. over the
components of the three momenta of the particles), and pi is the three momentum of the ith
(visible) particle in the event. The three eigenvalues λ1,2,3 of S ab satisfy λ1 ≥ λ2 ≥ λ3 ≥ 0 and
λ1 + λ2 + λ3 = 1 and, since only two of them are independent, the sphericity can be defined as
S = 3

2 (λ2 + λ3). S is a measure of the summed square of transverse momenta with respect to
the event axis and is 1 for an ideal spherical event and 0 for a linear event.
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B.2 Thrust

Thrust is defined by the quantity:

T = max
∑

i |pi · n̂T|
∑

i |pi|
(B.2)

where n̂T is a unit vector called the ‘thrust axis’ whose direction is chosen to maximise T . T

is in the range 1
2 ≤ T ≤ 1, with the lower end of this range corresponding to an isotropic event,

and the upper end of the range representing a linear event.

B.3 Oblateness

Oblateness is a measure of the distribution of energy around the thrust axis. Starting from the
thrust axis n̂T defined above, one can firstly construct the ‘thrust major’ TM:

TM = max
ˆnM

∑

i |pi · n̂M|
∑

i |pi| , n̂M · n̂T = 0 (B.3)

where the maximisation is performed over all directions of the unit vector n̂M such that
n̂M · n̂T = 0. The ‘thrust minor’ Tm is given by:

Tm =

∑

i |pi · n̂m|
∑

i |pi| , n̂m = n̂T × n̂M (B.4)

The oblateness is constructed by taking the difference between the thrust major and the thrust
minor:

O = TM − Tm (B.5)
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Development of Parallel Herwig Code

C.1 Introduction

This appendix summarises the most relevant points regarding the development of a parallel
version of the HERWIG Monte Carlo generator, produced by adapting the existing FORTRAN
code. The modifications use the Message Passing Interface (MPI) standard[71], and the code
was developed and run on the Franklin machine of the Cambridge-Cranfield High Performance
Computing Facility (HPCF)[85]. This is a 972 processor Sun Galaxy-class supercomputer,
containing 9 nodes of 100 CPUs located in Cambridge, and one node of 72 processors located
in Cranfield. Each node is a shared memory system, allowing each CPU to access all of the
available memory on the node. Jobs may run on no more than 96 processors at any one time.

The actual analysis detailed in Chapter 6 required the running of the software chain ISAJET
→ HERWIG→ ATLFAST at each point in parameter space, as well as code that picked points in
the Markov chain and made the decision regarding whether to jump. This was accomplished
by having a script that looped over points and called each program in turn. The main HERWIG
program calls ATLFAST at the end of the main event loop, and hence when HERWIG is paral-
lelised (and thus runs over many CPUs), ATLFAST is run separately on each node, and thus
each instance of ATLFAST therefore sees only a subset of the total number of events. This
speeds up the run time, even though no part of the ATLFAST code was explicitly altered.

It is worth noting that the development of the MPI version of HERWIG required the building
on the HPCF of the CERNLIB libraries on which it depends. This required some modification
of the CERNLIB code, owing to the fact that the preprocessor statements cause problems for
the Sun FORTRAN compiler.
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The following notes both introduce the MPI syntax and explain, in some detail, the modifi-
cations that were made to the various HERWIG subroutines. This information has been provided
here since it is not documented elsewhere, and should be considered as reference material. For
the original HERWIG manual, see reference[65].

C.2 MPI Herwig

C.2.1 Introduction to MPI

Programs are adapted for the HPCF by splitting DO loops up into blocks, and sending each
block to a separate processor (also referred to here as a ‘node’, a term that should not be
confused with the boards of 100 CPUs referred to above). Each processor has a label myid
with the myid = 0 node being the ‘master’ node, and the others termed ‘slaves’. All file-
handling, etc, should be performed by only one node, usually the master node. The various
variables required for MPI operation are setup in a standard include file mpi comm.h, which
must be included in all routines that require use of MPI. Furthermore, the main program must
include the following configuration lines:

CALL MPI_INIT(ierr)

C Next line gets number of processors--nproc

CALL MPI_COMM_SIZE(MPI_COMM_WORLD,nproc,ierr)

C Next line gets number of this process -- myid

CALL MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

and the program must be ended with:

CALL MPI_FINALIZE(ierr)

Splitting up DO loops

After initialising the MPI with the configuration lines given above, one can then define the
block for each node by dividing the number of elements in the DO loop by the number of
processors:

c the size of the block(nr) for each processor
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pnk = (number of elements in do loop)/nproc

nr = ceiling(pnk)

Each DO loop can then be split into blocks thus:

do 100 N=nr*myid+1, nr*myid+nr

.

.

.

end do

Note that the loops are split into integer blocks, and there may be a remainder if the number
of elements in the DO loop is not divisible by the number of processors. In DO loops where
it is vital to evaluate all the elements, care must therefore be taken to ensure that the process
with the highest value of myid evaluates all remaining elements and not just an integer block
that leaves some unevaluated (this is the case for the some of the Herwig loops, and details are
given below).

Message passing

After a given DO loop has been completed, the results from each node must be sent back to
the master node. This is accomplished using the following syntax for message passing:

tag30=30

if(myid.eq.0)then

do source=1,nproc-1

call mpi_recv(MARTINEFFERR, 1, mpi_integer,

$ source,tag30,MPI_COMM_WORLD, status, ierr)

if(MARTINEFFERR.ne.0)evfail=1

end do

else

call mpi_isend(MARTINEFFERR,1,mpi_integer,

$ 0,tag30,MPI_COMM_WORLD,request,ierr)

call mpi_wait(request,status,ierr)

endif

CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)
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Here, the master node (with myid equal to zero) uses the mpi recv command to receive a
variable MARTINEFFERR of type integer from each slave node. This is used to check that each
node has run without a problem, and the evfail flag is used to veto the point if not. One must
specify the number of elements being passed (in this case 1), and the ‘tag’ for the process (this
is defined differently for each instance of the message commands in the program- I have used
tag30 here, set to 30. In principle, any integer can be used.). The remaining three arguments
of the function have been defined in the include statement already described, and essentially
are never changed by the user (there is a slight exception in that the syntax changes for arrays,
but this will be covered below).

The slave nodes use the mpi isend command to send the variable back to the master
process. The mpi wait command ensures that the messages are all received before continuing.
A call to MPI BARRIER prevents the program from continuing until all messages have been
received.

C.2.2 Use of MPI in Herwig

There are three distinct sections of the Herwig code that are suitable for parallelisation:

1. The main event loop.

2. The initial weight search

3. The SUSY weight calculations

The last two steps occur during the initialisation of Herwig. There follows a summary of how
each of these three steps has been implemented.

The main event loop

The main event loop is the easiest to parallelise in the program, as splitting it up simply
corresponds to generating a subset of events on each node (with different seeds on each node).
The results of any analysis (i.e. cross-sections or cut based analysis) can be performed on
each node and then sent back to the master process as required. No information needs to then
be sent back from the master node to the slave nodes to ensure successful operation of the
program, in contrast to the other MPI steps in the program.
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In the regular Herwig program, the main event loop runs from 1 to MAXEV and calls each of
the Herwig subroutines in turn. In the MPI program, this is split up as above, so that a block
of events is sent to each processor:

c the size of the block(nr) for each processor

pnk = (number of elements in do loop)/nproc

nr = ceiling(pnk)

do 100 N=nr*myid+1, nr*myid+nr

.

.

.

end do

In the analysis of Chapter 6, the program was required to calculate the number of events
passing a missing pT cut. This was worked out in the analysis routine called in the main event
loop in the normal way. Therefore, after the loop has been run on each node, all that remains
is to pass the number of events passing the cuts back to the master node and add the numbers
up. (A tally of the events calculated on each node was also kept, to ensure that the fraction of
events passing the cuts was calculated properly). In addition, the mean cross-section and the
error in the cross-section from each node were returned in order to improve the accuracy of
the final results. The relevant code is given below.

tag=1

tag2=2

tag3=3

tag4=4

if(myid.eq. 0) then

sum_tally = TALLY

sum_total = TOTAL

mean_cross_section=cross_section

total_error=sq_error

do 30 source = 1, nproc-1

call mpi_recv(TALLY, 1, mpi_real, source,

$ tag,MPI_COMM_WORLD, status, ierr)
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call mpi_recv(TOTAL, 1, mpi_real, source,

$ tag2,MPI_COMM_WORLD,status, ierr)

call mpi_recv(cross_section,1,mpi_double_precision,

$ source,tag3,MPI_COMM_WORLD,status, ierr)

call mpi_recv(sq_error,1,mpi_double_precision,

$ source,tag4,MPI_COMM_WORLD,status, ierr)

sum_tally = sum_tally + TALLY

sum_total = sum_total + TOTAL

mean_cross_section= mean_cross_section + cross_section

total_error=total_error+sq_error

30 continue

else

call mpi_isend(TALLY, 1, mpi_real, 0,

$ tag,MPI_COMM_WORLD, requests2(1), ierr)

call mpi_isend(TOTAL, 1, mpi_real, 0,

$ tag2,MPI_COMM_WORLD, requests2(2), ierr)

call mpi_isend(cross_section,1,mpi_double_precision,

$ 0,tag3,MPI_COMM_WORLD,requests2(3), ierr)

call mpi_isend(sq_error,1,mpi_double_precision,

$ 0,tag4,MPI_COMM_WORLD,requests2(4), ierr)

call mpi_waitall(4,requests2,status,ierr)

endif

if (myid.eq.0) then

mean_cross_section=mean_cross_section/nproc

total_error=sqrt(total_error)

endif

Note the use of the mpi waitall command, which requires that the request variable en-
countered previously be replaced with an array; each message uses one element of the array,
and then the whole array is used in the argument of the wait all command in order to make
sure that each separate message passing instance is completed before the program continues.
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The initial weight search

The initial weight search in Herwig is performed just before the main event loop and sets two
variables- the maximum weight WGTMAX and the average weight AVWGT. The number of points
in the search is controlled by the variable IBSH which must therefore be divided by nproc on
each node to give a subset of the total weight search. Each node then sends its own values of
WGTMAX and AVWGT back to the master process which takes the highest WGTMAX, and averages
the AVWGT values. These results must then be sent back to the slave processes, as they are
crucial to the subsequent running of the main event loop. The code is given below:

temp=10000/nproc

IBSH=ceiling(temp)

tag5=5

tag7=7

if(myid.eq.0)then

WGTMAX=0

CALL HWEINI

maximum_wgt=WGTMAX

avg_wgt_early=AVWGT

do 40 source = 1, nproc-1

call mpi_recv(WGTMAX, 1, mpi_double_precision, source,

$ tag5,MPI_COMM_WORLD, status, ierr)

if(WGTMAX.gt.maximum_wgt)maximum_wgt=WGTMAX

call mpi_recv(AVWGT, 1, mpi_double_precision, source,

$ tag7,MPI_COMM_WORLD, status, ierr)

avg_wgt_early=avg_wgt_early+AVWGT

40 continue

WGTMAX=maximum_wgt

AVWGT=avg_wgt_early/nproc

else

WGTMAX=0

CALL HWEINI

call mpi_isend(WGTMAX, 1, mpi_double_precision, 0,

$ tag5,MPI_COMM_WORLD, requests(1), ierr)

call mpi_isend(AVWGT, 1, mpi_double_precision, 0,
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$ tag7,MPI_COMM_WORLD, requests(2), ierr)

call mpi_waitall(2,requests,status,ierr)

end if

tag6=6

tag8=8

if(myid.eq.0)then

do 50 source = 1, nproc-1

call mpi_isend(WGTMAX, 1, mpi_double_precision, source,

$ tag6,MPI_COMM_WORLD, requests(1), ierr)

call mpi_isend(AVWGT, 1, mpi_double_precision, source,

$ tag8,MPI_COMM_WORLD, requests(2), ierr)

call mpi_waitall(2,requests,status,ierr)

50 continue

else

call mpi_recv(WGTMAX, 1, mpi_double_precision, 0,

$ tag6,MPI_COMM_WORLD, status, ierr)

call mpi_recv(AVWGT, 1, mpi_double_precision, 0,

$ tag8,MPI_COMM_WORLD, status, ierr)

end if

The SUSY weight calculations

Herwig needs to go through each of the 3 and 4 body SUSY decay modes and calculate a
weight for each. The exact number of modes varies depending on which point in the mSUGRA
parameter space is chosen, but there is no reason why different weights cannot be worked out
on different processors. Hence, the decay weight calculations were ‘parallelised’ by simply
getting different nodes to work out different weights before the master process collects them
all and sends the full table of weights back to the slaves.

The weight calculations are implemented in the HERWIG routine HWISP3. Care must be
taken to ensure that the entire DO loop is evaluated, as otherwise the weights in the end of the
loop are not calculated and Herwig will definitely crash. A further complication arises from
the fact that the number of processors can often be more than the number of elements in the
loop, so the code needs to check the number of processors and run one of two sets of code.

Consider the three body modes first. The variable N3MODE stores the number of these
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modes, such that the DO loop involving the weight calculation runs from 1 to N3MODE. The
first thing to do is to work out the size of the block sent to each node:

if(nproc.lt.N3MODE)then

decay_pnk=N3MODE/nproc

decay_nr=ceiling(decay_pnk)

else

decay_nr=1

end if

This code ensures that when the number of processors is greater than the number of modes,
there is only one mode per node. The original Herwig source code subsequently has a DO loop
that defines some variables and calls a routine to work out the weight for each mode. This must
be called in subtly different ways depending on both the number of processors and, in the case
where this number is less than the number of modes, the value of myid of a particular node.
Take first the case where the number of processors is greater than the number of modes:

if(nproc.gt.N3MODE)then

if(myid.lt.N3MODE)then

DO 3000 I=myid+1,myid+1

IF(RSPIN(IDK(ID3PRT(I))).EQ.ZERO) THEN

RHOIN(1,1) = ONE

RHOIN(1,2) = ZERO

RHOIN(2,1) = ZERO

RHOIN(2,2) = ZERO

ELSE

RHOIN(1,1) = HALF

RHOIN(1,2) = ZERO

RHOIN(2,1) = ZERO

RHOIN(2,2) = HALF

ENDIF

PHEP(5,1) = RMASS(IDK(ID3PRT(I)))

PHEP(4,1) = SQRT(100.0D0**2+PHEP(5,1)**2)

PHEP(1,1) = 100.0D0

PHEP(2,1) = 0.0D0

PHEP(3,1) = 0.0D0
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IF(myid.gt.N3MODE)WRITE(6,*) "MYID OVER LIMIT!",myid

3000 CALL HWD3ME(1,0,I,RHOIN,1)

end if

(IF.NOT.SUSYIN) RETURN

CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)

Thus, the nodes with myid less than N3MODE each work out one weight, whilst those with
myid greater than or equal to N3MODE remain idle. (An MPI barrier is required to ensure that
the processes all meet up at some point).

Now consider the case where the number of processors is less than the number of modes
(this does occur with some regularity):

else

if(myid.lt.nproc-1)then

DO 3001 I=decay_nr*myid+1,decay_nr*myid+decay_nr

IF(RSPIN(IDK(ID3PRT(I))).EQ.ZERO) THEN

.

.

.

3001 CALL HWD3ME(1,0,I,RHOIN,1)

else

if(myid.eq.nproc-1)then

DO 3002 I=decay_nr*myid+1,N3MODE

IF(RSPIN(IDK(ID3PRT(I))).EQ.ZERO) THEN

.

.

.

3002 CALL HWD3ME(1,0,I,RHOIN,1)

end if

end if

end if

IF(.NOT.SUSYIN) RETURN

CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)

This code executes the same loop as before but makes sure that the process with the highest
myid works out all the weights up to N3MODE. An MPI barrier is used again to make sure that
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none of the nodes goes on ahead of the others before the weights are calculated.

Having now obtained values for all of the weights, they must be sent back to the master
process and then returned to the slaves. The weights are stored in an array called WT3MAX
which is initialised in the Herwig include file to contain 500 elements. In any given run of
Herwig, however, there are only N3MODE weights, and so the whole array does not to be sent
back and forth, only the full elements. Furthermore, when sending weights back to the master
process, one only needs to send those that have been calculated on each node which will only
be a few elements of the total array, with the exact number depending on the number of modes
and the number of processors.

The following code sends the array back to the master process. The master process has
an array called MASTER WT3MAX which it uses to collect all of the weights from the different
processes, and an array MOBILE WT3MAX which has less elements than WT3MAX is used to pass
things back and forth:

tag10=10

if(myid.eq.0)then

do I=1, decay_nr

MASTER_WT3MAX(I)=WT3MAX(I)

end do

end if

C-----Now need to do one of two things depending on whether nproc>N3MODE

if(nproc.le.N3MODE)then

if(myid.ne.0)then

if(myid.le.nproc-1)then

do I=1,N3MODE

MOBILE_WT3MAX(I)=WT3MAX(I)

end do

else

if(myid.eq.nproc-1)then

do I=1,N3MODE

MOBILE_WT3MAX(I)=WT3MAX(I)

end do
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end if

end if

call mpi_isend(MOBILE_WT3MAX,150,MPI_DOUBLE_PRECISION,

$ 0,tag10,MPI_COMM_WORLD,request,ierr)

call mpi_wait(request,status,ierr)

else

do 911 source = 1, nproc-1

call mpi_recv(MOBILE_WT3MAX,150, mpi_double_precision,

$ source,tag10,MPI_COMM_WORLD, status, ierr)

if(source.lt.nproc-1)then

do I=decay_nr*source+1, decay_nr*source+decay_nr

MASTER_WT3MAX(I)=MOBILE_WT3MAX(I)

end do

else

do I=decay_nr*source+1, N3MODE

MASTER_WT3MAX(I)=MOBILE_WT3MAX(I)

end do

end if

911 continue

end if

else

if(myid.ne.0.and.myid.lt.N3MODE)then

wt3=WT3MAX(myid+1)

call mpi_isend(wt3,1,MPI_DOUBLE_PRECISION,

$ 0,tag10,MPI_COMM_WORLD,request,ierr)

call mpi_wait(request,status,ierr)

else

if(myid.eq.0)then

do 511 source = 1, N3MODE-1

call mpi_recv(wt3,1, mpi_double_precision,

$ source,tag10,MPI_COMM_WORLD, status, ierr)

MASTER_WT3MAX(source+1)=wt3

511 continue

end if

end if

end if
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This code remains slightly wasteful (150 numbers are sent back in some cases rather than just
the full elements of the array), and hence it could be improved further. The code above has got
as far as receiving all the 3 body weights on the master process and storing them in an array
(MASTER WT3MAX). This must now be sent back to the slaves in order to complete the process:

C Now send WT3MAX back to the slave processes

tag11=11

if(myid.eq.0)then

do I=1,N3MODE

MOBILE_WT3MAX(I)=MASTER_WT3MAX(I)

WT3MAX(I)=MASTER_WT3MAX(I)

end do

do 512 source = 1,nproc-1

call mpi_isend(MOBILE_WT3MAX,150,MPI_DOUBLE_PRECISION,

$ source,tag11,MPI_COMM_WORLD, request, ierr)

call mpi_wait(request,status,ierr)

512 continue

else

call mpi_recv(MOBILE_WT3MAX,150, mpi_double_precision,0,

$ tag11,MPI_COMM_WORLD, status, ierr)

do I=1,N3MODE

WT3MAX(I)=MOBILE_WT3MAX(I)

end do

end if

This concludes the MPI code for the 3 body modes. The implementation for the 4 body
modes is very similar except that there are NBMODE modes, and these are stored in an array
called WTBMAX.
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Colophon

This thesis was made in LATEX 2ε using the “hepthesis” class[86].
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