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Abstract



A scheme to calibrate energy depositions from hadrons based on calorimeter signals only
and the observed shower topology is presented. Such a calibration scheme can be used to
calibrate jets and the missing transverse energy in the ATLAS detector. Based on the cluster
reconstruction an effective noise suppression is achieved. In a first step clusters are classified
as electromagnetic or hadronic clusters. A weighting scheme corrects for the different e/π
response in the ATLAS calorimeter. Dead material corrections and out of cluster corrections
yield finally a signal which is rather close to the energy deposited by the final state particles
in the ATLAS calorimeter. The constants and algorithms are derived using MC simulation
of single pions and tested with pions and jets.

First steps towards a validation of the scheme using testbeam data corresponding to the
region |η |= 0.45 in ATLAS for pion energies from 20 GeV to 180 GeV are presented. Sim-
ilar studies using testbeam data corresponding to 2.5 < |η | < 4.0 are in preparation. The
deviation of the reconstructed energy from the beam energy is still at the level of few per-
cents, as well as the difference between the data and MC expectation. The energy resolution
is indeed improved, but again some difference between data and MC is observed. These
effects can be attributed to a partial understanding of the proton contamination in the pion
testbeam and to present shortcomings in the simulation.

In addition alternative weighting schemes have been studied for single pions in test-
beams, yielding similar results. These schemes need still to be compared to the standard
method using MC jets prior to drawing any final conclusions.
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Introduction

The ATLAS calorimeter is non-compensating, i.e. the response for electrons (electromagnetic scale) and
hadrons (hadronic scale) differs. The calibration of energy deposits from the electromagnetic scale to
the hadronic scale can either be done in the context of jets (global method) or independent of any jet
algorithm (local method) on the cluster level.

This note describes the local hadron calibration (LC ) starting from three dimensional topological
clusters [1], which are optimized to suppress electronics noise as well as pile up from minimum bias
events by grouping together neighbouring energy deposits based on their significance. In a second pass
over the clustered cells local energy maxima are identified and the clusters are re-arranged (split) around
these local maxima. In a typical QCD di-jet simulation each cluster corresponds to ∼ 1.6 stable particles
(mostly charged pions and photons) after splitting.

Cluster shape variables are used to classify the clusters as “em-like” or “hadron-like”. The classi-
fication procedure is subject of section 2. The “hadron-like” clusters receive H1-style [2] cell-weights
to compensate for the lower response of the calorimeters to hadronic deposits. The aim is to correct to
the true deposited level of energy in each cell including invisible and absorber deposits. The weights
are based on detailed Geant4 simulations of charged single pions. Section 3 describes the weighting
procedure.

After the weighting out-of-cluster corrections on the cluster level are applied to correct for energy
deposits in the calorimeters but outside reconstructed clusters — typically due to the noise thresholds in
the clustering as detailed in section 4.

Finally both the “em-like” and “hadron-like” clusters are corrected for energy deposits outside the
calorimeters, based again on detailed Geant4 simulations of neutral and charged pions, respectively.
This is described in section 5. The resulting calibrated clusters should have energies corresponding to
the particle level.

The performance for single pions and jets is shown in section 6.

A slight variant of the default LC method is the cone method, which uses also the energy density of
cells, but rather than using the cluster energy as a further input parameter for the weights, a global energy
scale is used. Here the global energy is obtained from the energy of clusters whose energy centre-of-
mass fall within a cone of opening angle 11 degrees formed around the most energetic cluster (the cone
method). This method has been tested with testbeam data (see section 8) only and yields rather similar
results as the default LC method for the weighting step.

Finally an alternative method has been tested with testbeam data - the layer correlation weighting
method. This method exploits correlations in the longitudinal shower development. The results are
presented in section 9.

The default LC method is so far the only one applied to single pions and jets in ATLAS using MC
data. Only this method is committed to the ATLAS reconstruction code since release 11.0.0.
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1 Simulation of the full ATLAS set-up

The classification and calibration methods described in this note are based on detailed simulations
of charged and neutral single pions. The most recent set of constants has been obtained from 106

neutral and 2 · 106 charged pions (50% negative and 50% positive) simulated with the offline release
AthenaOffline-13.0.20, the simulation package geant4.8.3.patch00.atlas02, the conditions
database DBRelease-4.2-nightly-20070831, and the geometry layout ATLAS-CSC-02-00-00. The
digitization was done with the offline release AthenaOffline-13.0.30, the same nightly database and
the tag LArIOVDbTag = "CSC02-E-QGSP EMV" to benefit from the latest sampling fractions in the LAr
detectors. The reconstruction was done with the same release as the digitization – and in the second
iteration redone with the same release but the calibration constants obtained from the first iteration.

The pion energies where generated in 1000 fixed steps: 100 from 150MeV to 1GeV and 900 from
1GeV to 2TeV, logarithmically equidistant in both intervals. The 0 < φ < 2π and −5.5 < η < 5.5 values
for the pions where chosen from flat random distributions.

The energy steps are chosen such that they fill the phase space almost continously. The actual distance
between two consecutive energy points is ∼ 1.9% for 150MeV < E < 1GeV and ∼ 0.8% for 1GeV <
E < 2TeV. With intrinsic fluctuations well above 5% this ensures that the weight tables are filled by
quasi homogenous energy distributions ensuring bias-free and smooth distributions.
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Figure 1: GEANT4 simulated energy fraction as classified by the calibration hits (see text) released in
active and inactive material in the endcap region by single charged pions vs. the pion energy. The error
bars indicate the RMS of the related distribution

One special feature of the GEANT4 based ATLAS simulation is crucial for the method described
here: the so-called calibration hits. In addition to the expected response to ionizing particles (the regular
GEANT hits which are based on the visible deposited energy in the active material) the calibration hits
are available for energy deposits in the active and inactive material and for the following four categories
of energy deposits:

1. visible em-energy: The energy released by electrons or positrons via ionization.
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2. visible non-em-energy: The energy released by charged particles other than electrons or positrons
via ionization

3. invisible energy: The energy released by non-ionizing processes such as break-up of nuclear bind-
ings.

4. escaped energy: The energy leaving the mother volume in form of non-interacting or escaping
particles like neutrinos or muons.

The figure 1 shows the fraction of each of these four categories summed over the active and inactive re-
gions in the endcap calorimeters. The visible em-fraction raises from 38% at 10GeV to 60% at 200GeV,
visible non-em and invisible energy fractions fall from 30% to 18% over the same range and the escaped
energy accounts for 2−4% with a shallow minimum at 60GeV.

The aim of the calibration is to estimate the lost invisible and escaped energy deposits based on the
visible em and non-em deposits in the active cells. The weights are thus made by comparing the regular
GEANT4 hits (visible energy in the active media scaled by the inverse sampling fraction to match the
total deposited energy on the electromagnetic scale) with the sum of all calibration hits from active and
inactive materials, visible and invisible sources for the current cell.

2 Cluster Classification

The aim of the cluster classification is to distinguish between clusters dominated by electromagnetic de-
posits and those dominated by hadronic interactions. For topological clusters where the correspondence
of the cluster and the particle level is close (see [3]) this would lead to a separation of electrons, photons
and neutral pions on one side from charged hadrons (mainly pions) and neutrons on the other side such
that both particle classes can be optimally calibrated.

The classification methods discussed here are mainly based on so-called moments (shower shapes)
of topological clusters and predictions for charged and neutral pions (according to phase space) from
calibration hits in single pion simulations.

2.1 Cluster Moments

Typically a cluster moment of a certain degree n in an observable x defined for cell constituent of the
cluster is given by:

〈xn〉 =
1

Enorm
× ∑

{i |Ei>0}
Ei xn, Enorm = ∑

i |Ei>0
Ei. (1)

Here the two sums run over the cells with positive energy only, as mixing negative and positive
weights could lead to unphysical behavior. Alternatively all cells could be used if the absolute value
of the cell energy would enter the sums (as is done for example for η and φ in the topological cluster
maker). Common variables to calculate first and second moments of are φ , η , and radial and longitudinal
distances from the shower axis and the shower center, respectively.

For many of the moments the shower axis is needed as reference. This axis is calculated via a
principal value analysis of the energy weighted spacial correlation of the cell members with positive

5



energy with respect to the center of the cluster:

Cxx =
1
w ∑

{i |Ei>0}
E2

i (xi −〈x〉)2, (2)

Cxy =
1
w ∑

{i |Ei>0}
E2

i (xi −〈x〉)(yi −〈y〉), (3)

and likewise for Cxz, Cyy, Cyz, Czz, with
w = ∑

{i |Ei>0}
E2

i . (4)

The Eigenvector of the symmetric matrix

C =





Cxx Cxy Cxz
Cxy Cyy Cyz
Cxz Cyz Czz



 , (5)

which is closest to the direction pointing from the interaction point (IP) to the shower center is used
as the shower axis. Is the deviation of this axis from the IP-to-shower-center-axis larger than 30◦ the
IP-to-shower-center-axis is used as shower axis. This can happen if all cell members of the cluster are
inside of one sampling and therefore the major shower axis lies in the same plane. Once the shower axis
~s and the shower center ~c are defined two other quantities are calculated:

ri = |(~xi −~c)×~s | (6)

is the distance of the cell i from the shower axis and

λi = (~xi −~c) ·~s (7)

is the distance of the cell i from the shower center along the shower axis.

The following list of moments (in addition to the shower center and the angular deviations of the
shower axis from the IP-to-shower-center axis) are calculated:

• 〈φ〉: the first moment in φ

• 〈η〉: the first moment in η

• 〈r2〉: the second moment in r

• 〈λ 2〉: the second moment in λ

• lateral = lat2
lat2+latmax

: the normalized second lateral moment

• longitudinal = long2
long2+longmax

: the normalized second longitudinal moment

• 〈ρ〉: the first moment in energy density ρ = E/V

• 〈ρ2〉: the second moment in energy density

• λcenter: the distance of the shower center from the calorimeter front face measured along the shower
axis

• fem: the energy fraction in EM calorimeters
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• fmax: the energy fraction in the most energetic cell

• fcore: the sum of the energy fractions in the most energetic cells per sampling

• isolation: the layer energy weighted fraction of non-clustered neighbor cells on the outer perimeter
of the cluster

The quantities without pointed brackets (〈. . . 〉) are strictly speaking not moments since they are calcu-
lated differently, but since they also describe the shower shape and since they are closely related to the
real moments they are provided by the same tool.

For the two moments, the lateral and longitudinal moment, the following definitions are used:

• lat2 = 〈r2〉, with r = 0cm for the two most energetic cells

• latmax = 〈r2〉, with r = 4cm for the two most energetic cells and r = 0cm for all other cells

• long2 = 〈λ 2〉, with λ = 0cm for the two most energetic cells

• longmax = 〈λ 2〉, with λ = 10cm for the two most energetic cells and λ = 0cm for all other cells

This gives normalized distributions between 0 and 1 for the two moments. The fixed values in r and λ
for the two most energetic cells need tuning.

The most promising moments for separating hadronic from electromagnetic showers are the moments
describing the width and the length of the shower, 〈r2〉 and 〈λ 2〉, the depth of the shower center λcenter,
and the first moment in energy density 〈ρ〉. The isolation moment is also normalized between 0 and 1
and can be used to correct for out-of-cluster energy losses. In case the isolation is small most of the
out-of-cluster energy will be already accounted for in other clusters, while in case the isolation is large
most of the out-of-cluster energy has to be corrected for.

2.2 Default Method

The current (rel 13) default procedure in ATLAS is to classify topological clusters based on the predicted
phase-space population of clusters stemming from charged and neutral pion simulations. For both par-
ticle species the 4-dimensional phase space for clusters in |η |, Ecluster, log10(λcenter) and log10(〈ρ〉)−
log10(Ecluster) is binned and filled with simulated pions in the energy range Ecluster = 200MeV− 2TeV
and |η |< 5. Both samples are simulated with the same energy and η distributions. Assuming an a-priori
probability ratio of 1 : 2 for observing a neutral pion over a charged pion the probabilty weight in each
phase-space bin for observing a neutral pion is given by:

wi =
nπ0

i
nπ0

i +2nπ±
i

, (8)

where nπ0,±
i is the fraction of neutral or charged pions in a given phase-space bin i from the simulation.

A cluster is classified as electromagnetic if its falling in a phase-space bin with a weight w i > 0.5.
Figure 2 shows the classification weights obtained with this procedure for the 2 regions 2.0 < |η | < 2.2
and 0.2 < |η | < 0.4 and 2 energy ranges 1GeV < Ecluster < 2GeV and 8GeV < Ecluster < 16GeV on a
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Figure 2: Default calibration scheme: Probability weights to observe a neutral pion cluster for 0.2 <
|η | < 0.4 (left column); 2.0 < |η | < 2.2 (right column); 1GeV < Ecluster < 2GeV (top row); 8GeV <
Ecluster < 16GeV (bottom row).

colored scale from 0 (purely hadronic) to 1 (purely electromagnetic) as a function of the two moments
〈ρ〉 and λcenter . It is clearly visible that electromagnetic showers dominate the region of high energy
density and small cluster depth. It is also apparent from the plots that classification is most difficult for
clusters with smaller energies as the distributions for charged and neutral pions have larger overlaps in
that regime.

2.2.1 Performance for single pions

Figure 3 shows the energy fractions classified as electromagnetic and hadronic for neutral and charged
single pions with the classification method described in section 2.2. For neutral pions the method reaches
classification efficiencies of 80−85% above 50GeV, but below that energy the electromagnetic fraction
drops linearly with the logarithm of the pion energy, falls to 50% at about 5GeV and 23% at 1GeV.
For charged pions the hadronic fraction is rather stable between 80− 90% over the entire energy range
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Figure 3: Default calibration scheme: energy fractions of single pions classified as electromagnetic (red
dots) or hadronic (blue dots) for π0’s (left), π±’s (right) as function of the pion energy averaged over all
η and φ .

– at low energies due to the low classification efficiency of neutral pions and at large energies due to the
better separation of neutral and charged showers.
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Figure 4: Default calibration scheme: energy fractions of single pions with 70GeV < E < 130GeV
classified as electromagnetic (red dots) or hadronic (blue dots) for π 0’s (left), π±’s (right) as function of
the pion |η | averaged over all φ .

The |η |-dependency of the classification method is depicted in figure 4 for single pions with E =
(100± 30)GeV. The plot for neutral pions shows that dead material and regions with cracks degrade
the classification performance from above 90% for regions with little dead material to about 60% at the
barrel-endcap crack at |η | ' 1.5. Charged pions suffer less from the crack regions and dead material but
the overall classification efficiency drops with increasing |η | from 95% at the central barrel to 80% at
|η | ' 4.5.

2.3 Alternative cluster classification estimating the electromagnetic fraction

An alternative option to classify clusters as electromagnetic or non-electromagnetic is based on an esti-
mate of the eletromagnetic component of the shower using cluster moments. This procedure has been
applied in individual |η | bins (in total 25 equidistant bins).

• The following cluster moments were used (see Figure 5):

– 〈r2〉: the second moment in r
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Figure 5: The three moments used to estimate the electromagnetic fraction.

– 〈λ 2〉: the second moment in λ
– λcenter: the distance of the shower center from the calorimeter front face measured along the

shower axis

• From each individual moment an estimate of the electromagnetic fraction is obtained.

• The final electromagnetic fraction is obtained from the weighted mean of the individual estimates.

These three cluster moments are explained in more detail in Figure 5. The correlation between the
particular moment and the electromagnetic fraction of the deposited energy is assumed to be linear (see
e.g. Figure 6). The parameters of the linear fit (slope and offset) are used to obtain the electromagnetic
fraction of the deposited energy of the cluster. The weighted mean value obtained from the three results
from the individual cluster moments is used to extract the final estimate. The weights were obtained from
a fit minimizing the spread of the prediction.

In this procedure only clusters with ET > Ecut
T are classified, with Ecut

T being an |η |-dependent min-
imal threshold. The Figures 6, 7 and 8 show the results for pions and for the bin 2.2 < |η | < 2.4 and
the values of Ecut

T = 1.5 GeV resp. 1.0, 0.5 GeV. Shown is for each cluster moment the correlation with
the true electromagnetic fraction, varying the pion energy up to 1 TeV. The line shown reflects the result
of the linear fit. The finally predicted electromagnetic fraction vers. the true electromagnetic fraction is
shown as well (bottom right figure). The corresponding results for electrons of 100 GeV are shown as
well (black data point in highest electromagnetic fraction bin close to one).

This classification method has been validated using electrons (see Figure 9) and QCD di-jets. In
QCD di-jets in general only a small fraction of energy is deposited in clusters with very high electro-
magnetic fraction (e.g. clusters with electromagnetic fraction above 90%). But even for lower values of
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Figure 6: Dependence of the cluster moments on the electromagnetic fraction and the final prediction
vers. the true value for π− with ET > 1500MeV. The error bars show the spread of the related ditribution.

electromagnetic fraction the prediction might be useful in more sophisticated cluster weighting schemes.
In general, the performance of this classification method is slightly worse in comparison to the default
method.
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Figure 7: Alternative cluster classification: dependence of the cluster moments on the electromagnetic
fraction and the final prediction vers. the true value for π− with ET > 1000MeV
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Figure 8: Alternative cluster classification: dependence of the cluster moments on the electromagnetic
fraction and the final prediction vers. the true value for π− with ET > 500MeV
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3 Weighting

Using the calibration hits explained in the section 1 weights for cells or layers in the calorimeter can be
derived to recover the invisible and escaped energy fractions.
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Figure 10: Default calibration scheme: hadronic cell weights for 0.2 < |η | < 0.4. The top row shows the
samplings 1 - 3 in the LAr barrel from left to right; the bottom row the samplings 1 - 3 in the Tile barrel.

In the weighting approach cell-based weights can be calculated to correct for the invisible and es-
caped energy fractions. First all clusters from simulated charged single pion events are classified as
electromagnetic or hadronic as described in section 2. The following cuts need to be satisfied by cells
belonging to clusters classified as hadronic in order to enter the weight tables:

E reco
cell > 2σnoise, (9)

Ecalib
cell > σnoise, (10)
Vcell > 0, (11)

0.5 < Ecalib
cell /E reco

cell < (3EMB, EMEC, FCaL,5HEC,10Tile). (12)

Here E reco
cell is the regular reconstructed energy based on the visible energy in the active media including

noise, Ecalib
cell is the sum of all calibration hits belonging to the cell, Vcell is the cell volume, and σnoise is the

electronics noise. The first two cuts prevent noise to enter the weights in a dominant way. The threshold
for the calibration hit energy sum is lower than that for the reconstructed cell energy since noise is not
added to the calibration hits and both upward and downward fluctuations in the reconstructed energy are
thus accounted for at the 1σ level starting at the 2σ threshold. The volume cut serves basically to exclude
cells which do not belong to the calorimeter proper – such as presampler cells and gap scintillation coun-
ters. In recent releases some of these cells got volumes corresponding to their active material attached
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to them and are excluded explicitly. They are treated in the dead-material correction step described in
section 5. The last cut truncates the weight distributions again to prevent domination by noise (the lower
cut) and spurious upward fluctuations (the upper cut). The actual values are not critical and somewhat
arbitrary.
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Figure 11: Default calibration scheme: Hadronic cell weights for 2.0 < |η | < 2.2. The top row shows
the samplings 1 - 3 in the LAr endcap from left to right; the middle row the samplings 1 and 2 for the
HEC and the bottom row HEC samplings 3 and 4.

The weight tables (in form of TProfile2D) histograms are filled with the ratios E calib
cell /E reco

cell as a
function of the cluster energy the cell belongs to, the energy density ρcell = E reco

cell /Vcell of the cell, and
the |η | of the cell center. There are 25 equidistant |η |-bins from 0.0 to 5.0, 20 logarithmic energy-density
bins from −7 < log10(ρcell(MeV/mm3))< 1 and 22 logarithmic cluster energy bins from log10(100(MeV))<
log10(Eclus(MeV)) < log10(2 ·106(MeV)) with an average of 5.7 active layers per |η | bin. Examples of
the actual weights obtained this way from 2 ·106 charged pions are shown in figures 10,11, and figure 12
for the ranges 0.2 < |η | < 0.4, 2.0 < |η | < 2.2, and 3.8 < |η | < 4.0, respectively.
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Figure 12: Default calibration scheme: hadronic cell weights for 3.8 < |η | < 4.0; from left to right the
samplings 1 - 3 in the FCal.
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Figure 13: Default calibration scheme: Performance plots for charged single pions. Top left: efficiency
for reconstructing at least one cluster with positive calibration hit contents (default calibration scheme).
The other plots show fractions of true calibration hit energies inside topo clusters (top right), outside topo
clusters but inside the calorimeters (bottom left) and outside calorimeters (bottom right).
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4 Out-Of-Cluster Corrections

Out-of-cluster corrections (OOC) aim at recovering from the lost low energetic deposits at the tails of
hadronic showers. The difficulty here is that unlike the calibration hit contents for a given cluster the
amount of calorimeter energy associated to that cluster but outside of cells inside the cluster is not well
defined. The total sum of calibration hit energy inside the calorimeter but outside any cluster from
charged pion simulations is known but how to distribute this energy over the available number of clusters
is arbitrary. One possibility would be to calculate the distance for each out-of-cluster calibration hit to the
reconstructed clusters and assign it to the nearest one. This does however not help for split clusters since
they are very close by definition and the assignment offers no algorithmic aid for the application of the
correction. Therefore an alternative procedure has been adopted here: The total fraction of out-of-cluster
energy from single pion simulations w.r.t. the weighted total energy inside clusters (but before dead-
material corrections) is averaged in bins of pion energy, pion |η |, and the pion depth λ in the calorimeter.
The λ values of all clusters in a given event are combined with energy proportional weights to obtain
the latter. 12 energy bins with the boundaries {0,1,2,4,8,16,32,64,128,256,512,1024,2048}GeV, 25
equidistant |η | bins from 0 to 5 and 20 equidistant bins in log10(λ/mm) from 0 to 4 define the profile
histograms. Figure 14 shows the out-of-cluster energy fractions obtained this way for charged and neutral
pions in 2 different energy bins. The total out-of-cluster energy fraction as function of pion |η | and for
all energies up to ∼ 1TeV can be seen in the lower left plot of Figure 13.
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Figure 14: Out-of-cluster correction tables for 8GeV< E < 16GeV (top row) and 512GeV< E <
1024GeV (bottom row) for charged (left column) and neutral pions (right column).

The level of isolation of each cluster is determined by the fraction of cells on its outer perimeter that
are not included in other clusters. Due to the big variety in granularity this isolation is calculated for
each layer separately and the layer-energy weighted average of the individual isolation ratios is taken as
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overall isolation for the cluster. An isolation of 0 means that all cells on its outer perimeter are included
in neighboring clusters, a value of 1 indicates that the cluster is totally isolated – i.e. that all its neighbor
cells are not part of any cluster. This isolation fraction is multiplied with the expected out-of-cluster
energy fraction for each cluster as obtained from the out-of-cluster tables described above. This accounts
for the fact that clusters tend to be less isolated in full events compared to single pion events from
simulations or beam tests. In the crack regions and towards larger |η | values the level of isolation also
decreases as can be seen in Figure 15 for clusters above 1GeV in transverse energy from single pion and
tt̄-events.
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Figure 15: Level of isolation for clusters above 1GeV in transverse energy versus |η | for single charged
pion (left) and tt̄ (right) simulations.

The current correction procedure for out-of-cluster energy deposits works reasonably well in case the
correction is large, but tends to overestimate the missing energy in case the fraction is small. Figure 16
shows the ratio of reconstructed over true out-of-cluster energy fraction versus the true out-of-cluster
fraction for charged single pions. The level of overestimation is particularly large in the crack regions
where the number of clusters due to the split algorithm is largest. Nevertheless, both linearity and reso-
lution are improved by the current procedure as shown in lower left plots of Figures 25 and 26.
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Figure 16: Default calibration scheme: Ratio of reconstructed over true out-of-cluster energy fraction
vs. true out-of-cluster energy fraction (left) and vs. |η | (right) for charged single pion simulations.
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5 Dead Material Correction

Dead material (DM) corrections account for energy deposited outside of active zones of LAr and Tile
calorimeters. This includes energy deposited in upstream material (Inner Detector material, magnetic
coil, cryostat walls), different crack regions between calorimeter modules and material behind the calorime-
ter system (leakages). The correction is based on full ATLAS Monte-Carlo single pion simulation with
dead material energy saved on each event via the Calibration Hits mechanism. The data set used to
obtain the correction coefficients was the same as described in section 1.

The correction is performed on cluster level for clusters classified as electromagnetic or hadronic
on event-by-event basis. The amount of energy lost in dead material for given cluster is derived from
different cluster quantities calculated at em scale. This energy is added then to the cluster by changing
the cluster cells weight appropriately.

The following subjects are covered in this chapter:

• Description of dead material calibration hits.

• Amount of energy deposited in dead material by neutral and charged pions.

• Procedure for assignment of DM energy to the cluster.

• Description of the method.

• Performance.

5.1 Dead material calibration hits.

Dead material calibration hits are intended to record four calibration energies (em, non-em, invisible and
escaped) in all regions outside of the active calorimeter. Since there is no read-out cell structure, dead
material calibration hits represent some virtual division of material in different detector regions into cells
with a η ×φ = 0.1×0.1 grid structure generally. This is in contrast to calibration hits for active/inactive
material in normal read-out cells.

Figure 17 shows in the R-Z plane the average energies deposited in dead material calibration hits
for 500GeV negative single pions produced with a flat distribution in η ,φ . The color code represents
the average energy of the calibration hits given the grid structure mentioned above (averaged in φ ). The
schematic of the read-out cell structure of the calorimeter system is shown as well.

There are about 82000 DM grid boxes in 114 different dead material regions (57 of them in the region
Z > 0.0 are shown in the Figure 17 as contiguous blocks of boxes at the same Z and radius) denoted by
special dead material identifiers. Thus one can study the correlation between the cluster quantities and
the total energy lost in dead material nearby.

5.2 Amount of energy deposited outside calorimeters for neutral and charged pions in
ATLAS.

The amount of dead material in front of the calorimeter system could be quite significant. The variation -
given in radiation length X0 - ranges from ∼ 1.5X0 at |η | ∼ 0.0 till ∼ 6X0 in the crack regions (|η | ∼ 1.5,
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Figure 17: Average energy deposited in dead material for 500GeV negative pions. The red numbers
show dead the related region code of an individual dead material region.

|η | ∼ 3.2). Figure 18 shows the relative average energy deposited in the whole dead material by neutral
and charged pions of different energies as a function of (true) |η |. The relative energy deposited in dead
material by neutral pions is in comparison to charged pions generally smaller, mainly because neutral
pions rarely reaches a gap between em and had calorimeters. However, this is not the case for the crack
regions at (|η | ∼ 1.5, |η | ∼ 3.2) where the maximum of the electromagnetic shower falls right into the
crack region. Here the energy deposition of neutral pions can reach as much as 70 % of the initial energy.

Figure 19 shows the fraction of energy deposited in different DM areas relative to the total DM
energy for neutral and charged pions. The DM areas are:

label description
DM PreSamplerB material before barrel presampler and between barrel presampler and

strips, |ηhit | < 1.5.
DM EMB3 TILE0 material between last sampling of em barrel and first sampling in Tile,

|ηhit | < 1.0
DM SCN material before scintillator (not including inner detector services), 0.8 <

|ηhit | < 1.6
DM EMEC TileExt0 material between EMEC (HEC) and first sampling in extended tile, 1.0 <

|ηhit | < 1.6
DM PreSamplerE material before endcap presampler and between endcap presampler and

strips, 1.5 < |ηhit | < 1.8
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DM EME1 material before endcap strips and first sampling of endcap inner wheel,
1.8 < |ηhit | < 3.2

DM EMEC HEC0 material between last sampling of EMEC and first sampling of HEC, 1.5 <
|ηhit | < 3.2

DM HEC FCAL material in crack between EMEC and HEC calorimeters, ∼ 3.0 < |ηhit | <
3.4

DM FCAL material before FCAL calorimeter, 3.2 < |ηhit | < 5.0
DM LEAKAGE material behind calorimeter system (tile girder is included), |ηhit | < 5.0
DM OTHER material not covered by previous items (between em barrel modules, be-

tween inner and outer wheels, HEC azimuthal cracks, between FCAL
modules), |ηhit | < 5.0

Table 1: The different dead material regions in ATLAS

The total DM energy is the sum of energies deposited in these areas. Thus all contributions shown in
Figure 19 (a-d) should add up to one.

5.3 Dead Material corrections in ATLAS

5.3.1 Assignment of DM calibration hits to clusters

In the ideal case the cluster algorithm should reconstruct one cluster per particle. In practice the number
of clusters is larger due to contributions from fake clusters formed around cells with occasionally high
noise. Additional clusters are reconstructed from secondary particles as well as clusters from two differ-
ent nearby particles where the clusters got merged. In general, the average number of clusters in an event
depends on the event topology. For single pions from MC simulation the topological cluster algorithm
yields 14 clusters per event on average. Most of them are noise clusters with an average energy close
to zero. Figure 20 shows for charged and neutral pions the ratio of the energy contained in the three
most energetic clusters relative to the total energy in all clusters as function of (true) |η |. The ratio is
shown for the average energies < Eπ >∼ 20.2GeV and < Eπ >∼ 201.6GeV. The maximum cluster
contains ∼ 50− 100 % of the total energy, depending somewhat on energy and particle type. Most of
the residual energy is contained typically in two additional clusters. In consequence, prior to obtaining
DM corrections for clusters the proper assignment of DM calibration hits to related clusters has to be
optimized.

The following approach has been chosen:

Step 1:
The DM calibration hit is assigned to the cluster if it is a direct neighbour of at least one cluster cell.

|ηhit −ηcell | < (∆ηhit +∆ηcell)/2 , |φhit −φcell | < (∆φhit +∆φcell)/2

Each DM region has a predefined set of correlated calorimeter samplings. Only cluster cells in this
given samplings are used in the neighbour scan. One DM hit may be assigned to several clusters. In
this case a weight is calculated according to the cluster energy contained in the related sampling. Finally
∼ 10% of the DM energy at low η and ∼ 30% at high η remain unassigned to any cluster. This out-of-
cluster energy is accounted for in step 2.
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Figure 18: Ratio of energy deposited in dead material by single neutral (a) and charged (b) pions versus
(true) |η |
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Figure 19: Fraction of energy deposited in different DM areas relative to the total DM energy for neutral
(a,b) and charged (c,d) pions as function of (true) |η |. Two energies are shown: < Eπ >∼ 20.1GeV (a,c),
< Eπ >∼ 201.2GeV (b,d).
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Figure 20: Default calibration scheme: ratio of the energy contained in the three most energetic clusters
relative to the total energy in all clusters for for neutral (a,b) and charged (c,d) pions as a function of
(true) |η |. Two pion energies are shown: < Eπ >∼ 20.2GeV (a,c), < Eπ >∼ 201.6GeV (b,d).

Step 2:
The DM calibration hits, which could not be assigned to clusters in step 1, are assigned to all clusters
found with weights depending on the cluster energy Eclust and the distance D from the hit position to the
cluster:

weight = Eα
clust · exp(−D/R0)

The optimal parameters α = 0.5 and R0 = 0.2 have been determined from special assignment procedure
performance studies.

5.3.2 Determination of DM correction parameters.

Three different approaches have been chosen to obtain the DM correction for the various regions shown
in Table 1.

1. TProfile approach

This approach concerns the DM areas where there is a good correlation between well established
cluster quantities and DM energy losses E[area]. These losses are parameterized with a first oder polyno-
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mial as shown below:

E[DM PreSamplerB] = o f f set(C f lag ,Eclust , |ηclust |)+ slope(C f lag,Eclust , |ηclust |) ·EPreSamplerB

E[DM EMB3 TILE0] = o f f set(C f lag ,Eclust , |ηclust |)+ slope(C f lag,Eclust , |ηclust |) ·
√

EEMB3 ·ETILE0

E[DM SCN] = o f f set(C f lag ,Eclust , |ηclust |)+ slope(C f lag,Eclust , |ηclust |) ·ETileGap3

E[DM PreSamplerE] = o f f set(C f lag ,Eclust , |ηclust |)+ slope(C f lag,Eclust , |ηclust |) ·EPreSamplerE

E[DM EME3 HEC0] = o f f set(C f lag ,Eclust , |ηclust |)+ slope(C f lag,Eclust , |ηclust |) ·
√

EEME3 ·EHEC0

Thus, either the energy deposited in the preshower or a simple square root ansatz of the energies in
the neighbouring calorimeter samplings are used as cluster quantities correlating well with DM energy
deposits.

The individual coefficients, o f f set and slope, depend on the classification flag C f lag, cluster energy
Eclust and cluster position in ηclust . A grid of 7 energy bins (logarithmic) [3.3, 3.9, 4.3, 4.7, 5.1, 5.5, 5.9,
6.3] and 50 uniform |η | bins in the range 0 < |η | < 5.0 has been used to determine the parameters.

Figure 21a shows the dependence of energy deposited in front of the em calorimeter as a function
of energy measured in the presampler for neutral pions. Only clusters with energies in the bin 4.7 <
log10(Eclust ) < 5.1 are considered here. The DM correction coefficients are obtained from the linear fit
of the TPro f ile histogram shown in Figure 21b. Finally the Figures 21(c,d) show the dependence of the
fit parameters on the cluster energy.
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Figure 21: Default calibration scheme: a,b) Energy lost in front of the barrel em calorimeter for π0’s
as a function of the energy measured in the presampler for clusters with energies in the range 4.7 <
log10(Eclust ) < 5.1;
c,d) Dependence of the offset and slope parameter on the average cluster energy.

From the o f f set it is visible that sometimes quite a significant amount of energy is deposited in
front of calorimeter but no energy is measured in the presampler, i.e. EPreSamplerB = 0, o f f set > 0.0.
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Figure 22: Default calibration scheme: a,b) Energy lost in front of the barrel em calorimeter for π±’s
as a function of the energy measured in the presampler for clusters with energies in the range 4.7 <
log10(Eclust ) < 5.1;
c,d) Dependence of the offset and slope parameter on the average cluster energy.
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Moreover, this amount increases with cluster energy. This could be explained by missing energy in the
whole cluster (and also in presampler) due to the out-of-cluster effects. An indirect confirmation might
be that no offset is obtained (within fit errors) when all active calibration hits in the presampler are used,
irrespective of any cluster correlation (i.e. avoiding any clustering or out-of-cluster effects).

Figure 22(a-d) is very similar to Figure 21 but for charged pions. Comparing neutral with charged
pions a different behaviour of the o f f set and slope parameters is observed: now the o f f set is bigger for
the same cluster energy and the slope decreases with increasing cluster energy. A possible explanation
could be that for charged hadrons the measured energy in the cluster is effectively smaller due to the in-
visible energy fraction. But as this fraction decreases with increasing hadron energy the slope coefficient
decreases as well.

2. Function minimization approach

The second approach is used to recover the energy deposited in the material before the FCAL
calorimeter (FCAL nose, polyboron shield) and in the crack between the HEC and FCAL calorime-
ters. This is a rather difficult region for DM corrections due to the lack of any preshower. Further the
first samplings of the FCAL and EMEC inner wheel are too thick to provide a good correlation with any
dead material energy losses.

The approach here is to use new sampling weights providing this correction. Thus the reconstructed
DM energy may be written as

Ereco
[DM FCAL] =

Nc

∑
i

Ns

∑
j

E j · (wnew
j −wold

j ),

where the summation i = 1,Nc is performed over all clusters in the event and the summation j = 1,Ns
runs over all samplings for a given cluster. These weights depend on |η | but are independent of the
cluster energy. They are derived from a χ 2:

χ2 =
1
N

N

∑
i=0

(Ereco
DM FCAL −Etrue

DM FCAL)2
√

Etrue
DM FCAL

,

where sum runs over all events N of a given sample.

Figure 23 shows the dependence of sampling weights found as a function of |η | (cluster coordinate)
for charged and neutral pions.

3. Lookup approach

A third method is used to correct DM energy losses in following cases:

• The DM energy was deposited in different regions between calorimeter modules, e.g. in the ma-
terial in front of the EMEC at 1.8 < |eta| < 3.2, in the gap between the EMEC and the extended
TILE calorimeter and energy leakage beyond the calorimeter system (i.e. calorimeter areas where
the minimization and TProfile corrections are not applied).
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Figure 23: Dependence of optimal sampling weights on cluster coordinate η for charged and neutral
pions.

• low energetic clusters (log10(Eclust ) < 3.2) .

• no energy was measured in the presampler for a given cluster, or the algorithm failed to obtain a
cluster quantity like

√
Eemb3 ·Etile0.

Four dimensional lookup tables are used to store the average ratio < EDM/Eclust >, where EDM is
the dead material related to a cluster in the areas discussed above. The average of the ratio is obtained
discarding the 2% upper tail. The four dimensions and the related binning are:

• 1D: 2 bins for em-like and had-like clusters.

• 2D: 50 bins in cluster energy 2.0 < log10(Eclust ) < 6.3.

• 3D: 20 bins in cluster depth 0.0 < log10(λclust < 4.0.

• 4D: 50 bins in cluster coordinate 0.0 < |ηclust | < 5.0.
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6 Performance for ATLAS

The ratio of reconstructed to simulated energy for various correction stages is shown in Figure 24. The
linearity and the resolution are shown in Figures 25 and 26 for the various stages of the calibration
procedure.
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Figure 24: Default calibration scheme: performance plots for charged single pions. The plots show
the ratio of reconstructed over simulated pion energy at various stages of the calibration for selected
energies and regions: em-scale (red); weighted (blue); weighted and out-of-cluster corrected (green);
weighted, out-of-cluster corrected and dead-material corrected (black). From left to right: 0.2 < |η | <
0.4, 1.8 < |η | < 2.0, 3.6 < |η | < 3.8. From top to bottom: Eπ = (20± 6)GeV, Eπ = (100± 30)GeV,
Eπ = (500±150)GeV.
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Figure 25: Default calibration scheme: Linearity for different stages of the calibration for single charged
pions. Top left: on the em-scale; top right: after weighting; bottom left: after weighting and out-of-
cluster corrections; bottom right: after weighting, out-of-cluster corrections and dead material correc-
tions
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Figure 26: Default calibration scheme: resolution spread (RMS) for different stages of the calibration
for single charged pions. Top left: on the em-scale; top right: after weighting; bottom left: after weight-
ing and out-of-cluster corrections; bottom right: after weighting, out-of-cluster corrections and dead
material corrections
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energies run-number for geometry
(GeV)

15, 17, 20, 22, 25 2392
35, 40, 45, 50, 55, 60, 65 2343

70, 80, 90, 100, 110, 120, 130 2355
130, 150, 170, 180, 190, 210, 230 2225

Table 2: Energies and run-numbers for the derivation of weights and corrections.

7 Performance for the 2004 combined test beam

The calibration procedure is fully based on MC simulation. Therefore the ability of the MC to describe
the data is a critical issue. The available data are from beamtests which have been undertaken in the
past: the ATLAS Barrel Combined Testbeam 2004 (CTB 2004) and the ATLAS Endcap Combined
Testbeam 2004 (CTBEC2 2004). The analysis of the CTBEC2 2004 data is still in progress. Therefore
the CTB 2004 data have been chosen to validate the calibration scheme in a first step. In the CTB 2004
beamtest a full slice of the ATLAS detector has been operated with all the related subdetetcor systems.

7.1 Performance for the ATLAS Barrel Combined Testbeam 2004

As for ATLAS, all parameters for the individual calibration steps have been derived from MC, simulating
here the beam set-up in all details. Pions as well as protons have been simulated to follow closely the
particle mix given in the testbeam. The energies used in the simulation were close to those used in the
testbeam (see Table 2). The interval around the nominal energy was typically ±30%. All simulations
have been done with Athena, version 12.0.6 and GEANT4, version 4.7 using QGSP BERT as physics
list.

7.1.1 Weighting

The weighting is done as described in Section 3. Figure 27 shows the difference between the total
reconstructed energy (blue circles) and the true deposited energy (red squares) in all clusters for simulated
pions of 100 GeV. Before the weighting, the mean value of the reconstructed energy is on average about
12 GeV lower than the true energy. After weighting the reconstructed energy is close to the true energy
and the RMS improves from 5.31 GeV to 5.17 GeV.

Figure 28(a) and (b) show the effect of the weighting for pions of 20, 50, 100 and 180 GeV. A
good agreement of reconstructed and true energy is observed. The relative deviation of the reconstructed
energy from the true energy is below 1% for the whole energy range. The improvement of the resolution
(RMS) of the relative deviation is about 15% at 20 GeV and 25% at 180 GeV.

31



 [GeV]cl,trueE
cl
∑-cl,recoE

cl
∑

-20 0 20

)
cl,

tru
e

E
cl∑-

cl,
re

co
E

cl∑
 d

N/
d(

N1

0

0.05

0.1

, QGSP_BERTπE=100GeV, 

em scale
weighted

RMS=5.312 GeV
mean=-12.42 GeV RMS=5.174 GeV

mean=-0.16 GeV em scale
weighted

Figure 27: Difference between the total reconstructed energy and the true deposited energy in all clusters
for simulated pions of 100 GeV.

7.1.2 Out-of-cluster corrections

The out-of-cluster (OOC) correction accounts for all energy depositions outside of the clusters and the
dead material (see Section 4). Figure 29 shows the difference between reconstructed and true out-of-
cluster energy.

The peak at ∼ 1.3GeV when no correction has been applied is significantly reduced after the cor-
rection. However an asymmetric shape with a double peak structure can be observed where the peaks
are slightly shifted to higher values. At the same time a shoulder starts to evolve at lower values. This
asymmetry is not observed when the OOC corrections derived from ATLAS have been used. The main
difference between the CTB derived and the ATLAS derived OOC corrections is the range of beam ener-
gies used to compute the corrections (logarithmic in ATLAS, in CTB see tab. 2). Hence, in the CTB more
runs with high beam energy compared to runs with low energy are taken to derive the OOC corrections.
This might cause the difference in the reconstructed OOC energy.

In Figure 28(c) and 28(d) the relative deviation of the reconstructed from the true out-of-cluster
energy and the resolution thereof are shown. The out-of-cluster energy reduces the relative deviation
for 20 GeV from about −4% to −2%, but over-corrects at 180 GeV from −1% to +0.5%. With the

OOC corrections derived from the CTB 2004 no improvement of the linearity can be achieved. The
resolution of the deviation between reconstructed and true OOC energy worsens. Since the asymmetric
shape and the worsening of the resolution of the difference between reconstructed and true OOC energy
is neither observed for the CTB when the ATLAS derived OOC corrections are used nor in full ATLAS
simulations, this problem seems to be a particular problem for the test beam only.
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(b) weighting: resolution of the difference

 [GeV]beamE
50 100 150

>
re

co
>/

<E
O

O
C,

tru
e

-E
O

O
C,

re
co

<E

-0.1

-0.05

0

0.05

weighted
out-of-cluster

(c) out-of-cluster: relative difference
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(d) out-of-cluster: resolution of relative difference
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(e) dead material: relative difference
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Figure 28: Default calibration scheme: Blue circles, red squares, green triangles pointing upwards and
black triangles pointing downwards indicate the energy response at the electromagnetic scale, after the
weighting correction, after the out-of-cluster correction and after the dead material correction respec-
tively. The figures on the left hand side show the relative differences of the reconstructed (E reco) and
the true (Etrue) value of (a) the cluster energy (Ecl), (c) the out-of-cluster correction (Eooc) and (e) the
dead material correction (EDM). The figures on the right hand side (b), (d) and (f) show the respective
resolutions of the relative differences. 33
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Figure 29: Difference between the reconstructed (EOOC,reco) and the true (EOOC,true) out-of-cluster energy
in MC simulations of pions of 100 GeV.

7.1.3 Dead material corrections

The performance for dead material corrections shown in this section have been obtained with a layer-
based parameterization using the energies deposited in the adjacent layers to estimate the energy lost in
the dead material (see Section 9.3.1). This method turned out to be more appropriate for the testbeam
set-up and thus different from the ATLAS approach. The effect of the dead material correction for pions
of 100 GeV can be seen in Figure 30. The distribution without dead material corrections shows two
peaks. The peak at zero results from events where no energy is deposited in the dead material, in contrast
to normal events. After the correction the double peak structure is reduced to a single peak close to zero.
Also the mean is only slightly below zero. The RMS is reduced significantly reflecting in a remarkable
improvement of the resolution. The effect of dead material corrections is shown in Figure 28(c) and (d)
for beam energies of 20, 50, 100 and 180 GeV. At 20 GeV the dead material correction is underestimated
by about 3%. This value decreases with increasing energy (see Figure 28(c)). The resolution is improved
by ∼ 15% at 20 GeV and ∼ 30% at 180 GeV (see Figure 28(d)).

7.1.4 Combined corrections applied on MC

The subsequent application of all three correction steps is shown in Figure 31. The energy distribution
on the electromagnetic scale is indicated by blue circles. The energy distribution after the weighting
step is shown with red squares, green triangles indicate the status after the out-of-cluster correction and
finally black triangles (pointing down) show the energy distribution after all corrections applied. The
reconstructed energy after all corrections is approximately equal to the beam energy and the shape of the
distribution is narrower and more Gaussian when comparing to the em-scale.

Figure 32 shows the linearity and the resolution as function of energy for pions at the electromag-
netic scale and after each step of correction. Blue circles show the result on the electromagnetic scale,
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Figure 30: Difference between the reconstructed (EDM,reco) and the true (EDM,true) dead material energy
for pions of 100 GeV.
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Figure 31: Distributions of the reconstructed energy at the em-scale (blue circles), after weighting (red
squares), out-of-cluster correction (green triangles) and dead material correction (black triangles) respec-
tively.
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Figure 32: Response and resolution as a function of energy for simulated pions at the electromagnetic
scale and for each step of correction.

red squares after the weighting step, green triangles after the out-of-cluster correction and finally black
triangles (pointing down) show the result after the dead material correction. At low energies the recon-
structed energy is about 3% low. At high energies the deviation of the reconstructed from the true energy
is within 1%. The resolution improves up to 17% at 20 GeV and 6.5% at 180 GeV. The energy resolution
may be parameterized as:

σ
E =

s√
E
⊕ n

E ⊕ c (13)

where the symbol ⊕ denotes a quadratic sum. The first term is the stochastic term, the second denotes
the noise term and the third one is the constant term [4,5]. This function is fitted to the energy resolution
for the energies of 20, 50, 100 and 180 GeV after all steps of hadronic calibration. A sampling term of
73.5%/

√
E and a constant term of 4% is found.

7.1.5 Results for data

For the evaluation of the calibration scheme on data, the proton admixture in the pion beam has to be
taken into account. Therefore the MC simulations mentioned above have been redone with protons as
well and the related weights and corrections have been obtained. For each data run the weight files
derived from pions and protons have been mixed with a pion/proton fraction according to the specific
proton contamination in the pion beam. For pions the total energy is deposited within the hadronic
shower. Due to the baryon number conservation, in a proton induced shower one baryon is left at the
end of the shower development that has not deposited its energy in the calorimeter. Hence, there is
a difference of the total deposited energy (visible and invisible) of one proton mass between a proton
induced shower and a pion induced shower. To correct for this, all weights which were created with
protons have been re-weighted with a factor Ebeam/(Ebeam −mp) where mp is the proton mass. Figure 33
shows the result on the data at 100 GeV after each step. After weighting the energy distribution is
asymmetric with a large tail at high energies. The OOC-correction shifts the distribution slightly to
higher energies, but does not change the shape. The dead material correction reduces the asymmetry, but
a large tail remains which deteriorates the resolution. As for the MC simulation, a fit using (see eq. 13)
has been applied to the data. But since for the data the proton contamination varies strongly with energy
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Figure 33: Distributions of the reconstructed energy at the em-scale, after weighting, out-of-cluster
correction and dead material correction respectively.
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Figure 34: Default calibration scheme: linearity and resolution for the reconstructed energy of data at
the em-scale, after weighting, out-of-cluster correction and dead material correction respectively.
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and the energy resolutions for pions and protons have a different energy dependence, the values obtained
for the sampling term, noise term and constant term should be taken as guide only.

7.1.6 Discussion

In comparison to MC the energy resolution for the data is worse. But this is the case already at the
electromagnetic scale prior to the hadronic calibration. Some improvement of the MC prediction for
the data is expected in future versions of GEANT4 . The deviation of the reconstructed from the true
energy is 2% for MC (with all corrections applied) for energies above 20 GeV and 5% at 20 GeV. The
corresponding numbers for the data are 5% for energies above 20 GeV and 7% at 20 GeV.

The validation of the hadronic calibration with the CTB 2004 data has shown, that the calibration
scheme improves the linearity and resolution of MC simulations and testbeam data. This is important
since the calibration parameters have been extracted from the MC. The fact that the linearity in the
response can be obtained for the data proves that the quality of the MC simulations is sufficient to ensure
a pion calibration to within a few percent.
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8 Hadronic Calibration using the cone method

The cone method (for details see [6]) is a variant of the default hadronic calibration method. As in the
default calibration approach, the weights are parameterized with the cell energy density, ρE and a global
energy scale, Eglobal . The global energy is in this approach not the energy of the cluster but the energy
of the clusters which are within a cone of opening angle 11 degrees around the most energetic cluster. If
some of the clusters fall outside the most energetic cone, secondary cones are opened.

8.1 Monte Carlo samples for the cone method

The cone variant has been studied only for the combined barrel testbeam data CTB 2004. Thus the η
range is restricted to typically |η | < 0.8. The Monte Carlo was using the simulation toolkit GEANT4 [7]
within the Athena framework [8], version 11.0.421). The Monte Carlo samples generated were typically
10,000 events from 53 different energies in the range 0.5−316.23 GeV.

8.2 Weighting

When computing the weights, only the primary, i.e. most energetic cone is considered. This is different
from the default method where all clusters are used. Separate look-up weight tables for each calorimeter
sampling layer were created. To reduce the influence from noise, the ratios entered into the tables were
restricted to the range 0.6 < E truth

cell /E0
cell < 3, where E truth

cell is the total energy deposited in the cell as given
from the simulation truth. Also only cells with an energy density more than 3σ above the expected noise
level were weighted. A version of the cone method has been successfully applied in H1 [2]. As in the
default method the weighted hadronic scale energy, Eweighted , is computed as the sum of the weighted
energy of all cells within a topological cluster:

Eweighted = ∑
cells∈clusters

wcell ·E0
cell . (14)

In the default method the weights are applied to the hadronic clusters only. Clusters classified as electro-
magnetic are kept on the electromagnetic scale. However, this separation is not done for the single pions
in the cone method.

8.3 Dead Material corrections

Energy losses in four regions of dead material relevant for the testbeam set-up are [10]: the cryo-
stat before the LAr pre-sampler (E est.

upstream), energy lost between the pre-sampler and the LAr strips
(Eest.

presamp/LAr), energy lost in the cryostat between LAr and Tile (E est.
LAr/Tile) and energy lost due to leakage

(Eest.
leak). The total weighted and corrected energy, EDMcorr , is given as

EDMcorr = Eweighted +(Eest.
upstream +Eest.

presamp)+Eest.
presamp/LAr +Eest.

LAr/Tile +Eest.
leak −E0

presamp (15)

Eest.
presamp and E0

presamp are the estimated and the electromagnetic scale energies deposited in the LAr
pre-sampler, respectively. The pre-sampler must be calibrated separately, since the amount of absorber

1)The full version number for the GEANT4 release used by default in Athena version 11.0.4 is GEANT
4.7.1.p01.clhep1.9.2.1, see [9].
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material belonging to the pre-sampler cells (which in effect is the inner detector and the dead material
in front of the pre-sampler) is heterogeneous and not well-described by a single volume number. The
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Figure 35: Dead material correction factors as a function of beam energy.The top left plot shows the
correction factors for the upstream energy losses, before the LAr pre-sampler. The top right plot shows
the correction factors for the region between the pre-sampler and the LAr barrel. The bottom left plot
shows the dead material correction factors for the region between LAr and Tile, and the bottom right plot
shows the correction factors for leakage. The horizontal lines indicate the constant value when computed
for all beam energies above and including 10GeV. The values are given in the text.

estimated energy losses in the dead regions are given as
Eest.

upstream +Eest.
presamp = Cupstream ·E0

presamp

Eest.
presamp/LAr = Cpresamp/LAr ·

√

E0
presamp ·E0

LAr1

Eest.
LAr/Tile = CLAr/Tile ·

√

E0
LAr3 ·E0

TileA
Eest.

leak = Cleak ·E0
total

where the factors C are the dead material correction factors for the related regions. The superscript 0
indicate energy on the electromagnetic scale. E 0

total is the total deposited electromagnetic scale energy in
all clusters of a given event. The values of the dead material correction factors have been computed from
the same Monte Carlo samples that were used for deriving the weights (see above). Figure 35 shows the
correction factors as function of the beam energy. In the figure, the average corrections when including
beam energies equal to or larger than 10GeV are also indicated. These corr ections are (all dimension-
less)
Cupstream = 1.5023±0.0022

40



Cpresamp/LAr = 0.38399±0.00049
CLAr/Tile = 1.7014±0.0011
Cleak = (8.729±0.085) ·10−3 .

The average correction factors for energies above 10GeV are shown as well. Not knowing the beam
energy a priori this would be the correction to be used in a bias free approach. But clearly some of
the correction factors are beam energy dependent as seen in Figure 35. Especially at low energies the
variations are quite strong.

8.4 Linearity and energy resolution

The linearity of the weighted and dead material corrected energy is obtained from the mean of a Gaussian
fit to the energy distribution E f it divided by the beam energy Ebeam. Figure 36 shows the comparison
of the unweighted and weighted energy, as well as the comparison between the cone method and the
default method. Both methods yield rather similar results. Figure 36 shows rather good agreement
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Figure 36: Cone calibration scheme: linearity of weighted and dead material corrected energy (Monte
Carlo and data) as function of beam energy. For comparison the results from the default method are
shown as well. The errors indicated are the statistical errors only. The systematical uncertainties from
cuts and corrections are indicated in Figure 37.

between the data and the Monte Carlo in the linearity of the weighted energy. Whenever there is a
difference, a similar difference can be seen in the unweighted energy already. For the runs with positive
particles (50 and 100GeV, the response for the data is somewhat lower in comparison to MC. This is
expected, since the runs with positive particles contain some proton contamination and the visible energy
fraction from protons is lower than for pions. Obviously the weighting scheme cannot compensate for
this effect. For the calibration of jets in ATLAS this will not be a problem, since the expected proton
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Figure 37: Cone calibration scheme: linearity of weighted and dead material corrected energy (simula-
tion) as function of beam energy. The errors indicated are the combination of the statistical errors and
the systematical uncertainties from the dead material corrections and the electron removal cuts.

content of a jet is much lower than in these runs. The overcompensation at energies of 180 and 250GeV
is most likely an effect of the Monte Carlo not properly reproducing the shower development in the
calorimeter system. The energy deposited in the Tile calorimeter is underestimated in MC. This results in
an overcompensation in the data when the larger Tile weights are applied [11]. The MC does not describe
the data for the lowest data point at 9GeV. This holds already for the response at em scale. Partly
the disagreement can be an effect of the systematic uncertainties introduced by the electron removal
cut, as shown in Figure 37 (potentially some residual electron contamination). Another possibility is a
problem in the Monte Carlo description of the data in this particular energy region, which is a transition
region between different theoretical models [12]. The deviation from linearity (i.e. one) is especially
significant at low energies. This is largely an effect of energy being deposited outside the topological
clusters [13, 14, 3]. The out-of-cluster corrections, as described in Section 4 would take care of this
missing energy, but they are not applied here. Partly this is also an effect of the energy dependence of the
dead material corrections, as described in Section 8.3. Figure 37 shows the systematic uncertainties in
the linearity from dead material corrections and the electron removal cuts. It is clear that the systematic
effects from the dead material corrections are not enough to explain the low response. In addition to
energy deposited outside the clusters, the very simple dead material corrections used here may not be
enough to retrieve all energy lost in inactive layers.

The energy resolution is obtained from σ/E f it of a Gaussian fit to the energy distribution. The
resolution as function of 1/

√
Ebeam is given in Figure 38. The energy resolution for the Monte Carlo has

been fitted with the function r = a√
E ⊕b. The parameters obtained from the fit are given in Table 3. The

related fit is not done for the data, as the proton contamination in the positive beams affects the energy
resolution. This result would then not easily be comparable with the energy resolution for negative pions.
The systematic uncertainties in the resolution, from dead material corrections and cuts, are of the same
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Figure 38: Cone calibration scheme: Resolution of weighted and dead material corrected energy (Monte
Carlo and data) as a function of beam energy. Comparison between the default method and the cone
method. The errors indicated are the statistical errors only.

Weighting type a (% · GeV−1/2) b (%) χ2/NDF
Unweighted energy 78.4±1.4 9.80±0.16 15.00/17
Weight + DMcorr (cone) 76.2±1.1 3.12±0.32 15.59/17
Weight + DMcorr (cluster) 78.9±1.1 2.63±0.38 12.75/17

Table 3: Cone calibration scheme: Parameters of the fit to the resolution, r = a√
Ebeam

⊕ b, as given in
Figure 38.

order of magnitude as for the systematical uncertainties in the linearity, which means about 0.5% for
the highest energies and a few percent for beam energies below 10GeV. As shown in Figure 38, the
weighting and dead material correction scheme improves the energy resolution of MC events for beam
energies of 9GeV and above. For the real data this is only true for energies above 20GeV. At energies
below 20GeV the resolution is worsened by the correction procedure. The energy resolution of the data
is in comparison to MC worse for all energies. Further the weighting and correction schemes do not
improve the resolution as much as expected from MC. This seems to indicate some shortcomings in the
MC description of the data, especially at low energies.
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9 Hadronic Calibration using the layer correlation method

9.1 Data and Monte Carlo

As an alternative to the default method the layer correlation method has been tested using testbeam
data (CTB04) [15] and the related MC simulating the single particle response in the testbeam set-up
ranging in energy from 1 to 350GeV. The reconstructed energy in layer L is obtained by building all
the 3D topoclusters in the event and summing only the energy of the cells in layer L that belong to a
topocluster. The total reconstructed energy is then derived by summing over the Nlay longitudinal layer
in the calorimeter:

Erec
L = ∑

cell t3D
Erec

cell t3D,L (16)

Erec
tot = ∑

L
Erec

L (17)

The beam of positive pions was impinging on the calorimeter at φ = 0 and η = 0.45. The positive pion
beams are known to have a sizable proton contamination, increasing from 0% at 20GeV up to 75% at
180GeV. Monte Carlo samples were produced simulating both pions and protons with the same impact
point on the calorimeter as the data. The interaction of the particles was simulated with GEANT4.7 [16]
using both QGSP [17] and QGSP BERT [18] physics lists. The full reconstruction of the events used the
CTB04 geometry and the full simulation of the detector read-out in the ATLAS Athena Software version
12.0.6. Two sets of statistically independent samples were produced: a highly populated set (“correction”
samples in the following) was used to derive weights and dead material corrections (see sections 9.2.1
and 9.3), while a less populated set was used as simulated data to derive the performance expectation
(“signal” samples in the following).

9.2 Weighting Method

The layer correlation method aims at deriving an event-by-event correction to the energy deposited in
each longitudinal calorimeter layer on the basis of Monte Carlo simulated events. Events with different
invisible energy content have different energy fluctuations, while shower development fluctuations affect
dead material losses. For these reasons the corrections to recover invisible energy and dead material
losses should be derived as a function of variables that are sensitive to energy fluctuations. This procedure
should provide a unified treatment for compensation and dead material correction variables by capturing
their correlation. The energy in each layer (see 17) is corrected by a weight and an additive correction
to account for compensation and dead material effects

w(L) =<
Etrue

L
Erec

L
> (18)

Eweighted
L = w(L)Erec

L (19)

Eweighted
tot = ∑

L
Eweighted

L (20)

Ecorr
tot = Eweighted

tot +EDM (21)

where wL is the weight correcting for invisible energy in layer L. Nlay weighting functions are derived.
In order to derive the corrections a fully simulated sample of single particles (pions and/or protons)
impinging on the calorimeter is used. The true deposited energy by the pions or protons in each layer
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of the calorimeter is available with its break-up according to the calibration hits definition of section 1.
The events in a fully simulated Monte Carlo sample are generated at a fixed beam energy. The resulting
corrections are, in principle, dependent on the beam energy. The derivation of compensation weights
assumes that simulated events have a fixed beam energy. Sample mixing and iteration techniques are
used to overcome such dependence by using only the visible energy in the calorimeter. This is discussed
in section 9.3.4 after the dead material corrections are considered in section 9.3.

9.2.1 Compensation weights

Each event is associated to

• a set of the N layer energy deposits (E1, ...,EN), representing a point in an N dimensional vector
space. In principle, it is not necessary to consider all the layers, so N can even be smaller than the
total number of layers.

• the corresponding N coefficients necessary to re-weight each reconstructed layer energy deposit to
the true deposited energy known in Monte Carlo i.e.

w(L, i) = E true
L,i /Erec

L,i , (22)

where w(L, i) is the weight for the Lth layer in the ith event, E true
L is the true total deposited energy

in the Lth layer and E rec
L,i is the reconstructed energy in layer L for event i as defined in equation 17.

An average weight wk(L) can be defined for each layer L in any bin k of a given subspace of the layer
energy deposits:

wk(L) =< wk(L, i) >=
∑i wk(L, i)

Nk
, (23)

where the weights wk(L, i) are those derived for the Nk events in bin k. If the events themselves have a
weight 2), the functions are modified accordingly:

wwe
k (L) =< wk(L, i) >we=

∑i weiwk(L, i)
∑i wei

, (24)

where wei is the weight assigned to event i. The average weight distribution for a given layer wk(L) can
be calculated for bins of any P-dimensional subspace of the layer energy deposits. The choice of the
suitable subspace and of the correct base are critical to achieve the best performance. Important criteria
are a good separation of events with different content of invisible energy or the possibility to obtain the
maximal information without having to resort to the full N dimensions. To meet these requirements a
new basis for the energy deposit vector space is derived. The N-dimensional covariance matrix of the
layer energy deposits is calculated as:

Cov(M,L) = 〈E rec
M Erec

L 〉−〈Erec
M 〉〈Erec

L 〉 , (25)

where

< Erec
M Erec

L >=
∑i Erec

M,iErec
L,i

N and < Erec
M >=

∑i Erec
M,i

N , (26)

2)For instance, to equalize the number of events for all data sets.
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where the sums are performed over all the N events in the sample and E rec
M,i is the energy deposited in layer

M in the ith event. In principle, one can choose to look at the correlations of any given number of layers
(i.e. the matrix can be N-dimensional with N≤Nlay). Each event’s coordinates can then be expressed in
the new eigenvector basis as follows:

Erec
M = ∑

eig
α rec

M,eigErec
eig , (27)

where αM,eig is the matrix that performs the rotation to the new orthogonal basis of the eigenvector in
the N-dimensional vector space. The wk functions can then be obtained by choosing P-dimensional
bins (with P≤N) in the new eigenvector’s basis and calculating the averages over the events as shown
in equation 23. The eigenvectors can be ordered according to the size of their eigenvalues and their
directions are those of the independent fluctuations in the N-dimensional space. The eigenvectors with
the largest eigenvalues determine the directions along which most of the fluctuations of the total energy
take place. Thus wk can be determined by the distribution of the events in the lower-dimensional space
of such directions.

9.2.2 Implementation

Five steps are necessary to derive the compensation weights from simulated Monte Carlo samples

• define the samples for weights generation and performance study (section 9.2.3)

• provide the energy deposited in each layer at the electromagnetic scale (section 9.2.4)

• calculate the covariance matrix (section 9.2.5)

• extract the eigenvectors and eigenvalues (section 9.2.6)

• build the compensation weights look-up tables (section 9.2.7)

9.2.3 Samples definition

The “corrections” Monte Carlo samples are used to build a “mixed” sample which is input to constructing
the weight tables. In order to account for the beam content at each energy, a pion and a proton sample
generated at that energy are mixed. If the samples have different number of events a sample dependent
weight is applied so that all pions and protons samples in the interval are normalized to the same size
before selection cuts. Weights can be derived for each data set by taking into account the measured
values of fprot .

9.2.4 EM scale energy determination

The layer energy derived in equation 17 is expected provide the correct reconstruction of the energy
electromagnetically deposited in the calorimeters. The weights are defined in formula 22 with this as-
sumption.
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9.2.5 Calculation of Covariance matrix

The layer energy covariance matrix Cov(M,L) (equations 25 and 26) is calculated by using events from
the “mixed” sample. The full seven dimensional covariance matrix is use i.e. N = Nlay = 7 (see sec-
tion 9.2.1.) In any given event a symmetric energy cut is applied on each layer energy such that the
energy for that layer is re-defined as E rec

M , if |Erec
M | > Ethr

M , zero otherwise. In this way the contribution
to the covariance from a layer only containing noise is set to zero. The energy threshold vector is

~Ethr(GeV ) = (σ(1),σ(2),σ(3),σ(4),σ(5),σ(6),σ(7)) (28)

where ~σ (GeV) = (0.032,0.108,0.03,0.150,0.039,0.070,0.042). The cuts were optimized to obtain the best
expected compensation performance on fully simulated Monte Carlo samples at 50GeV.

9.2.6 Extraction and interpretation of eigenvectors and eigenvalues

The covariance matrix Cov(M,L) is then diagonalized: the normalized eigenvectors and corresponding
eigenvalues are calculated. The eigenvectors’ directions are observed to be stable with beam energy and
choice of physics list. A physical interpretation of the eigenvalues and normalized eigenvectors is given
by considering their components. In a qualitative, but suggestive way one can say that:

• ~Erec
eig0 ≈ “Difference between Tile and LAr”

• ~Erec
eig1 ≈ “Difference between Tile second (middle) layer and Tile first layer”

• ~Erec
eig2 ≈ “Total Energy”

• ~Erec
eig3 to ~Erec

eig6 ≈ “Individual layers”

9.2.7 Preparation of look-up tables for compensation weights

A set of seven look-up tables is built: one for for each layer of the calorimeter. The wk functions
defined in equation 24 are calculated in bins of the two-dimensional space spanned by the eigenvectors
corresponding to the two highest eigenvalues i.e. P =2 (see section 9.2.1). So each layer is associated
with a two-dimensional look-up table. The average weight in a bin is calculated by using only the energy
values that passed the cuts defined in section 9.2.5. The table has the same number of equally spaced
bins along the two dimensions: 128x128. Weights for the presampler layer of the LAr are not calculated,
even if the presampler is kept in the covariance matrix. No weights are applied to the energy deposited
in the presampler layer. Typical compensation weight look-up tables for pion-proton mixed samples are
shown in figure 39: they refer to the second (middle) layer of the LAr calorimeter and to the first and
second layer of the Tile calorimeter for a pion-proton mixed sample with 41% proton contamination.
The proton weights are corrected by the factor Ebeam

Ebeam−mproton
for the fact that, for a proton, the sum of the

total true deposited energy in the calorimeter is Ebeam - mproton. Regions dominated by electromagnetic
deposits (average weights close to unity) are separated by those where hadronic deposits are predominant
(average weights significantly larger than unity). The functions are layer dependent.
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Figure 39: Layer correlation method: weight table for simulated pion-proton mixed events (41% proton
contamination) in LAr third (middle) layer and Tile first and second layer.

9.3 Dead Material corrections

The total weighted energy is corrected for energy loss in non-instrumented (dead) material by a global
additive correction

Ecorr
tot = Eweighted

tot +EDM (29)

where EDM is the dead material correction. The energy loss between the LAr and the Tile calorimeters
is expected to be the largest dead material effect. The same technique as the one used for compensation
weights is developed to correct for LAr–Tile related losses. Additional energy is lost due to energy
leakage, dead material upstream of the detector, dead material between the LAr presampler and the first
LAr layer (“strips”). For these smaller corrections, a parameterization of the energy loss as a function
of the best estimate of the pion energy is used.

9.3.1 Dead material corrections between LAr and Tile

For energy losses between LAr and Tile, each event is associated to its N energy deposits in the active
calorimeter layers (as illustrated in Section 9.2.1 and to the true total energy lost in the dead material
between LAr and Tile in that event i.e. E DM(i), the loss in the ith event. An average dead material
correction, EDMLArTile

k , is defined in any bin k of a given subspace of the energy deposits:

EDMLarTile
k =< EDMLArTile

k (i) >=
∑i EDMLarTile

k (i)
Nk

, (30)
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where EDM
k (i) is the dead material loss for the ith event present in kth bin. EDM

k can be obtained for any
T-dimensional subspace of the layer energy deposits. The same change of base is performed as the one
for compensation weights, but the specific subspace and its dimension T can be different.

9.3.2 Other dead material corrections

To compensate for the other dead material losses, a simple parameterized model is used with the follow-
ing functional form:

EDMOther
func (E) = Cupstream(E)ELAr0 +Cpresampler-strips(E)

√

|ELAr0ELAr1|+Cleakage(E). (31)

Given the simulated pion sample, the functional form for the non LAr–Tile corrections is derived from the
two dimensional distribution of the true dead material energy lost in a given region versus a parameterized
function of the energy deposited in the adjacent calorimeter layers. For a given beam energy, each
correction parameter C is derived by requiring that it reconstructs the dead material losses correctly on
average:

< EDMOther,rec −EDMOther,true > ≡ 0 (32)

Each C(E) is then fitted using a suitable parameterization.

9.3.3 Total dead material correction

The total dead material correction results from summing two contributions:

EDM
k (E) = EDMLarTile

k +EDMOther
f unc (E) (33)

where k is the bin in the T -dimensional appropriate subspace of layer energy depositions and E is the
best estimate for the total deposited pion energy.

9.3.4 Beam energy dependence

The compensation weights, the dead material corrections and the associated eigenvectors are, in princi-
ple, dependent on the beam energy used in simulation. In order to overcome such dependence a unique
set of look-up tables (seven for weighting and one for dead material corrections) is filled with all the
available samples at all beam energies. The associated eigenvectors are derived. This set is used to de-
rive the corrections to any data or Monte Carlo sample under study. Improvements to this procedures
can be obtained by using an iteration technique: the weighted estimate of the energy is used to make a
new choice of the correction tables until the returned value is stable. This can be coupled to the iteration
on the dead material corrections (see below) so as to obtain the best energy estimate. The stability of the
result is an adjustable parameter. For the LAr-Tile dead material corrections the three dimensions of the
look up table are observed to scale with beam energy: a table derived from events generated at a given
beam energy can be turned into the one obtained by a sample generated at a different beam energy by
scaling all the dimensions with the ratio of the two energies. The look up table for LAr-Tile dead material
corrections are obtained as a function of the beam energy normalized components of the eigenvectors i.e.
the coordinates of each event are expressed as

Erec,norm
M = Erec

M /E = ∑
eig

α rec
M,eigErec

eig /E, (34)
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where the variables have the same meaning as in equation 27 and E is the best estimate of the beam
energy of the simulated single particle in that event (see below). The unique dead material look-up table
is filled by including all events at all available beam energies. An iteration technique is used to determine
all the dead material corrections. At each step the best estimate of the reconstructed energy, E corr

tot , after
all corrections, is used to set

• the scaling factor 1/E (equation 34) for LAr-Tile corrections (and consequently the bin to extract
the correction from).

• the best pion energy estimate E (equation 31) in the parameterization for the other dead material
corrections

Dead material corrections are then recalculated and used to derive a new estimate of E corr
tot . The initial

step uses the pion energy after compensation weights are applied as the best estimate for E corr
tot .

9.3.5 Preparation of look-up table for dead material corrections

The EDMLArTile
k functions defined in equation 30 are calculated in bins of the two-dimensional space

spanned by the eigenvectors corresponding to the first and third eigenvalues i.e. T = 2. The tables
also has 128× 128 equally spaced bins. The same corrections for sample size and proton weights are
implemented as for the compensation weights in Section 9.2.7. The dead material look-up table is shown
in Figure 40 for a pion-proton mixed samples with 41% contamination. The plot shows the distribution
of the rescaled dead material energy as a function of the rescaled eigenvectors according to equation 27.
The different dead material fractions are clearly separated.
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Figure 40: Layer correlation method: look-up table for LAr-Tile dead material corrections for 41%
proton contamination

9.4 Performance of layer correlation method

9.4.1 Method Validation on Monte Carlo

The weighting technique is validated on Monte Carlo samples in separate steps. The first goal is to
reconstruct the true deposited energy in the calorimeters (compensation validation). Finally also the full
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energy of the incoming particles has to be reconstructed correctly. To test the performance in particular
linearity and resolution are considered. The weights and dead material corrections are derived from the
“correction samples” and applied on the statistically independent “signal samples”.

9.4.2 Compensation

The event-by-event difference Eweighted
tot −Etrue

tot (calo) is considered where E true
tot (calo) is the true total

energy deposited in the calorimeter. The bias is defined as the average value < E weighted
tot −Etrue

tot (calo) >

and the resolution is obtained by calculating the standard deviation σ (E weighted
tot −Etrue

tot (calo)) in a (-20
GeV,20 GeV) window. The performance of the LC technique is compared to a simple calibration scheme
(called e/π in the following) which uses beam energy information: each event in the sample is weighted
with the same factor e/π = < E true

tot >/< Ereco
tot > where < E true > (< Ereco >) is the average true total

(reconstructed) energy deposited in the given sample in the full calorimetry, but not in the dead material.
The e/π calibration scheme provides a reference/scale to which the improvement in resolution of the LC
weighting can be compared. The results of the validation procedure are shown in table 4. The bias is
consistent with zero for all re-weighting schemes (LC and LCEbeam are considered). The resolution is
improved by 13% to 16% if the LC weighting is used. The LCEbeam weighting is used to derive an upper
limit for the best possible LC performance: the LC weighting attains from 65% to 85% of the upper
limit. The results are derived for pions only. The improvement in resolution between LCEbeam and LC

Table 4: Bias and resolution for the measurement of the energy deposited in the calorimeters in simulated
samples for e/π weighting and LC weighting in both its standard form (LC) and using beam energy
information (LCEbeam).

Energy bias(GeV) resol (GeV)
LCEbeam LC e/π LCEbeam LC e/π

20 -0.36 -0.34 0.36 1.77 1.83 2.18
50 -0.10 0.02 0.48 3.04 3.26 3.77
100 0.35 0.55 0.61 4.62 5.1 6.0

shows that it is important not to assume the beam energy to get an unbiased estimate of the resolution.

9.4.3 Linearity and Resolution

The performance for the fully corrected energy reconstruction is finally assessed in terms of linearity
with respect to the beam energy and relative resolution. The reconstructed energy distribution is fitted
with a Gaussian distribution in the interval (µ - 2σ , µ + 2σ ), where µ and σ are the mean value and
the standard deviation, respectively. The mean value E f it and the standard deviation σ f it of the fitted
Gaussian are used together with the beam energy Ebeam to define the linearity and the relative resolution:

• the linearity is E f it /Ebeam as a function of Ebeam

• the relative resolution is σ f it /E f it as a function of Ebeam.

Both linearity and relative resolution are derived for the energy distribution at four stages:
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• at the electromagnetic scale

• at the compensated scale i.e. after applying the compensation weights

• after compensating weighting and application of dead material correction for losses between LAr
and Tile

• after compensation weighting and all dead material corrections

The evolution of the energy distributions after applying the subsequent corrections are shown for 20
and 180GeV in Figure 41. Figure 42 shows linearity and relative resolution for the (20GeV, 180GeV)
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Figure 41: Layer correlation method: evolution of reconstructed energy distribution at the different cor-
rection stages mentioned in the text: from electromagnetic scale to full dead material and compensation
correction. The left plot shows the simulation of 20GeV pions, while the right plots features 180GeV
pions.

interval for fully simulated pions. The linearity plot shows that the electromagnetic scale is reconstructing
only two-thirds of the beam energy. The compensation weights push the recovery to about 90% of the
beam energy. Finally the dead material corrections allow beam energy to be recovered within 1% for
pion energies above 40GeV and within 3% for lower energies 3). The relative resolution improves when
applying the different correction steps.At high beam energies (above Ebeam = 100GeV) compensation
weights contribution to resolution improvement has the same magnitude as that of LAr-Tile dead material
corrections. At lower beam energies dead material corrections account for about 70% of the relative
resolution improvement down to about Ebeam ' 30 GeV. Below Ebeam ' 30 GeV all the corrections
account for a similar fraction of the improvement: other dead material corrections than those for LAr-
Tile account for about 20% of the resolution improvement, they are marginal above that threshold.

9.4.4 Results

The distributions of the fundamental inputs to the calibration corrections are compared in data and Monte
Carlo. The weights and dead material corrections derived from Monte Carlo “mixed correction” sam-
ples are finally applied on both data and “mixed signal” Monte Carlo samples. The normalized energy
distributions (in unit bins of energy and events) for data and Monte Carlo are compared for 20 and

3)The apparent discontinuity between the results at energies below 150GeV and those above might be due to a geometry
change in the description of the test-beam set-up: three cm of aluminium were included in the Inner Detector system for
energies larger or equal than 150GeV.
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Figure 42: Layer correlation method: linearity (left) and relative resolution (right) for fully simulated
pure pion samples (“wholescan” approach)

180GeV in Figure 43. The four stages of corrections are shown. The quality of the initial description of
data by Monte Carlo is not modified by the application of the compensation weights and dead material
corrections.
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Figure 43: Layer correlation method: normalized energy distribution for Ebeam = 20GeV (left) and Ebeam
= 50GeV (right) after applying subsequent corrections for compensation and dead material effect. Data
(filled circles) are compared with Monte Carlo simulation (solid line) .

9.4.5 Linearity and Resolution

Linearity and relative resolution are extracted at all energies for both data and “mixed signal” Monte
Carlo samples. Figure 44 shows that weighting recovers from 80% to 90% of the incoming beam energy.
The dead material between LAr and Tile accounts for an additional 5% to 8%. The remaining dead
material corrections allow linearity to be recovered within 3% (within 1% above 20GeV). Weighting
results more important at high energies. Dead material effects play a more significant role at low energies
particularly at 20GeV where other corrections than LAr-Tile dead material are important to get to within
3% of the beam energy. Figure 45 shows that relative resolution is improved by about 20% to 40% in
data in evolving from the em scale to the fully corrected energy scale. A similar relative improvement
is obtained in the Monte Carlo expectations: from 21% to 31%. The relative resolution is however
smaller in Monte Carlo than in the data: the discrepancies, at each correction stage, vary between 6% an
24% depending on the energy. The discrepancies in the shape of the total energy distribution are more
pronounced at lower energies and they are already present at the electromagnetic scale (see Figure 43).
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Figure 44: Layer correlation method: data and Monte Carlo “mixed” samples are compared for linearity
at all stages of the corrections. The left plot shows the superposed absolute values, the right plot shows
the evolution of the Data to Monte-Carlo ratio. See text for details.

The effect of the calibration technique on the energy reconstruction can be explored by considering the
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Figure 45: Layer correlation method: data and Monte Carlo “mixed” samples are compared for relative
resolution at all stages of the corrections. The left plot shows the superposed absolute values, the right
plot shows the evolution of the Data to Monte-Carlo ratio. See text for details.

following double ratios:

DRatioLin = (
E f it,data
E f it,MC

)rec/(
E f it,data
E f it,MC

)corr (35)

DRatioRes = (
(σ f it/E f it)data
(σ f it/E f it )MC

)rec/(
(σ f it/E f it)data
(σ f it/E f it)MC

)corr (36)

They represent the variation in the data to Monte Carlo ratio when corrections are applied to bring the
reconstructed energy from the electromagnetic (rec ) scale to the fully corrected hadronic (corr ) scale.
The ratio is considered both for the linearity and for the relative resolution as defined in Section 9.4.3.
The deviation of the double ratio from unity is a measure of the effect of the weighting technique on
the description of the data by the simulation. Figure 46 shows the evolution of the double ratio at three
different stages of energy correction. The double ratio for linearity and resolution are consistent with
unity within 0.7% and 5% respectively.. For linearity such changes are of the same order of magnitude
of the discrepancies between data and Monte Carlo at the electromagnetic scale: the agreement between
data and Monte Carlo simulation is the same for all corrections stages. This means that the Monte Carlo
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is able to predict the corrections that should be applied on the data. The ability of the Monte Carlo to
reproduce the data at the electromagnetic scale (i.e. before any correction) seems to be the most critical
limiting factor. For the relative resolution the changes are small, if compared with the discrepancies at
the (rec ) scale: the discrepancies do not get worse when the corrections are applied to the data. From
preliminary studies the new GEANT4 version (4.9) is able to provide a better description of the resolution
in the data and it should be used for future analyses.
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magnetic and corrected ratios are assumed to be fully correlated.
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Conclusion

The local hadron calibration scheme is described in detail. The first step in this scheme is the cluster
reconstruction, a powerful tool to suppress noise efficiently. These clusters are classified as related
to electromagnetic or non-electromagnetic energy deposits, using detailed information on the cluster
topology. To compensate for the different response of electrons and hadrons in the ATLAS calorimeter,
the weighting scheme is employed. Based on the energy density in individual cells the correction for
the invisible energy deposits of hadrons is derived. The related parameters have been obtained from the
simulation of single pions in the ATLAS detector. The corrections for energy losses in dead material as
well as for energy deposits not included in the cluster reconstruction are also obtained from these studies.

The energy of single pions is reconstructed typically within ±2 % for energies E > 20GeV and ±5
% for energies 6 < E < 20GeV. The resolution is particularly at high energies substantially improved,
typically by 30 %. At low energies the improvements are rather moderate, typically at the level of 10 %.
The corresponding numbers for jets are similar when restricting to the final particle energy deposits in the
calorimeter. There are additional contributions from low energy particles lost in the upstream material
which will be taken into account by the out-of-jet corrections.

First steps towards a validation of the scheme using testbeam data corresponding to the region |η | =
0.45 in ATLAS have been presented. The deviation of the reconstructed energy from the beam energy
is still at the level of ±4 %, as well as the difference between the data and MC expectation. The energy
resolution is indeed improved, but again some difference between data and MC is observed. These effects
can be partially attributed to the uncertainties in the measurement of the proton contamination in the pion
testbeam and to present shortcomings in the simulation.

In addition to the default weighting scheme alternatives have been studied as well. In the cone method
the energy dependence is based not on the energy of an individual cluster but rather on the total energy
of a larger cone around the most energetic cluster. The results are in agreement with the default method.
Also a layer weighting approach has been tested for single pions, yielding similar results.
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