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Abstract

We consider codec structures that exploit diversity in both source coding and channel
coding components. We propose to study source-channel schemes using the tradeoff
between end-to-end distortion level and the outage probability as our performance
metric, namely distortion-diversity tradeoff. In the high SNR regime, within the
distortion-diversity tradeoff framework, we are able to differentiate two source-channel
schemes, one based on multi-resolution (MR) and the other based on multi-description
(MD), that have been previously determined to have the same average distortion
exponent. We then propose a triple-level source-channel scheme that unifies the MR-
based and the MD-based schemes. In particular, we demonstrate that the triple-level
scheme dominates the MD-based and the MR-based schemes within the distortion-
diversity tradeoff framework.

We then extend the distortion-diversity tradeoff to the low SNR regime. We
compare the distortion performance of the MR-based scheme and MD-based scheme
with separate source-channel decoder that achieve constant levels of outage probabil-
ity. The performance comparison between the two source-channel schemes is mixed,
which naturally links the low outage probability and the high outage probability cases.
In particular, the MD-based scheme with separate source-channel decoder preserves
the interface between source coding component and channel coding component. The
fact that MD-based scheme could outperform MR-based scheme while preserving the
source-channel interface suggests that bit rates may not be a complete characteriza-
tion of the source-channel interface.
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Chapter 1

Introduction

The main challenge of wireless communication is the fading characteristic of wireless

channels, which represents the fluctuation of channel quality over time and frequency

(see [1] and reference therein for an overview of fading). Researchers usually denote

the information of fading processes as channel state information (CSI). CSI at the

receiver could be obtained through various methods using training sequences [2]. CSI

at the transmitter is usually obtained via feedback channels. The CSI availability

significantly affects certain performance metrics [3], such as channel capacity and

error exponent. The impact of CSI is also affected by the latency requirement im-

posed by upper-level applications. If the delay limit of upper-level applications is

not significantly larger than the channel variation period, then the channel quality

uncertainty may not be sufficiently averaged out for the traditional ergodic analysis

[1] to apply. A common alternative to the ergodic analysis is the outage formulation

[4]. In [5], the outage framework was extended to study multiple-input multiple-

output (MIMO) channel models in the high SNR regime. In particular, the authors

of [5] use diversity order to measure how fast the error probability decreases with

SNR exponentially as SNR increases and multiplexing gain to measure how fast the

channel code rate increases with log SNR as SNR increases. The authors of [5] then

proceed to characterize a fundamental tradeoff between the diversity order and the

multiplexing gain for point-to-point communication over MIMO channels. They name

this tradeoff the diversity-multiplexing tradeoff. In [6], the authors further extend the



diversity-multiplexing tradeoff to characterize multiple access channels.

Another network setting that has attracted considerable amount of research effort

is broadcast channels [7], where a single transmitter simultaneously transfers infor-

mation to multiple receivers. The diversity-multiplexing tradeoff framework [5] still

applies to each transmitter-receiver pair individually. However, different receivers

may have disparate preferences regarding which diversity-multiplexing point to op-

erate at. The naive approach to address this issue would be devoting devoting a

separate codec structure for each transmitter-receiver pair, specifically tuned to ac-

commodate its preference. Not only is this approach costly in terms of the number

of encoders the transmitter needs to carry, but also it does not scale well in large

networks. The results in [5] do not tell us whether multiple points on the opti-

mal diversity-multiplexing tradeoff could be simultaneously achieved using a single

encoder (and multiple decoders at different receivers). Existing research work that

addresses this problem is roughly subdivided into two areas, one focusing on channel

coding techniques and the other focusing on source coding techniques.

From channel coding perspective, the authors of [8] proposed the idea of diversity-

embedded code, which is a high-rate space-time code with an embedded high-diversity

code embedded. In [9], the authors study the diversity-embedded code from the per-

spective of diversity-multiplex tradeoff. They label a channel as successively refinable

if there exists a diversity-embedded code such that both the high-rate component code

and the high-diversity component code operates on the optimal diversity-multiplexing

tradeoff boundary. In [9], the authors show that channels with one degree of freedom

(examples include single-input single-output (SISO) channel, single-input multiple-

output (SIMO) channels and multiple-input single-output (MISO) channels) are suc-

cessively refinable. This result generalizes the diversity-multiplexing tradeoff [5] by

showing that, for certain channel models, there exists a codec structure that could si-

multaneously achieve multiple optimal diversity-multiplexing operating points. How-

ever, in [10], the authors prove that channels with more than one degree of freedom are

not successively refinable. It is worth pointing out that the channel coding technique

used in [9] is superposition code (SPC) [11], [12].



Source coding techniques have been traditionally treated in the rate-distortion

framework [13]. The conventional single-description source code [14] has been ex-

tended in many different directions. In [15], the authors categorize a source as suc-

cessively refinable if there exists a source code that could be interrupted in the middle

while still achieves the optimal rate-distortion boundary. The authors lay down the

necessary and sufficient condition to determine whether a source is successively refin-

able. This type of codes is called successive refinement in [15] [16] or more generally

MR codes [17]. Another extension of the traditional source codes is MD [18], which

was originally proposed in [19], [20], [21] and [22]. In [23], a particular multiple de-

scription code is constructed and its achievable rate-distortion region characterized,

which turns out to be optimal for certain special case, such as the double-description

problem with Gaussian source and mean square error distortion [21]. These advanced

source coding techniques share the same gist that they intelligently add redundancy

into the encoded messages to accommodate contingent scenarios, such as loss of cer-

tain message. In [24], the authors consider using these source coding techniques to

improve the reliability of certain source reconstructions. Though both MR code and

MD code share the feature of embedded diversity components, they are structurally

different and provide disparate performance guarantee. The MR code has a sequential

structure while the MD code resembles a parallel structure. Taking double-description

MR and MD as an example. The double-description MR code provides no perfor-

mance guarantee if only the second description is received, while double-description

MD guarantees the performance for all three contingency scenarios (both descriptions

are received, either one description is received).

In this paper, we consider codec structures that exploit diversity in both source

coding and channel coding. These source-channel schemes have traditionally been

studied using average end-to-end distortion as performance metric [25]. There are two

drawbacks inherent in the average distortion approach. Firstly, distortion is usually

a delay-limited notion to begin with. However, the traditional average distortion ap-

proach usually averages out the stochastic effect of fading coefficients, which does not

fit the delay-limited scenario. Secondly, the traditional average distortion approach



is not sufficient to differentiate the performance of certain source-channel schemes.

In particular, in [25], the authors show that the two source-channel schemes based

on MR an MD respectively achieve the same average distortion exponent. Therefore,

we propose to study source-channel schemes using the tradeoff between end-to-end

distortion level and the outage probability as our new performance metric, namely

distortion-diversity tradeoff. In essence, the distortion-diversity tradeoff represents

the distribution function of the end-to-end distortion level. This contrasts the tradi-

tional average distortion performance metric, which is the average value of the end-

to-end distortion. The distortion-diversity tradeoff characterization of source-channel

schemes reveals more operational intuitions than the average distortion performance

metric does. In particular, within the distortion-diversity tradeoff framework, we are

able to differentiate the two source-channel schemes that [25] determined to have the

same average distortion exponent. We then set out to unify the MD-based and the

MR-based source-channel schemes. In particular, we propose a triple-level source-

channel scheme that unifies the two double-level schemes. We demonstrate that the

triple-level scheme indeed dominates the MD-based and the MR-based schemes from

the perspective of distortion-diversity tradeoff.

We then turn our attention to the low SNR scenario. We first show that, for our

channel model, the Alamouti scheme [26] is equivalent to the MR-based scheme. We

then proceed to compare the MR-based scheme and MD-based scheme with separate

source-channel decoder for the following three cases.

* In the low outage probability case, the distortion exponent measures how fast

the end-to-end distortion approaches 1 as SNR decreases, while the diversity

order measures how fast the outage probability approaches 0 as SNR decreases.

We show that, for this case, the MD-based scheme with separate source-channel

decoder always outperforms the MR-based scheme from the perspective of

distortion-diversity tradeoff;

* In the high outage probability case, the distortion exponent still measures how

fast the end-to-end distortion approaches 1 as SNR decreases, while the diversity



order measures how fast the outage probability approaches 1 as SNR decreases.

We show that, for this case, the MR-based scheme always outperforms the

MD-based scheme with separate source-channel decoder from the perspective

of distortion-diversity tradeoff;

* In the constant outage probability case, the distortion coefficient measures how

fast the end-to-end distortion approaches 1 as SNR decreases. In this case,

the performance comparison between the two source-channel schemes is mixed,

which links the low outage probability and the high outage probability cases.

Unlike the MD-based scheme considered in the high SNR regime, the MD-based

scheme with separate source-channel decoder preserves the interface between source

coding component and channel coding component. Moreover, the fact that MD-based

scheme sometimes outperforms the Alamouti scheme demonstrates that specially de-

signed channel codes may not lead to the optimal end-to-end performance. Instead,

designing codec structure within the framework of distortion-diversity tradeoff is more

appropriate.

The remaining part of this paper is organized as follows: in Section 2, we introduce

the system setting, including the two channel models we consider; in Section 3, we

introduce our performance metrics and the distortion-diversity tradeoff framework;

in Section 4, we review several source coding techniques; in Section 5, we study the

single-level source-channel scheme in the distortion-diversity framework; in Section 6,

we study and compare the two double-level source-channel schemes, i.e. the MD-based

and the MR-based schemes; in Section 7, we propose a triple-level source-channel

scheme and show that it dominates the two double-level schemes in the distortion-

diversity framework; in Section 8, we focus on the low SNR regime and characterize

the performance of several source-channel schemes in three different cases. in Section

9, we outline future research directions that could stem from our work.
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Chapter 2

System Overview

We consider wireless broadcast networks composed of a single source and multiple

users. The users are categorized into multiple classes based on their quality prefer-

ences which will be defined in the following section. Let M be the number of user

groups in the broadcast network, where M = 1, 2, -.... One example of the wireless

broadcast network comes into existence when video streaming to multiple portable

devices, such as PDAs, laptops and etc. The users may be categorized according to

Source (Image)

PDA 1 Laptop 1

PDA 2 Laptop 2

Figure 2-1: Example: Multi-Class Broadcast Network

their requirements for quality of services, such as image resolution and frame rate.

For example, the PDA users may prefer high frame rate while the laptop users may

prefer high image resolution. The transmitter, such as a base-station tower, is usually

armed with multiple antennas. Moreover, a growing number of portable devices are

I



equipped with more than one antennas. Naturally, multiple-input multiple output

(MIMO) channel is a good model for the link between each transmitter-receiver pair.

In this document, we do not consider general MIMO channel models. However, we

do assume channel models that capture a key characteristic of MIMO channel model,

that is multiple degrees-of-freedom (DoF). Furthermore, we assume that the links for

different transmitter-receiver pairs undergo independent fading processes. Assuming

limited mobility for users, the fading process is modeled to follow the block fading

block.

2.1 Parallel Channel Model

In the parallel channel model, each transmitter-receiver link is composed of two in-

dependent subchannels as follows,

Yi[n] = hixi[n] + wi[n], i = 1,2, n = 1,---.. ,N, (2.1)

where the subscript is the subchannel index while the number in the bracket is the

time index. hi and h2 denotes fading coefficients for subchannel 1 and 2, respectively.

Note that N is the length of fading block. We assume that N is long enough for the

information theoretic quantity, such as mutual information, to apply. N itself would

not enter the analysis in later sections. Following the block fading model, we assume

that both hi and h2 are fixed from time 1 up until time N, i.e. within the length-

N fading block. Moreover, we assume that both hi and h2 are randomly chosen

according to the distribution of CNA(O, 1). We assume that the receivers perfectly

track the instantaneous channel fading coefficients while the sender only knows the

statistical information of the channel fading coefficients. The additive noise wl,i[n]

are i.i.d. CNA(0, 1). The input power constraint is SNR on each transmit antenna.

Therefore, SNR could also be interpreted as the received signal-to-noise ratio at the

receiver.



2.2 2 x 1 MIMO Channel Model

In the 2 x 1 MIMO channel model, each transmitter-receiver link is expressed as

follows,

y[n] = hlxl[n] + h2x 2 [n] + w[n], n = 1, , N, (2.2)

where the subscript is the transmit antenna index and the number in the bracket is

the time index. hi and h2 are fading coefficients between transmit antenna 1 and

2 and the receive antenna. The fading coefficients are randomly chosen according

to the distribution of CNA(O, 1). Similar to the parallel channel model, the block

length N is assumed to be large enough. We assume that the receivers perfectly

track the instantaneous channel fading coefficients while the sender only knows the

statistical information of the channel fading coefficients. The additive noises w[n]

are i.i.d. C/(O, 1). The input power constraint is SNR/2 on each transmit antenna.

Therefore, SNR could still be interpreted as the received signal-to-noise ratio at the

receiver.
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Chapter 3

Performance Metric

The general structure of a source-channel scheme is as follows (the detailed structure

of encoder and decoder will be introduced in later sections),

1. The sender encodes a source sequence s into channel input sequences x, and

x2;

2. The sender transmits x1 and x 2 over antenna 1 and 2, respectively;

3. Each receiver reconstructs the source sequence as s according to his own channel

output sequence(s).

The quality of each receiver's source reconstruction is characterized by its accuracy

and reliability. Taking the video streaming application in Figure 2-1 as an example,

accuracy corresponds to the image resolution while reliability is interpreted as the

probability of successfully loading one frame. The accuracy and reliability perfor-

mance metric used in this paper is different from the corresponding notions in the

traditional joint source-channel coding research. In particular, the source-channel

schemes studied in this paper proceeds frame by frame. Outage happens if certain

frame is not decodable and the entire frame is dropped. This approach is a suitable

model for MPEG and other video compression systems. In the following, we formalize

our definitions of accuracy and reliability.



3.1 High SNR Regime

In the high SNR regime, we consider the asymptotic scenario where SNR increases

to infinity. The accuracy is measured by distortion exponent, which is defined as the

base-SNR exponentially decreasing speed of the average distortion at high SNR,

- log E [ d(s, s) ]
d = lim

SNR-*oo log SNR

where the expectation is taken over the random source sequence s and d(s, s) is the

per-symbol distortion between s and A. The reliability is measured by the diversity

order, which is defined as the base-SNR exponentially decreasing speed of the outage

probability at high SNR,

- log P [ 0() ]
6= lim

SNR--oo log SN R

where P [ O()] is the probability of O(g), the outage event that the receiver fails to

reconstruct the source sequence as s.

3.2 Low SNR Regime

In the low SNR regime, we consider the asymptotic scenario where SNR decreases to

0. The performance metric is different for the following three cases.

3.2.1 Low Outage Probability Case

The accuracy is measured by the distortion exponent, which is defined as the base-SNR

exponent of the end-to-end distortion as SNR approaches 0,

d= lim log(1 - [d(s, s)]) (31)
SNR-+0 log SNR

where the expectation is taken over the random source sequence s and d(s, s) is the

per-symbol distortion between s and s. The reliability is measured by the diversity



order, which is defined as the base-SNR exponentially decreasing speed of the outage

probability as SNR approaches 0,

6 = lim logpO() (3.2)
SNR-0 logSNR

where P [O(9) ] is the probability of O(g), the outage event that the receiver fails to

reconstruct the source sequence as s.

3.2.2 High Outage Probability case

The accuracy is measured by the distortion coefficient, which is defined as the coeffi-

cient of SNRlog 1 in the end-to-end distortion as SNR approaches 0,

d= lim -[d(s,)] (3.3)
SNR--0 SNRlog I

where the expectation is taken over the random source sequence s and d(s, s) is the

per-symbol distortion between s and s. The reliability is measured by the diversity

order, which is defined as the base-SNR exponent of the outage probability as SNR

approaches 0,
= lim log (1 - P[O(s)]) (3.4)

SNR--O log SNR

where P [ O()] is the probability of O(g), the outage event that the receiver fails to

reconstruct the source sequence as s.

3.2.3 Constant Outage Probability Case

The accuracy is measured by the distortion coefficient, which is defined as the coeffi-

cient of SNR in the end-to-end distortion as SNR approaches 0,

d= lim [d(,_)(3.5)
SNR---*0 SNR

where the expectation is taken over the random source sequence s and d(s, ) is the

per-symbol distortion between s and . We use the outage probability as our reliability



measure, which is called diversity order,

6 = P [ () ] , (3.6)

where P [O(_) ] is the probability of O(s), the outage event that the receiver fails to

reconstruct the source sequence as is.

3.3 Distortion-Diversity Tradeoff

There is a natural tradeoff between the two performance metric associated with each

user, i.e. the distortion exponent/coefficient and the diversity order. The more strin-

gent the distortion requirement is, the more information bits are need to describe the

source sequence and then pushed through the communication link, and therefore the

transmission is more like to exceed the link capacity, resulting in an outage. We name

this fundamental tradeoff the distortion-diversity tradeoff and use it characterize and

compare the performance various source-channel schemes.

Recall that, in a wireless broadcast network, multiple users are characterized ac-

cording to their quality preference. In particular, the quality of each transmitter-

receiver pair could be measured by the distortion-diversity point the user chooses

to operate at. Certainly, each user would like to operate at the optimal distortion-

diversity boundary permitted by the underlying source-channel scheme. However,

each user select the operating distortion-diversity point individually using a utility

function. We assume the utility functions remain the same within the same class

of users while differ across multiple classes. Therefore, a single distortion-diversity

pair is associated with each class of receivers. For a broadcast network of M classes

of receivers, the performance of the source-channel scheme is characterized by the

distortion-diversity vector (d, 61, - - , dM, 6M). The distortion-diversity tradeoff is

the closure of all achievable distortion-diversity vectors.



Chapter 4

Source Coding Background

Source s is a sequence of independent and identically distributed (i.i.d.) random

variables, with marginal distribution of p(s). Let A be a reconstructed version of s.

We assume that s and A share the same alphabet S. The symbol-wise distortion

measure is a function that maps S x S to R+, and the sequence-wise distortion d(s, _)

is defined as the average per symbol distortion. In this section, we review several

types of block source code, using n as the block length.

4.1 Single-Description Source Code

A single-description source code is composed of a source code rate R, (nats/ss)', a

source codebook Cn, an source encoder 0,(-) and a source decoder b,(-).

* The source codebook Cn is an enRs x n matrix of complex numbers. The

enR rows of C, correspond to the enR reconstruction sequences, denoted as

_(1), .. , g(eR );

* The source encoder 4,(') is a function that maps Sn to { 1, .. , enR" };

* The source decoder $n(') is a function that maps {1 , enRs } to Sn.

1ss stands for source symbol



The average distortion achieved by the above single-description source code is

D(On, )n) = E [d(sn , n (On (sn)))] ,

where the expectation is taken over the random source sequence s n . A rate-distortion

pair (Rs, D) is achievable if there exists a sequence of rate-R, single-description source

code, indexed by block length n, such that,

lim D(On, sn) < D.
n--+oo

The minimum rate required to achieve a certain distortion is characterized by the

following rate distortion function,

R,(D)= inf R .
(R,,D) achievable

Theorem 4.1.1 (Single-Description Source Code Rate Distortion Function [14]). For

i.i.d. source s with marginal distribution of p(s) and bounded symbol-wise distortion

function d(., -), the rate distortion function is

Rs(D) = m I(s; ). (4.1)
p(Sls): 4 P(s)P(9js)d(s,s)<D

Corollary 4.1.2. For i.i.d. unit-variance complex Gaussian source with p(s) =

C.A(O, 1) and squared-error distortion measure, the rate distortion function is,

R(D) = In 1, (4.2)
D

where we assume that D < 1.

4.2 MR Source Code

A double-description MR source code is composed of two source code rates Rs,b, Rs,r, a

base source codebook Cn,b, enRsb refinement source codebooks Cn,r(1)," -- , Cn,r(enRsb),



a source encoder 0,(-) and two source decoders 'n,b('), n,r ().

* The base source codebook Cn,b is an enRs,b X n matrix of complex numbers. The

enRs,b rows of Cn,b correspond to the enRs,b base source reconstruction sequences,

denoted as il(1),... , b(enRs,b);

* The refinement source codebooks Cn,r(1), -. ,C,r(en Rb ) are enRs,r x n matri-

ces of complex numbers. Refinement source codebook Cn,r, (ib) is associated with

base source description ib. The enRs,r rows of Cn,r(ib) correspond to the e"nRs, re-

finement source reconstruction sequences, denoted as r(ib, 1), ..- , r(ib, enR ,b );

* The source encoder On(-) is a function that maps Sn to {1,... ,e n R ,b } x

{1, ... 7 , ;

* The base source decoder 4n,b(-) is a function that maps { 1, - -- , enR ,b } to S";

* The refinement source decoder 4n,r(') is a function that maps {1, --- , enRs,b } x

{1, - ,enR ~ } to Sn.

The average distortion achieved by the base source decoder is

Db (n, Vn,b)= 9[d( ]n,b(n()))I

The achieved distortion achieved by the refinement source decoder is

Dr( n, )n,r)= S[d(s
, n,r(On(s))) ]

The rate-distortion quadruple (Rb, Rr, Db, Dr) is achievable if there exists a sequence

of rate-(Rs,b, Rs,r) double-description MR source codes, indexed by block length n,

such that,

lim Db (On, n,b) Db,
n-oo

lim Dr(On, n,r) < Dr.
n-o--o



The achievable rate-distortion region is the closure of all achievable rate-distortion

quadruples (Rb, Rr, Db, Dr).

Theorem 4.2.1 (Double-Description MR Source Code Rate-Distortion Region [15]).

For i.i.d. source s with marginal distribution of p(s) and bounded symbol-wise dis-

tortion function d(.,-), we evaluate the single-description source code rate distortion

function (4.1) as distortion levels Db and Dr (Db > Dr),

Rb= Rs(Db), R= Rs(D,).

The rate-distortion quadruple (Rb, Rr, Db, Dr) is achievable if and only if there exist

auxiliary random variables Sb, Sr with the conditional distribution p(Sb, r IS) satisfying,

P(Sb, r IS) = p(rI S)P(b Ir),

and

I(s; Sb)= Rb i,

I(s; r,) = Rr,

S[d(s, Sb)] Db,

6 [d(s, r) ] Dr.

Remark 4.2.2. In [15], the authors show that Gaussian source with squared-error

distortion satisfies Theorem 4.2.1. For unit-variance complex Gaussian source, to

achieve the distortions levels of Db and Dr, we use the auxiliary random variables

Sb, Sr defined as follows (illustrated in Figure 4-1),

S = Sr + Wr ,

r = Sb +Wb,

where Sb, Wb, Wr are independently distributed as CNA(O, 1 - Db), CAr(O, Db - Dr) and

CAn(O, D,), respectively.



Wb Wr
A + s

Sb + r S

Figure 4-1: Successive Refinement Test Channel

4.3 Symmetric MD Source Code

A symmetric MD source code is composed of a source code rate Rs, three source code-

books Cn,, C., 1, Cn,2, a source encoder ,(.) and three source decoders On,1(-), Vn,2('), n, ).

* The two side source codebooks Cn,1, Cn,2 both are enR8 x n matrices of complex

numbers. The enRs rows of C,,i correspond to the e"nR side 1 source reconstruc-

tion sequences, denoted as 1 (1), --- , (eR  ). Similarly, the e"nR side 2 source

reconstruction sequences are denoted as S2 (1), '- , g2 (nR);

* The central source codebook Cn,, is a e2nR, x n matrix of complex numbers.

The e2nR, rows of Cn,c correspond to the e2nRs central source reconstruction

sequences, denoted as s(i 1 , i2), 1 2 = 1,', enR;

* The source encoder ,(.) is a function that maps S to 1,-... , enR } x {1,... , enR };

* The two side source decoders On,1('), On,2(-) are functions that map {1, ... , e R, }
to Sn;

* The central source decoder #,c(', ") is a function that maps {1,... , eR } x

{1, .. . ,enR, } to Sn.

For symmetric MD source codes, the average distortion levels achieved by the two

side source decoders are the same, defined as follows,

Ds(on, n,1, On,2) = E [d(sn, n,i(n(sn)))] , i = 1,2.

The average distortion level achieved by the central source decoder is

Dc(on, On,c) = E [d(s" ,On,c(On(s")))] -



The rate distortion triple (Rs, Ds, D,) is achievable if there exists a sequence of rate-R,

symmetric MD source codes, indexed by block length n, such that,

lim Ds (n, V)n,1, On,2) < Ds,
n--+o

lim Dc(qn, On,) < Dc.

The achievable rate-distortion region is the closure of all achievable rate-distortion

triples (R,, D,, Dc). Since the optimal rate-distortion region is not known except for

several special cases, we only consider the following MD source code, proposed in [23].

Theorem 4.3.1 (Simplified El-Gamal-Cover MD Source Code [23]). For i.i.d. source

s with marginal distribution of p(s) and bounded symbol-wise distortion function

d(., -), the rate-distortion triple Rs, DS, Dc is achievable if there exist auxiliary random

variables s, and s2 and functions gi(.), g2(-), g9(, ) such that,

Rs > max I(s; sl), I(s; sI), (I(ss, S2) + 1(Sl; S2)) (4.3)

and

D, > max { [d(s, gl(sl))], S [d(s, g2(s2)) ],

D > [d(s, g.(s,s 2))]

Remark 4.3.2. For unit-variance complex Gaussian source and squared-error dis-

tortion, the simplified symmetric El-Gamal-Cover source code uses the following code

rate, auxiliary random variables and reconstruction functions.

* The auxiliary random variables are defined as follows (also illustrated in Figure

S 1 = S+W 1,

S2 = S + W 2 ,



where (wl, W 2) is independent of s and

(W1 W2) C 0 po2 pa2

S

+ S2

w2

Figure 4-2: MD Test Channel

* The reconstruction functions are

1
gl(sl) = +2S1,

1
g2(S2) = 2S2,

1 +
1

gc(sl, S2 ) 2+(lp)(S + S2);

* The source code rate Rs satisfies the following condition,

R, > In 1 + 2

* The achieved distortion levels are

2

D=
D S 1 + O2 '

- (1 + p)U2

D=
2 + (1 + p)a2 '

The rate-distortion region of MD for Gaussian source and squared-error distor-

tion has been completely characterized [23] [21]. For the symmetric case, the rate-



distortion region simplifies to the following lemma.

Lemma 4.3.3 (Symmetric MD, Gaussian source and squared-error distortion, Rate-Dis-

tortion Region [24]). Let an i.i.d. unit-variance Gaussian source be described by two

descriptions both of which have rate R. The distortions D, and De corresponding to

observations of one or both descriptions. The achievable distortion region for a fixed

rate R is

Dc _ max{a, e- 2R}

D, max e- R l+a 1- a e 2R

2 2 a

where a E [e-2R, e
2e-W

4.4 Symmetric MD with Common Refinement Source

Code

A symmetric MD with common refinement source code is composed of two source

code rates R,, Rr, four source codebooks Cn, , Cn,2, Cn,c, Cn,r, a source encoder 0,(-)

and four source decoders On,1(0), On,2(-), n,c', ", -) ,(', ", "-)

* The two side source codebooks Ci,, Cn,2 both are enRs x n matrices of complex

numbers. The e"Rs rows of C, 1 correspond to the e"nR side 1 source reconstruc-

tion sequences, denoted as A, (1), -- - ,i (e"nR). Similarly, the enRs side 2 source

reconstruction sequences are denoted as s 2 (1), ' , g(e" nR );

* The central source codebook Cn,, is a e2nR s x n matrix of complex numbers.

The e2nRs rows of Cn,c correspond to the e2 nRs central source reconstruction

sequences, denoted as &(il, i2) il, i2 = 1, .. en R "

* The refinement source codebook Cn,r is a e"nR x n matrix of complex numbers.

The enRr rows of Cn,r correspond to the enR, refinement source reconstruction

sequences, denoted as ,r(1), , r(er );



* The source encoder q,(-) is a function that maps Sn to (1, . . . , eL} x {1, ... ,enRs };

* The two side source decoders 4,,1(-), On,2(-) are functions that maps {1, - - , enRs }

to S";

* The central source decoder n,, (-,) is a function that maps {1,.--, enRs} x

(1, -- , enR s } to S";

* The refinement decoder ,,r(, ) is a function that maps {1,... , enRr} to Sn.

For symmetric MD with common refinement source codes, the average distortion

levels achieved by the two side source decoders are the same, defined as follows,

Ds (,n, O,,1, On2 E [ n, ,i(n (n))) ] , i = 1,2.

The average distortion level achieved by the central source decoder is

Dc(O¢ n, c) = [d(s" , V ,c(n(sne))) -

The average distortion level achieved by the refinement source decoder is

The rate distortion pentuple (Rs, R~, Ds, Dc, D,) is achievable if there exists a se-

quence of rate-(R,, Rr) symmetric MD with common refinement source codes, indexed

by block length n, such that,

lim Ds(On, On,, On,2) < DS,
n-oo

lim Dc(On, On,c) < Dc ,
n--oo

lim Dr (n,,On,r) < Dr.
n-oo0

The achievable rate-distortion region is the closure of all achievable rate-distortion

pentuple (Re, R, D,, Dc, Dr). Since the optimal rate-distortion region is not known



except for several special cases, we only consider the following MD with common

refinement source code, proposed in [23].

Theorem 4.4.1 (El-Gamal-Cover MD With Common Refinement Source Code [23]).

For i.i.d. source s with marginal distribution of p(s) and bounded symbol-wise distor-

tion function d(-, -), the rate-distortion pentuple (Rs, Rr, D,, DC, Dr) is achievable if

there exist auxiliary random variables sl, S2 and sr and functions gl('), g2 (), gc(, ),

gr (, -, ), such that,

R, > max I(s; si), I(s; Si), (I(s; Si, s2) + I(sIl; S2 )) }
R, > I(s; Sr s, S2 ),

and

D, > max{ E [d(s, g (s ))], [d(s, g2(s2))]}

Dc E [d(s, gc(s, S2))] ,

Dr 89[d(s, gr(Sl, S2), Sr)

Remark 4.4.2. For unit-variance complex Gaussian source and squared-error dis-

tortion, the symmetric El-Gamal-Cover source code uses the following code rates,

auxiliary random variables and reconstruction functions.

* The auxiliary random variables are defined as follows (also illustrated in Figure

Sr = S+ Wr,

Sl = Sr +W1 ,

s2 = Sr + W2,



where (wr, w 1, w 2) is independent of s and

(Wr, W 1 , W 2 ) ~ C.f

0

0

0
[o2 0 0

2 2 o
0 ~pb

o P b b

wb,1

w b

Figure 4-3: MD with Common Refinement Test Channel

. The reconstruction functions are

91(sl)

g2(S2)

9c(S1, S2)

gr(s1, S2, Sr)

1
- 2 r2

2
S1,

1 + - + obS
1
1+~2 2 S2

S (sl +S
2),

2 + 2or + (1 + p)b

1

r

o The source code rates satisfy the following conditions,

1 (1 + Ua + o 2)2
> -in r - --

2 (or2 + a)2 - O2 -+pU)'r b \r b ~b
1 + 2

> In U
r

I(1 + - + U)2 - (1-In r

(U2 + or )2 - O\r b ) \
2 )+ pO2

Rs,b

Rs,r -
r b



* The achieved distortion levels are

2 +u2

r1 +

1 Dr2 + =+por2+ r 2 b

Dr 1+ r U



Chapter 5

Single-Class Broadcast Networks

In a single-class broadcast network, all receivers belong to the same class and seek

to operate at the same distortion-diversity point. We consider a single-level source-

channel scheme which proceeds as follows (we use D to denote the target distortion

level),

1. Source codebook and channel codebook generation

* We generate a rate-R, single-description source code as described in Sec-

tion 4.1. The codebook C, a set of eNR, length-N sequences, is distributed

to both the transmitter and the receiver. According to Theorem 4.1.1, the

source code rate R. needs to satisfy the following condition,

Rs > - log D;

* We then generate a rate-R, zero-error channel code [13] which could be

decoded error-free is the channel capacity is above the code rate R. The

channel codebook Cc, a set of eNRS 2 x N matrices, is also distributed to

both the transmitter and the receiver. Each column of the codewords is

generated independently according to the Gaussian distribution CN(SNR 12).

The mutual information between the channel inputs (xl, x 2) and the chan-



nel outputs (Yi, Y2) is

Re(hi,h 2) = I(x,x 2; y,y2 hi, h 2) = E log (1 + Ihi 2SNR) ;
i=1,2

2. The sender uses the single-description source encoder (reviewed in Section 4.1)

to convert the length-N source sequence s to a length-NRs bit sequence, which

we denote as the source description i. The sender then transmit the ith space-

time channel codeword (xl(i), x 2(i)) over subchannel 1 and subchannel 2, re-

spectively;

3. The receiver takes the following steps to reconstruct the source sequence,

* If Re(hi, h 2) > Rs(d), we receiver retrieves the description i without error

(assuming the block length N is large enough) and outputs the correspond-

ing source reconstruction sequence in the source codebook;

* If R,(hi, h2) < Rs(d), the receiver declares outage and outputs the length-

N zero sequence as the source reconstruction sequence.

The outage probability is characterized as follows,

PO"t(d) = P[Rc(hl,h 2) < R,(d)]

= P log (1+ h I 2 SNR) < dlogSNR
i=1,2 J

= P (1+ Ihi 2SNR) < SNRd .

Let |hi 2 = SNR-ac , then at high SNR, we have (1 + Ih 12 SNR) - SNR (1- ' )f + , where

- denotes exponential equality in the high SNR regime, i.e. if f(SNR) g(SNR),

then
lim log f(SNR)

SNR-oo log g(SNR)

38



The above outage probability can then be written as

Pot (d) - P [1 SNR(1-ai)+ < dlogSNR
L i=1,2 )

Li=1,2

• SNR-I(d)

where

J(d) min E ai
i=1,2 (1-ai)+<d,a0 i=1,2i=1,2

which follows from an argument similar to Theorem 4 in [5]. Therefore, the single-level

source-channel scheme achieves the distortion-diversity tradeoff as follows',

6(d)=2-d, O<d<2. (5.1)

In figure 5-1, we illustrate the distortion-diversity tradeoff (5.1).

2

Figure 5-1: Single-Level Source-Channel Scheme, Distortion-Diversity Tradeoff

1We exclude the (d, 6) = (0, 2) point, since d = 0 can be achieved without any information
transfer from the sender to the receiver, thus infinite reliability. However, this case is not very

interesting for our study of the distortion-diversity tradeoff.

lD.
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Chapter 6

Double Class Broadcast Networks

In double class broadcast networks, receivers in the two classes seek to operate at two

different distortion-diversity points, though each of them still desires to operate on the

single-level distortion-diversity boundary illustrated in Figure 5-1. Ideally, we would

like to have a single encoding component at the transmitter while still accommodate

different distortion-diversity operating points for different receivers. Equivalently, we

would like to have achieve multiple distortion-diversity operating points using a sin-

gle codec structure. Certainly, both distortion-diversity operating points should be

as close to the optimal distortion-diversity tradeoff as possible. If both distortion-

diversity operating points could be pushed on to the optimal distortion-diversity

boundary, we call that the distortion-diversity tradeoff is successively refinable How-

ever, it is not immediately clear whether this objective could be achieved within a

single codec structure. If not, how close could we get to the ideal successively re-

finable scenario? To address this problem, we study two double-level source-channel

schemes in the following two sections.

6.1 MR-Based Source-Channel Scheme

The MR-based source-channel scheme is composed of a double-description MR source

code (reviewed in Section 4.2) and a super-position channel code. Suppose that the

distortion exponents requested by the two classes of receivers are d, an df, resp. For



each SNR, the double-level source-channel scheme achieves two distortion levels of

D = SNR -dP and Df = SNR-df. The double-level MR based source-channel scheme

proceeds as follows,

1. The double-description MR source encoder converts the length-N source se-

quence s into a length-NRs,b bit sequence (base description ib) and a length-

NRs,r bit sequence (refinement description ir). According to Theorem 4.2.1,

the source code rates (Rb, Rt) required to achieve the distortion levels of Dp, Df

are

Rs,b(dp,df) = -logD = dlogSNR,

Rs,r(dp,df) = -logDf +log D= (df - d)logSNR;

2. The super-position channel encoder with power split ratio of P: the base descrip-

tion encodes and modulates ib with power (per subchannel) SNR - SNR 1- -

SNR (0 < P < 1) into (b,1 b,2); the refinement description encodes and modu-

lates ir with power SNR'-P into (x,, ir,2); the channel input sequences (x4, x 2)

are the sum of (b,1, X ,2) and (xr,1, r,2);

3. The successive interference cancelation decoder first decodes for ib treating

(4r,1, 2r,2) as noise; if ib is decoded successfully, the decoder then encodes and

modulates the decoded ib and subtracts it from the channel output sequences

(Y17 Y2); the decoder then decodes for ir;

4. Assuming a Gaussian input distribution of covariance matrix SN R I for the base

description channel code and a Gaussian input distribution of covariance matrix

SNR l - 1 I for the refinement description channel code, we obtain

1 + SNR hij2

Rc,b(hl, h 2 , ) = I((Xb,l, Xb,2) ; (Y, Y2) hi, h 2 ) = log 1 + SNR-Ihi2 
i= 1,2  

l

Rc,r (hi, h2, ) = I((Xr,l,Xr,2); (Y1, Y2) (Xb,, Xb,2),hl, h2) = 7log(1 + SNR - hi2 ;
i=1,2



5. The receiver reconstructs the source sequence as follows,

* If Rc,b(hl, h 2, 1) > R,,b(dp, df) and Rc,r(hi, h2, h2) > Rs,r(dp, df), the re-

ceiver outputs the reconstruction sequence corresponding to (ib, ir);

* If Rc,b(hl, h2 ,/3) > R,b(dp, df) and Rc,,(hl, h2, 3) < Rs,r(dp, df), the re-

ceiver declares full outage and outputs the reconstruction sequence corre-

sponding to ib;

* If Rc,b(hl,h 2,/3) < Rs,b(dp, df), the receiver declares partial outage and

outputs the length-N all zero sequence as the source reconstruction se-

quence.

The partial outage probability is characterized as follows,

pOUt(d, df, p) = P [Rc,b(hl, h2, 13) < Rs,b(dp, df)]

-=P log ( 1+ SNR h2
i=1,2 1+ SNR-)1hi 12

< dplog SNR]

< SNRdP]i K 1+SNRjhi 2= P I + SNR-Olhi12
-i=1,21+S i- h 2

Let Ihi 2 = SNR-"*, then at high SNR, we have 1+SNRhi 2 - SNR (1- ai + - (1- O-ai ) +

The partial outage probability can then be written as

Put (d f, 1d )
1 + SNRjhi 2

1 + SNR'Ihi l2
< SNRd

- P [HSNR(1-ai)+-(a-+ < SNR
Li=1,2 

J

- P ((1- ai)+ - (1a- -ai)) < dp
S i=1,2

-' SNR p(dp,df,O (6.1)

i=
-i=1,2



where we have applied the Laplace principle in the last step and

min
ai>o, Ei=1 ,2((1-oi)+-(1-,3-ai)+)<dp i=1,2

is the partial diversity order. Since the receiver is not able to output a full reconstruc-

tion (declare either partial outage or full outage) if either Rc,b(hlz, h2, 3) < Rs,b(dp, df)

or Rc,r(hl, h2, h2) < Rs,,(dp, df) happens, the full outage probability can be expressed

as follows,

Pfut (dp, df, 13) - P [{Rc,b(h, h 2, 3)< Rs,b(dp, df)U {Rc,r(h, h 2, /3)< RS,,(dp, df)}]

- SNR - P(d ,d, ) + P [Rc,r (hl, h 2, ) < Rs,r(dp, df)] , (6.2)

where the last step follows from (6.1) and the second term in the last step could be

characterized as follows,

P [Rc,r (hl, h 2, 3) < s,r(dp, df)] = ~log (1 + SNR- hi 2 ) < (d- dp)log SNR
i=1,2 SNR

= f- (1 + S N R I- [h i 2 ) < SNRdy-dp

Li=1,2J

Let Ihi 2 = SNR - e , then at high SNR, we have 1 + SNR 1-hi l 2 " SNR (1- a ) +

above expression can be written as follows,

The

P [Rc,r(hi, h 2,3) < Rs,r(dp, df)] - PFJ (1
Li=1,2

+ SNR 1' Ihi 2) < SN Rdf - d

- P [=,SNR(1-0-a')+ < SNRdf - dp

- P (1-3- i)<df -dp
-SNR(i=1,2df ,

SN R- (dp dfiO) (6.3)

6,(dp, df,)



where we have again applied the Laplace principle and

61 (d, df, p) min
ai >0, i=1,2 (1--ai)+ <df-dp

Following from (6.2), the full outage probability is

pyft (dp, df, /3) SNR - p(dpdf, ' ) + P [Rc,r (h1 , h 2, 3) < Rs,r(dp, df)]

- SNR-bp(dp,d,O) + SNR-bf'(dp,dfI)

- SNR-f(dp,df,O)

where Step (6.4) follows from Equation (6.3) and the full diversity order is

6f(dp, df, 03)

Lemma 6.1.1. The MR-based source-channel scheme achieves two levels of distortion

exponents dp, df with the following diversity orders,

(6.5)

(6.6)

6p = (2 - dp) + [-dp/] (1 - p),

6f = min {S 6,, (2(1 - 0) - (df - dp)) },

where 0 < dp < 20 and 0 < df - dp < 2(1 - /).

Remark 6.1.2. Note that 3 needs to be within (0, 1) for 6b to be positive.

Proof. The detailed proof is in Appendix B.

From Lemma 6.1.1, we get the following distortion-diversity tradeoff achieved by

the MR-based source-channel scheme,

O<d,< 20,

O < df - dp < 2(1 - 3) ,

a, = (2 - dp) + [-d/l] (1 - ) ,

6f = min { 6p, 2(1 - 0) - (df - dp) } ,

0</< 1,

i=1,2

(6.4)

(6.7)

A min {Sp(dp, df,3), 6'(dp, df,)} .



The distortion-diversity tradeoff is a 4 dimensional region. For the sake of illustration,

we take a cut along the direction of dp = d, df = ad. In figure 6-1, we illustrate the

distortion-diversity tradeoff among (Jp, 6~, d) for the case of a = 1.5.

d

3 3

A partial

Figure 6-1: Double-Level MR-Based Source-Channel Scheme, Distortion-Diversity
Tradeoff, a = 1.5

6.2 Symmetric MD-Based Source-Channel Scheme

The symmetric MD-based source-channel scheme is composed of the simplified sym-

metric El-Gamal-Cover source code (reviewed in Theorem 4.3.1 and the remark after

that), the V-BLAST channel code structure and a joint source-channel decoder [25].

Since we are dealing with parallel fading channel, the V-BLAST channel code struc-

ture degenerates to separate channel code for each subchannel. Suppose that the two

distortion exponents requested by the two classes of receivers are dp and df (d, < df),

respectively. For each SNR, the source-channel scheme achieves distortion levels of

D = SNR -d and Df = SNR - d f. The symmetric MD-based source-channel scheme

proceeds as follows,

1. The simplified symmetric El-Gamal-Cover source code converts the length-N

source sequence s to two length-NR, bit sequences (description il and i2 ).

According to the remark following Theorem 4.3.1, to achieve distortion levels of

I



D and Df, the parameters of the simplified symmetric E-Gamal-Cover source

code need to be configured as follows,

2 DP
1 - D

+2 (1 - Dp)
p = -1+2x

D(1 - Df)

Therefore, the source code rate needs to satisfy the following condition,

1 (1 - Df)2  (6.8)
R > - log (.8)

2 4Df(Dp - Df)(1 - Dp)

Moreover, the mutual information between s, and s2 is

(1 - Df)2

I(sl; s2) = log 4(1 - - (6.9)
4(1 - D,)(D, - Df)

2. The sender encodes and modulates ii, i2 separately with power SNR into length-

N channel input sequences Xl, x2, which are transmitted over the parallel fading

channel, respectively;

3. At the receiver, the following joint source-channel decoder is used,

* By comparing the channel output sequences y, and y2 with the channel

codewords in their own channel codebook according to the joint typical-

ity criterion, the receiver forms two lists, 12 and L 2 , of candidate source

descriptions. To differentiate them from the true source descriptions il

and i2, we use i1 and i2 to denote the constituents of lists L1 and L 2 re-

spectively. The size of each list is approximately eN(R - R c,i), where Rc,i is

defined as follows (assuming Gaussian input distribution with covariance

matrix of SNR for the channel code of each subchannel),

Rc,i(hi) = I(xi; yi I hi) = log(1 + SNRIhi 2 ), i = 1,2; (6.10)

* For each (i1 , Z2) E L1 x L2, the receiver compares the il-th codeword



from side codebook 1, (s1(i1 ), with the Z2 codeword from side codebook 2,

s2 (2)), according to the joint typicality criterion with regard to the joint

distribution of (sl, S2), which is specified in the remark following Theorem

4.3.1. If only one pair satisfies the joint typicality criterion, then the

receiver outputs the reconstruction sequence gc(s 1(il), s 2( 2))- Otherwise,

the receiver declares a "full outage" and proceeds to the next step;

* If 12i11 = 1, then the receiver outputs the reconstruction sequence g1(s(i1)).

If 1221 = 1, then the receiver outputs the reconstruction sequence g2(s 2 (i2)).

Otherwise, the receiver declares a "partial outage".

Since the receiver declares "full outage" when the size of the product list L1 x /2 is

too large, we can express express the full outage event as follows,

Of(dp, df) = { (Rs - Rc,i(hi))+> I(Sl; S2)
L i=1,2 1

= { (R - log(1 + SNRlhi2))+ > I(Sl; S2)

i=1,2

- (R - (1 - ai) log SNR) > I(sl; S2 )
i=1,2

(  lim R+ I(s(1-s) lim
i=1,2 SNR--+oo log SNR SNR-oo log SNR

- di= +d2 (1- aj)+ > dp

where in the last step we have applied the following asymptotic properties of Rs and

I(si;s 2) (d < df),

i log (1-Df)2
lim Rs > lim 2og 4Dy(Dp-Dy)(1-Dp) = dp + df

SNR-oo logSNR SNR-oo logSNR 2

log (1-Df)
2

lim I(; S2 ) log 4(1-Dp)(Dp-Df) (612)
lim gSNR SliNR dp, (6.12)SNR-oo log SNR SNR-oo log SNR



which follows from (8.18) and (8.19) respectively. Therefore, the full outage proba-

bility is expressed as follows,

Py Ut(dp, df) = P [Of (dp, df)] = SNR-6f(dp,d),

where the full diversity order is

6f(d,,df) = min

ai>o,"i=1,2 (d -(1-ai) + ) >dp i=1,2

Note that the receiver declares a "partial outage" when not only the size of the

product list £1 x L2 is too large but the size of each individual list £1 and L2 is also

too large. We can then express the partial outage event as follows,

Op(Dp, Df) = Of(Dp, Df) n {Rc,l(hl) < R nR,(h2) < R} {Rc,2(h2

= Of(Dp, Df) n {log(1 + SNRIhl 2) < R)} n {log(1 + SNRjh 2 12) < Rj}

= Of(Dp, Df)n ni=1,2 {1 + SNRIhil 2 < Rs}

Of(D, Df) n ni=1,2 (1 - ai)+ log SNR < R,}

-Of(D,, Df) n ni=,2 (1- ai)+ < li0r
SNR-oo

RS

logSNR

= Of(Dp, Df) n ni=1,2 {(1 - ai)+ < (6.13)S+df

where the last step follows from (6.11). Therefore, the partial outage probability is

expressed as follows,

PO (dp, df) = P [Op(dp, df)] SNR - 'p(dp

where the partial diversity order is

6,(dp, df) =
i=1,2

min
ai ,(1- l)+< , ( 1 - 2 )  i=1,2 dp+ddp
Qi>,(-a)+_ l~2 I\ a2)+< d ,i=2df 2 (-i+>d

Lemma 6.2.1. The symmetric MD-based source-channel scheme achieves two levels



of distortion exponents dp, df with the following diversity orders,

6, = 2-df,

if = min{2-d, 1 df - 2

where 0 < dp < df < 2.

Proof. The detailed proof is in Appendix C.

From Lemma 6.2.1, we get the following distortion-diversity

the symmetric MD-based source-channel scheme,

0 < dp < 2 ,

0 < df - d, < 2(1 - ) ,

6p = 2 - df ,

b = min 2-df, 1- -df 
}

tradeoff achieved by

1 .(6.16)

The distortion-diversity tradeoff is a 4 dimensional region. For the sake of illustration,

we take a cut along the direction of dp = d, df = ad. In figure 6-2, we illustrate the

distortion-diversity tradeoff among (6p, 6 f, d) for the case of a = 1.5.

4/31

(444)

1 2'6'3 1~, - aA "

Apartial

Figure 6-2: Double-Level Symmetric MD-Based Source-Channel Scheme, Distortion-
Diversity Tradeoff, a = 1.5

(6.14)

(6.15)

O < < 1,



6.3 Performance Comparison

In Figure 6-1 and Figure 6-2, we have illustrated the distortion-diversity regions

achieved by the double-level MR-based source-channel scheme and the double-level

MD-based source-channel scheme along the direction of dp = d, df = 1.5d. For the

sake of illustration, we further cut these 3 dimensional regions along the direction

of d = 2/3, and overlap the cuts in Figure 6-3 for comparison. Note that there

Afull U Multi-Description Based

U Multi-Resolution Based

5/6
7/9-------

1/3 --

Apa.tial
1 4/3

Figure 6-3: Double-Level Source-Channel Schemes, Distortion-Diversity Tradeoff
Comparison, dp = 2/3, df = 1

is no universal winner in the performance comparison between the two double-level

source-channel schemes. From Figure 6-3, we observe that the MD-based scheme

outperforms the MR-based scheme when achieving diversity orders that are relatively

close to each other. However, the MR-based scheme outperforms the MD-based

scheme when achieving diversity orders that are relatively disparate from each other.

The performance comparison in our proposed distortion-diversity framework reveals

several observations and intuitions that were not available in previous approaches

[25]. Moreover, the superior performance of MD-based scheme demonstrates that

specifically designed channel codes, such as the superposition code, may limit our

choice of source coding techniques and thus do not necessarily lead to optimal end-

to-end performance.

The significantly different performance regions in Figures 6-1 and 6-2 prompts us

to wonder if a unifying scheme exists that encompass both the MR-based and the MD-

based schemes. In the following section, we would show that this is indeed the case

I I a _ I ,



by proposing a triple-level source-channel scheme that unifies the two double-level

schemes from the perspective of distortion-diversity tradeoff.



Chapter 7

Triple-Level Source-Channel

Scheme

In this section, we propose a three-level source-channel scheme, which is composed

of the symmetric MD with common refinement source code (reviewed in Section

4.4), a mixture of V-Blast channel code with superposition channel code, and a joint

source-channel decoder. Suppose that three requested distortion exponents are dp,

df and dr, resp (dp < df < dr). For each SNR, the source-channel scheme achieves

distortion levels of Dp = SNR - d
p, Df (the setting of Df will be explained later) and

D = SNR - dr. The symmetric MD with common refinement source-channel scheme

proceeds as follows,

1. The symmetric El-Gamal-Cover source code converts the length-N source se-

quence s to three bit sequences: two base descriptions ib,1 and ib,2, each of

length NR,b and a refinement description iZ of length NR,. According to the

remark following Theorem 4.4.1, the parameters of the symmetric El-Gamal-

Cover source code need to be configured as follows to achieve distortion levels



of Dp, Df and D,,

2 D - Dr
S (1 - Dp)(1 - Dr)

02 Dr
r 1- Dr'

(Df - D)(1 - D)
p = -1+2x (Dp - Dr)(1 - Df)

The source code rates need to satisfy the following condition,

1 (1- Df) 2

Rsb > -0g' 2 4Df(D - Df)(1 - Dp)'

R s ,, > log Df
Dr

Moreover, the mutual information between Sb,1 and sb,2 is

(1 - D)2
I(Sb,1; Sb,2) = log (1 - Df) 2

4(Dp - Df)(1 - Dp)

2. The sender encodes and modulates ib1, ib,2 separately with power SNR-SNR 1- -

SNR into length-N base channel codewords b,1, 2b,2 . The sender encodes and

modulates ir with power SNR 1- into refinement channel codewords Xr, , r,2.

The sender then sends -b,l +xr,1 and -2b, +r,2 over the parallel fading channel;

3. At the receiver, the following joint source-channel decoder is used,

" By comparing the channel output sequence with the corresponding channel

codewords (treating the refinement channel codewords as noise) according

to the joint typicality criterion, the receiver forms two lists, £1 and C2, Of

candidates Zi and Z2 , respectively. The size of each list is approximately

eN(R-Rc,b,i), where Rc,b,i is defined as follows,

1 + SNRlhei 2
Rc,b,i(hi) = I(Xb,i; y I hi) = log + SNRi 1, 2

S+ SNR- compare (hi with 2b2

" For each (b,1, b,2) E 21X L2, the receiver compare (Sb,l(4b,1) with sib,2(4b,2) )



according to the joint typicality criterion with regard to the joint distri-

bution of (Sb,1, Sb,2), which is specified in the remark following Theorem

4.4.1. If more than one pair satisfies the joint typicality criterion, proceed

to the next step. Otherwise, if only one pair satisfies the joint typicality

criterion,

- The receiver encodes and modulates ib,1, ib,2 and subtract the base

channel codewords from the channel output sequences. The receiver

then decodes for i, using the joint typicality criterion. Assuming a

Gaussian input distribution with covariance matrix of SNR I, the re-

finement mutual information is

Rc,r = I((Xr,, Xr, 2 ); (y1,Y2) IXb,l, Xb,2 , hi, h 2 ) = log(1+SNR1-lhi 2);
i=1,2

- If the receiver fails to decode the refinement description z,, he declares

"refinement outage" and outputs 9c(Sb,(1 b,), S2(b,2)) as the source

reconstruction sequence;

* If IL11 = 1, then the receiver outputs the reconstruction sequence gl(s 1 (ii)).

If jL21 = 1, then the receiver outputs the reconstruction sequence 92(2(z2))-

Otherwise, the receiver declares a "partial outage".

The structure of the above triple-level source-channel scheme is illustrated in Figure

7-1

'1 - Channel X 1., or Sb2

Multiple Encoder hannel. 1-- r"

Description I (SNR) 2-D Channel X l Joint Source- 
161, b2

S with Encoder Channel - u
- Common b2 . -- ha-nnei (SNR' ) 2 Decoder

Refinement Encoder + Channel 2 1

iR) 7l 2 So h 2 
1

b b2 and ine

Figure 7-1: Triple-Level Source-Channel Scheme



The full outage event is characterized as follows,

c,b,i) + >

1+ SNRhi12 +
)9 1 + SNR hi 2 )

) -(1 -/3- ai)+) log SNR) + > I(Sb,1;Sb,2)

> lim I(Sb,1; Sb,2)

SNR-)oo log SNR

(Rs,b - ((1 - ai

lim Rs,b
NR-oo log SNR ((

The partial outage event is characterized as follows,

Op(dp, df, dr, /)

= Of(dp, df, dr, ) n {Rc,b,1 < Rs,b} n{Rc,b,2 < Rs,b}

= Of (dp, df, dr, /) n log 1 + SNRIh 12  Rb
log 1 + SNR-hil 2 sb

n {log
1 + SNRIh 212

1 + SNR1- lh2 2

Of(dp, df, dr, 3) n (ni=1,2 {((1 - ai)+ - (1 - - i)) log SNR < Rs,b})

Of (dp, df, dr, /) n
(ni=1, 2 (1- ai) - (1

- / - ai)+ < lim Rs,b
SNR--oo log SNR

The refinement outage event is characterized as follows,

Or(dp, df, d,, /p) = Of(dp, df, dr,,3) U {Rc,r < Rs,r}

= Of (dp, df, dr, 3) U E log(1 + SNR'- h 12 )
i=1,2

< log
Dr

Of(dp, df, dr,/) U

Of (dp, df, d,, ) U

1 SNR(i-a-')+
i=1,2

E(1 - 0 - aj) I
i=1, 2

Df}

D

log
< lim DS

SNR-00 log SN R

Lemma 7.0.1. The triple-level source-channel scheme achieves three levels of distor-

tion exponents dp, df and dr (dp < df < dr) with the following diversity orders,

Of(dp, df, dr, 13)

{ (Rs,b- R
i= 1,2

i=1,2

< Rs,b

> I(Sb,1; Sb,2)

Si= 1, 2

Si= 1, 2

I(Sb,1; Sb,2)

ai,)+)



* Partial diversity order is

P =

0,

1 + -d ,

2 - df ,

* Full diversity order is

- If dp < dy dr,, then

0,

min{1- df-dP2 ,1-dy} ,

min 1 - df2d 2 - df ,

if /< #,

if < 0< df,

if p > dy;

0,

1+ + - df,

2 - dfy,

if < d f

if < p < df,

if 0 > dy;

* Refinement diversity order is

6r = min{f, 2(1 -3) - (dr - dy)}

Proof. The detailed proof can be found in Appendix D. O

Now, we are ready to compare our triple-level source-channel scheme with the two

double-level schemes. For fair comparison, we let dp = 2/3, dr = 1 and allow df to

vary between 2/3 and 1. Under this setting, the distortion-diversity region achieved

by the triple-level source-channel scheme is characterized as a 3 dimensional region

of (6p, 6f, 6r). We illustrate the two extreme cases of df = 2/3 and df = 1 in the

following.

ifp < df

ifL <3 <

if/3 > dp+df2

6f =

- If dp = d < d,, then

6f =



* If we set df = 2/3, the achievable region of (Sp, 6b, 6r) is shown in Figure 7-2.

In this case, d, and df are identical, so the partial reconstruction and the full

Common Refinement, dp = 0.67, df = 0.67, dr = 1.00

.....

0.8

1.5 1.5

Figure 7-2: Triple-Level Source-Channel Scheme, Distortion-Diversity Tradeoff, d,,=
2/3, d1 = 2/3, d, = 1

reconstruction are considered as one level of reconstruction. With the refinement

reconstruction as the second level, we have specialized our triple-level scheme

to a double-level scheme. Accordingly, we project the 3-dimensional region in

Figure 7-2 onto the (6,, br) plane, which is illustrated in Figure 7-3. Note that

the 2-dimensional region in Figure 7-3 is the same as the red region in Figure

6-3, which is achieved by the MR-based double-level scheme. Therefore, our

triple-level scheme includes the MR-based scheme as a special case;

* If we set d1 = 1, the achievable region of (6,, 6f, Jr) is shown in Figure 7-4. In

this case, df and dr are identical, so the full reconstruction and the refinement

reconstruction are considered as one level of reconstruction. With the partial re-

construction as the other level, we have again specialized our triple-level scheme

to a double-level scheme. Accordingly, we project the 3-dimensional region in

Figure 7-4 onto the (6,, 6f) plane, which is illustrated in Figure 7-5. Note that

the 2-dimensional region in Figure 7-5 is the same as the blue region in Figure

6-3, which is achieved by the MD-based double-level scheme. Therefore, our



Common Refinement, dp = 067, d = 0.67, d r = 1.00

050 .9. .. . .........

0 .8.. ........

0.6 ... ... .. .......

02

0 0 1

1.......5

1.5

Figure 7-3: Triple-Level Source-Channel Scheme, Distortion-Diversity Tradeoff Pro-

jection on (6p,, 6,) plane, dp = 2/3, df = 2/3, dr = 1

triple-level scheme also includes the MD-based scheme as a special case.
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Common Refinement. d = 0.67, d =1.00, dr = 1.00

1

0.8 .............

0.2 ......... .

. 0.5

1.5 1.5

Figure 7-4: Triple-Level Source-Channel Scheme Distortion-Diversity Tradeoff, dp=
2/3, df = 1, df = 1

Common Refinement, d = 0.67, d = 1.00, = 1.00

0.5 1 1.5

Figure 7-5: Triple-Level Source-Channel Scheme, Distortion-Diversity Tradeoff Pro-

jection on (6,, 6 ) plane, dp = 2/3, df = 1, dr = 1
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Chapter 8

Low SNR Scenario

In previous sections, we focused on the high SNR scenario, which is a common set-

ting where source codes and MIMO channel model are studied. We propose to use

the distortion-diversity tradeoff as our new performance metric to characterize and

compare source-channel schemes. We also demonstrate that certain good channel

codes, such as superposition code, may limit the choice of source codes and do not

necessarily provide the optimal end-to-end performance. In particular, we show that

a source-channel scheme based on MD provided better performance in certain oper-

ating regions. However, the MD-based scheme uses a joint source-channel decoder

which breaks the interface between source code and channel code. In this section, we

shall extend the distortion-diversity tradeoff to the low SN R regime and characterize

the performance of several source-channel schemes. In particular, we demonstrate

that the MD-based scheme, even without using a joint source-channel decoder, could

still outperform the MR-based scheme. This finding confirms the distortion-diversity

tradeoff as a more appropriate source-channel interface than the traditional bit rate

interface.

8.1 MR-Based Source-Channel Scheme

The MR-based source-channel scheme is composed of a double-description MR source

code (reviewed in Section 4.2) and a superposition channel code. Suppose that the



distortion levels requested by the two classes of users are Dp an Df, respectively, where

0 < Df < D, < 1. The double-level MR-based source-channel scheme proceeds as

follows,

1. The double-description MR source encoder converts the length-N source se-

quence s into a length-NR,b bit sequence (base description ib) and a length-

NRs,r bit sequence (refinement description i,). According to Theorem 4.2.1, the

source code rates (Rs,b, Rs,r) required to achieve the distortion levels of Dp, Df

are

Rs,b = - In D,, (8.1)

Rs,r = -InDf+lnD p ;  (8.2)

2. Superposition channel encoder with power split of (1 - y)SNR and -ySNR (0 <

y < 1): the base description ib is encoded and modulated with power (1- y)SNR

into (x, 1,-,2); the refinement description ir is encoded and modulated with

power ySNR into (X4,,2r,2); the channel input sequences (xl, X2) are the sum

of (Xb,, Xb,2) and (4r,1, r,2) , respectively;

3. Successive interference cancelation decoder: from the received sequence y, the

decoder first decodes for ib treating (~r,1, Xr,2) as noise; if ib is decoded success-

fully, the decoder re-encodes and re-modulates the decoded ib into (xb,1 ,b,2)

and subtracts their effect from the channel output sequences y; the decoder

then decodes for i,;

4. Assuming a Gaussian input distribution of covariance matrix (1 - y)SNR - I for

the base description channel code and a Gaussian input distribution of covari-



ance matrix ySNR -I for the refinement description channel code, we obtain

Rc,b(hi, h 2, 7y)

Rc,r (hi, h2 , 7)

- ((Xb,1, Xb,2); y I hi, h2 )

In + SNR (1h1l2 + jh2 
2) )

n 1 + -ySNR (1h112 + Ih2 12)
-= ((Xr,, Xr,2); y I (Xb,1, Xb,2), hi, h2)

= In (1 + ySNR (Ih1 2 + h2
2)) ;

5. The receiver reconstructs the source sequence as follows,

* If Rc,b(hl, h 2 , 0) > Rs,b and Rc,r (hi, h 2 , 7) > Rs,r, the receiver outputs the

reconstruction sequence corresponding to (ib, ir);

* If Rc,b(hi, h 2 , 'y) > Rs,b and Rc,,(hl, h 2, -Y) < Rs,r, the receiver declares full

outage and outputs the reconstruction sequence corresponding to ib;

* If Rc,b(hi, h 2,'y) < Rs,b, the receiver declares partial outage and outputs

the length-N all zero sequence as the source reconstruction sequence.

The partial outage probability is

P [op] = P[Rc,b(hl, h 2 ,) < Rs,b]

= P n 1 + SNR(Ihll2 + h 212)

L n1+ -ySNR(Ihl 1 2 + h2 12)
< Rs,b]

= P[1h2 + h2 12 <
eRS,b - 1

SNR - -yeRs,bSNR

F 4 ( eRs b - 1 ) (8
(1 - -ye Rs,b) SNR' 7

(8.3)

(8.4)

(8.5)



where "yeR,b < 1 and F (.; n) is the cumulative probability function of y2 random

variables. The full outage probability is

P [Of] = P {ln (1 + SNR(hi 2 + h 2 12)) < R,r - Rs,b} U hl 2 + h22  (1- yeRs,b ) SNR1

= [1h,2 + 1 < fax eRs,b 1 eRs,r-Rs,b 1

(1- yeRs,b) SNR' ySNR

= F max(1 eR b , ) e;Rsr-R sb 4 .1 (8.6)
(1 - ye s,b) SNR' -SNR

In the following, we would first digress a bit connect a widely adopted channel code,

Alamouti code, to the MR-based scheme. After that, we would analyze the distortion-

diversity tradeoff achieved by the MR-based scheme.

8.1.1 Alamouti Scheme

For the 2 x 1 MIMO channel model, a popular channel code widely adopted in practice

is the Alamouti scheme [26]. Denote the two bit streams from source encoder as ib

and i,, respectively. The Alamouti scheme proceeds by encoding the two bit streams

separately into the base layer channel codeword (b[1], ' - , Xb[N]) and the refinement

layer channel codeword (k,[1], -.. , k,[N]), where xb[n] and iR,[n] are i.i.d. CA/(O, 1).

The base layer and refinement layer channel codewords are modulated and combined

as follows,

[n] = V/(1 - )SNR -Rb[n] + vYSNR- r[n]

where (1 - y)SNR and -ySNR (0 < -y < 1) are the power allocated to the base layer

and the refinement layer, respectively. The Alamouti scheme arranges the channel

inputs as follows,

( x[ [2n] [2n] x x 1 [2n + 1] -k*[2n + 1] N2.
S, [2n + 1] n=,---,N/2.

x2 [2n] i x[2n + 1] x2[2n + 1] x* [2n]



The receiver first re-organizes the channel outputs as follows,

y[2n] = (hly[2n] + h2y*[2n + 1]) ,
vIh| 2 + h22

:y[2n + 1] = (h 2y[2n] - hly*[2n + 1]) ,
vjhl 2 + h 212

to obtain the following effective channel,

r[n] -= vIhi2 --+ h 2
2 [n +- [n]

= h |2 + h 212  (1- -7)SNR- Xb[n] + SNR -r[n]) + [in], (8.7)

where n = 1,... , N and ~v[n] - CAr(O, 1). The receiver then proceeds with a succes-

sive interference cancelation decoder to decode for ib and i,. The supportable rates

for ib and i, are

1 + -SNR (1hi 2 + h2 12)

Rc,r = I (R[n]; [n] I hi, h2 , Xb[n]) = In (1 + ySNR (1h1i 2 + jh 2 12))

which coincides with the supportable rates of the superposition code (8.3) and (8.4).

Therefore, we claim that the Alamouti scheme achieves the same performance as the

superposition code for the 2 x 1 MIMO channel model we are considering in this

section.

In the following, we would characterize the distortion-diversity performance achieved

by the MR-based scheme for three different cases. Firstly, we characterize the dis-

tortion performance of the MR-based scheme for certain fixed level of outage prob-

abilities. Secondly, we tune the MR-based scheme to achieve outage probabilities

that decrease with SN R. Finally, we consider the case where the outage probabilities

increase with SNR. The distortion-diversity tradeoff for these three different cases

were defined in Section 3.2.



8.1.2 Constant Outage Probability Case

We use 6, and i to denote the partial diversity order and the full diversity order,

respectively, where 6f > 6, > 0. According to the definition of diversity order for

the constant outage probability case (3.6), the partial outage probability and the full

outage probability should be bounded as follows,

P [op] < 6, P [O < 6 f .

Using (8.5), (8.6) and the following explicit expression for F(x; 4),

F(x; 4) = 1 - e - /2 - e-/2
2

(8.8)

we obtain the following inequalities on R,,b and Rs,r,

1 -exp 2 (e,b - 1)S- exp (1 - yeR ,b) SNR 1)

1 - exp 2 (eRsr-R,b 1)

2 (eRs,b -1) ( 2 (eRsb -1) <

(1 - yeRs,b)SNR (- ) SNR)

2 (eRs,r-Rs,b - 1) exp (2(eRs,r-Rs,b < f.

Pr Pr

where 0 < < e -Rb--1 We are able to simplify the above inequalities to be

4 (eRs,b - 1)

(1 - yeRs,b) SNR

4 (eR_-Rs,b 1)

-ySNR

< -2 - 2W_1

< -2 - 2W_1

Note that, in the low SNR regime, allocating a fixed fraction of SNR to the refinement

layer does not affect the asymptotic interference power level when decoding for the

base layer, since unit power of the additive noise dominates the power of the refine-

ment layer when SNR is low. Therefore, by solving the above inequalities, we obtain



the following bounds on Rs,b and R,,,,

Rs,b < (1
- C 2

= cbSNR + O (SNR 2) ,

- y) SNR + O (SNR 2)

Rs,r Rs,b 2 ySNR

2 )

= cSNR + O (SNR 2 ,

+ O (SNR 2)

-1- W() 2 SNR + O (SNR 2)
2

where

-1-W_2-1 - W ( )
2

-1-W ( 1 ) - (1
, cr =y ' 2

According to (8.1) and (8.2), we are able to bound the partial and full distortion from

below as follows,

DP > 1-cbSNR+O(SNR2) ,

Df > 1-c,SNR+O(SNR2 ),

(8.10)

(8.11)

where -y (0, 1). Applying the distortion coefficient definition (3.5), we are able to

bound the partial and full distortion coefficients from above as follows,

d <

df <

Cb,

Cr.

(8.12)

(8.13)

Equations (8.9), (8.12) and (8.13) characterize the distortion coefficients achieved by

the MR-based scheme for the constant outage probability case in the low SNR regime.

Cb = (1-

-1- W-lpe-_l

- ) 22
(8.9)



8.1.3 Low Outage Probability Case

We use b and 6f to denote the partial diversity order and the full diversity order,

respectively, where 6 > 5f > 0. According to the diversity order definition for the

low outage probability case (3.2), it is sufficient to set the constraints on the partial

and full outage probabilities as OpSNR 6 P and 0fSNR'f, respectively, where ,p > 0 and

Of > 0. Using (8.5), (8.6) and the explicit expression for F(x; 4) (8.8), we obtain the

following inequalities on R,,b and Rs,,,

1 - exp (- ( eR (e',b - 1)R

1 - exp 2 (eRsr-Rs,b 1)

-ySNR

2 (eRs,b - 1)
(1 - yeRs,b) SNR

2 (eRsr-Rs,b - 1)
ySNR

S2 (eRs,b - 1)

(1 - eRs,b) SNR

S -ySNR

where -y E (0, 1). We are to simplify the above inequalities as follows,

4 (eRs,b - 1)

(1 - yeRs,b) SNR

4 (eRs ,, -Rs,b  1)

-ySNR

< -2 - 2W_ 1

< -2 - 2W 1

(OpSNRP - 1
e

e
By applying the following approximation for W_(-1/e + x),

W_ 1(-1/e + x) = -1 - 2ex - 2ex/3 + 0 (x3 /2)

we are able to bound Rs,b and Rs,,r from above as follows,

Rs,b < (1 - YV) SNR + 1 P + O (SNR+ S ) ,
sr sb SNR + (SNR

Rsr < Rs,b+ y f SNR +Jf +O(SNR'f)
C 2-

-= SNR l +
2 + 0

< OfSNR'

(SNR+min{ 5,s}) .



According to (8.1) and (8.2), we are able to bound the partial and full distortion from

below as follows,

Dp > 1 - (1 - 7) SNR1+ p+ 0 (SNR 1 ,P)

Df > 1 - SNR'+IIf + OSNR +m p}

Applying the definition of distortion exponent for the low outage probability case

(3.1), we are able to bound the distortion exponent from above as follows,

d -< 1 + 6, (8.14)

8.1.4 High Outage Probability Case

We use bp and 6y to denote the partial diversity order and the full diversity order,

respectively, where 6y > 5p > 0. According to the diversity order definition for the

high outage probability case (3.4), it is sufficient to set the constraints on the partial

and full outage probabilities as 1 - 0pSNRP and 1 - OfSNR 6f, respectively, where

Op, > 0 and Of > 0. Using (8.5), (8.6) and the explicit expression for F(x; 4) (8.8), we

obtain the following inequalities on Rs,b and Rs,r,

( 2 (eRs,b - 1) 2 (eRsb - 1) 2 (eRs,b -1)
1 - exp (1 - yeRs,b)SNR (1 - eRs,b)SNR exp (1 - yeRb)SNR - SNR p

exp< 1- xeR b-< (SRSNR
-exp 2 (e ,T-R - 1) exp 2 (eRsNR-Rb - SNR

ySNR ySNR ySNR



where 7y E (0, 1). We are able to simplify the above inequalities as follows,

4 (eR-,b - 1)

(1 - yeRs,b)SNR

4 (eRr-Rs,b 1)
ySNR

< -2 - 2W_1

< -2 - 2W 1

OpSNRP)
e

e

By applying the following approximation for W-1 (x) when x is close to 0-,

+oo00 +oo

W-(x) = In(-x) - In (- In(-x)) + E E
l=0 m=1

Inm (- In(-x))
Cim Inl+m (x)

where cim = ( 1)S(+m+1) and S(I + m, I + 1) is a non-negative Stirling number of

the first kind. Let Pr = -ySNR with y E (0, 1), we obtain the following upper bounds

on the source code rates,

Rs,b < 6pSNR In + ( SNRnln I,
2 SNR SNR

1 ( 1
Rsr < Rb+ Y SNRln NR+O SNRlnln 1

2 SNR SNR

+O SNRlnlnS1) .
SNR

According to (8.1) and (8.2), we are able to bound the partial and full distortion from

below as follows,

1-Sn 1
Dp, > 1- I 2YpSNRln 1

2 SNR
+ O (SNRlnln SR)

SNR

Df > 1- 6P+-;P f SNRln I
( 2 2 SNR

( 1
+0 SNRlnln

SNR

Applying the definition of distortion exponent for the low outage probability case

(3.3), we are able to bound the distortion coefficient from above as follows,

1-y
dp < 6P2 '

df (1-Y 6 +

(8.16)

(8.17)

Y 6P+ 6 SNRIn 1
2 2 SNR



which characterize the distortion coefficients achieved by the MR-based scheme for

the high outage probability case in the low SNR regime.

8.2 Symmetric MD-Based Source-Channel Scheme

with Separate Decoding

The symmetric MD-based source-channel scheme with separate decoding is composed

of the simplified symmetric El-Gamal-Cover source code (reviewed in Theorem 4.3.1

and the remark after that), the V-BLAST channel code structure and a separate

decoder. Since we are dealing with parallel fading channel, the V-BLAST channel

code structure degenerates to separate channel code for each subchannel. Suppose

that the distortion levels requested by the two classes of receivers are Dp and Df

(Df < Dp), respectively. The symmetric MD-based source-channel scheme with

separate decoding proceeds as follows,

1. The simplified symmetric El-Gamal-Cover source code converts the length-N

source sequence s to two length-NRs bit sequences (description ij and i2).

According to the remark following Theorem 4.3.1, to achieve distortion levels of

D and Df, the parameters of the simplified symmetric El-Gamal-Cover source

code need to be configured as follows,

2 Dp

Df( - Dp)
p = -1+2 x

D(1 - Df)

Therefore, the source code rate needs to satisfy the following condition,

1 (1 - Df) 2  (8.18)
R > - log (8.18)

2 4Df(D - Df)(1 - Dp)
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Moreover, the mutual information between sl and s 2 is

(1 - Df)2

I(sl; S2 ) =log 4(1- - D) (8.19)
4(1 - D,)(D, - Df)

2. The two bit streams il and i2 are channel coded and modulated separately and

transmitted on the two input antennas, respectively. To avoid interference at

the receiver, the slots of channel uses are alternated between the two bit streams

(when the first antenna is active, the second antenna is silent and vice versa).

Since only one antenna is active in each time slot, the bit streams are modulated

to the power level of 2SNR. The mutual information between the channel input

and the channel output is

I (xl[n]; y[n] h) = In (1 + 21h 12SNR) ;

3. At the receiver, the following separate decoder is used,

* By comparing the channel output sequence y at time slots when antenna 1

is active with the channel codewords in channel codebook for bit stream 1

according to the joint typicality criterion, the receiver decodes bit stream

1 as i1. Since, the two bit streams share the time slots equally, the sup-

portable rate for the first bit stream is

Rc,1= I (xi[n]; y[n] I h) = In (1 + 2h,12SNR)
2 2

Similarly, the receiver decodes bit stream 2 as i2. The supportable rate for

the second bit stream is

Rc,2 I (X2 [n]; y [n] h 2 ) n (1 + 2h 2 2SNR). (8.20)
2 2

Since hi and h 2 are independent, the supportable rates for the two bit

streams Rc,1 and R,,2 are also independent of each other;



* If Rs < R, 1 and Rs < Rc,1, the receiver outputs the reconstruction se-

quence gc(Sl(il),S 2 (i 2)). Otherwise, the receiver declares a "full outage"

and proceeds to the next step;

* If R, < R, 1, the receiver outputs the reconstruction sequence g1(s1 (i));

If R, < Rc,2, the receiver outputs the reconstruction sequence g2(s2(i2));

Otherwise, the receiver declares a "partial outage" and outputs the all-zero

sequence.

The partial and full outage event is characterized as follows,

Op-- fRc,l < R} n {Rc,2 < Rs ,

The partial outage probability is

P [op]
= P (1h12

= 2 ( ( e 2R s NR)
SNR

where F (-; n) is the cumulative function of x2 random variable.

n = 2, we have that

F(x; 2) = 1 - e- / 2 ,

so the partial outage probability can be expressed as

In particular, for

(8.21)

P[Op] = F 2 (2(e2 R - 1)

SNR
= (1 - exp

(e2Rs -1)

SNR
(8.22)

The full outage probability is characterized as follows,

P [Of] = 1- (1 - P (R,I < Rs))(1- P (Rc,2 < Rs))

2 (e 2Rs - 1)

SNR

Of = Rc,j < Rs U Rc,2 < Rs

= P (Rc, < Rs)P (R,s < Rs)
e2Rs - 1

2SNR ) P (h212 <
e 2 Rs - 1

2SNR

= 1 - exp (8.23)



As in the previous section, we would characterize the distortion-diversity performance

achieved by the MD-based scheme for three different cases, namely the constant out-

age probability case, the low outage probability case and the high outage probability

case. The distortion-diversity tradeoff for these three different cases were defined in

Section 3.2.

8.2.1 Constant Outage Probability Case

We use 6, and 6f to denote the partial diversity order and the full diversity order,

respectively, where 6f > 6p > 0. According to the definition of diversity order for

the constant outage probability case (3.6), the partial outage probability and the full

outage probability should be bounded as follows,

P ] <6, P [Of < 6f.

Plugging in (8.22) and (8.23), we have the following inequalities on Rs,

1 - exp (e2R_ - 2 < 6 ,SNR -)

1- exp (e2R _ 1) < 6f.
SNR

which can be simplified as follows,

1 1 N n1SNRln
Rs < min 2In 1 - SNRIn (1- p)), In 1 In (I - 6)

min{l In .SNR + O (SNR2 , ln 1 n .SNR + O (SNR2)
2 1 4 1 - 6f

= min I In I SNR + O (SNR) , (N

ScSNR (SNR) , (8.4) 4 1 - 6

= cSNR + O (SNR2) , (8.24)



where c = min In 1 ' In 1-
2 1 -V T

The achievable partial and full distortion

levels are characterized by applying Lemma 4.3.3, which we summarize here,

Df max {a, e- 2R,} ,
l+a -a e-2R,

Dp >max e- , 2 2 a-

where a [e- 2R, e-R, . Plugging in the upper bound on Rs (8.24),

simplify the lower bound on a as follows,

e-
2 Rs

e

(8.25)

we are able to

= exp (-2cSNR + O (SNR 2))

= 1 - 2cSNR + O (SNR 2) , (8.26)

and also the upper bound as follows,

e-R

2 - e-R ,

exp (-cSNR + O (SNR 2))
2 - exp (-cSNR + 0 (SNR 2))
1 - cSNR + O (SNR 2)
1 + cSNR + O (SNR 2)

= - 2cSNR + O (SNR 2) . (8.27)

Therefore, it is safe to set a = 1 - 2cSNR + O (SNR 2). According to (8.25), we are

able to bound the full distortion from below by 1 - 2cSNR + O (SN R2), while the

partial distortion is lower bounded as follows,

+ e-2R:
D > max e- 6, - 1- 2 2 a

= max {1 - cSNR + O (SNR 2) , 1 - cSNR + O (SNR 2)

= - cSNR + O (SNR 2) . (8.28)



Applying the distortion coefficient definition (3.5) for the constant outage probability

case, we obtain the following achievable partial and full distortion coefficients

d < c, (8.29)

df < 2c, (8.30)

where
1c=m11 1 1

c = min In - In .
2 1- / ' 4 -f

Note that (8.29) and (8.30) characterize the distortion-diversity tradeoff achieved by

the MD-based scheme for the constant outage probability case in the low SNR regime.

We leave the performance comparison with the MR-based scheme to the next section.

8.2.2 Low Outage Probability Case

We use 6, and 6 f to denote the partial diversity order and the full diversity order,

respectively, where 6, > 6y > 0. According to the diversity order definition for the

low outage probability case (3.2), it is sufficient to set the constraints on the partial

and full outage probabilities as OpSNR 6P and 0fSNR6f , respectively, where O, > 0 and

Of > 0. Using (8.22), (8.23), we obtain the following inequalities on Rs,

,pSNR P > 1 - exp (e2RSNR

0fSNR 6s  > 1 - exp 2 (e2R- 1)
SNR
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Simplifying the above inequalities, we obtain the following upper bound on Rs,

R, < min Iln 1 - SNR In (1 - pSNR P))
1
Sln

'2 ( -
SNR

2 In (1 - OfSNR f))

min SNR'" + O (SNR') , SNR+6f
2 4

/--2SNR l P + O (SNR'+6P)

OfSNR1+6 f + O (SNR 1+26f ) ,

+ O (SNR 1 + 2 f) }

if 6p > 2JS,

if 6P < 256.

The above upper bound on Rs can be summarized as

Rs < cSNR2+max{pa6 } +0 (SNRl+max{6p'26})

= cSNR + + O (SNR 1+ 26) . (8.32)

where 6 = max { S6, 6f }, and the constant coefficient c = ip/2 if 6, > 2 6f and

c = 0f/ 4 if 6, < 2 6f.

summarized here,

In the following, we would apply Lemma 4.3.3, which is

l+a 1 -a e-2R
2 2 1 a

where a e-2R, 2e- Setting Rs to its upper bound (8.32), we can simplify the

lower bound on a as follows,

e-2Rs
e

= exp (-2cSNR ' + + O (SN R'+26))

= 1 - 2cSNR' +6 + O (SNR1+ 26)

and also the upper bound as follows,

e-R, exp (-cSNR ' +6 + O (SNR 1+26))

2 - e- R  2 - exp (-cSNRl +' + O (SNR1+26))

1 - cSNR 1+ + O (SNR 1+2 6)

1 + cSNR 1+6 + O (SNR 1+ 20)

= - 2cSNR+6 + O (SNR 1+ 26) .

(8.31)

Df > a, D >2 max e
-R s , (8.33)



Therefore, it is safe set a = 1 - 2cSNR 1+' + O (SNR 1+26). Applying Lemma 4.3.3,

we are able to bound the full distortion from below by 1 - 2cSNR1 + + O (SNR1+ 26),

while the partial distortion is lower bounded as follows,

f e 1+a 1-a e2R,

Dp > max e- R  2 1- -
2 2 a

= max{1 - cSNR 1 6 + O (SNR 1+26) , 1 - cSNR 1 + + O (SNR 1+26)}

= 1 - cSNR 1+' + O (SNR 1+ 26) .

According to the distortion exponent definition (3.1), we obtain the following achiev-

able distortion exponents by the MD-based scheme,

dp < 1+6, (8.34)

df < 1+6, (8.35)

where

1 i if6p > 26f
6 = max - p, f , if

2 O, if 6, < 26f .

Note that (8.34) and (8.35) characterize the distortion-diversity tradeoff achieved by

the MD-based scheme for the low outage probability case in the low SNR regime.

8.2.3 High Outage Probability Case

We use 6, and 6f to denote the partial diversity order and the full diversity order,

respectively, where by > 6, > 0. According to the diversity order definition for the

high outage probability case (3.4), it is sufficient to set the constraints on the partial

and full outage probabilities as 1 - OSNR6P and 1 - 0fSNR6f , respectively, where

Op > 0 and Of > 0. Using (8.5), (8.6) and the explicit expression for F(x; 4) (8.8), we



obtain the following inequalities on Rs,

1 - OpSNR 6P

1 - OfSNR'f

(e 2
Rs - 1)

SNR

Simplifying the above inequalities, we obtain the following upper bound on Rs,

R, < min

= min

2(
1 1
-6SNRn +0O
2 SNR

- 1 9OpSNRbr)

1
(SNR), 16fSNRln

4

1

1
SNR

In 1 - SNR

+ 0 (SNR)%

In (0fSNR)) }

= min -6
2 P'

1-o
4

1
SNRln + 0 (SNR)

SNR

= cSNRIn + O (SNR),
SNR

(8.36)

where c = min { p6,, 16f }. To characterize the achievable distortion levels, we would

apply Lemma 4.3.3, which is summarized here,

Dja 1?m 6sl+apt 2

1-a e-2Rs
1- 1-

2 a

where a E [e2R , 2e- . Setting Rs to its upper bound (8.36), we can simplify the

lower bound on a as follows,

= exp -2cSNRSNR( 1SNR
+ 0 (SNR)

1
= - 2cSNRln + O (SNR),

SNR

- exp -

S1-exp 2 (e2 R s - 1 )

- SNR



and also the upper bound as follows,

e- R, exp (-cSNR in S + O (SNR))
2 - e-R 2 - exp (-cSNR n I + O (SNR))

1 - cSN R In - + O (SN R)

1+cSNR n 1 +O(SNR)
1

1 - 2cSNR In + O (SNR) . (8.37)
SNR

Therefore, it is safe to set a = 1 - 2cSNR In - + O (SNR). Applying Lemma 4.3.3,

we are able to bound the full distortion from below by 1 - 2cSNR In I + O (SN R),

while the partial distortion is lower bounded as follows,

Dp > max-R l+a 1-a e-2Rs
m 2 2 1- a

S1 1= max 1-cSNRln 1+O(SNR), 1 - cSNRln +O(SNR)
SNR SNR

= 1 - cSNRln + O (SNR) .
SNR

According to the definition of distortion coefficients (3.3), we characterize the achiev-

able distortion coefficients of the MD-based scheme as follows,

d < c, (8.38)

df < 2c, (8.39)

where c = min { 6, 1f).



8.3 Performance Comparison

8.3.1 Constant Outage Probability Case

For given partial and full diversity orders (6p, 6f), the distortion coefficients achieved

by the MR-based scheme are (dp, df) = (Cb, Cr) (8.12) (8.13), where

-1-bW2

cb 7 21- 1)2

-1- f1 -1 - W 1  1)

2c- = - +(1 - -y) 2
2 2

and -y E (0, 1). The distortion coefficients achieved by the MD-based scheme is

(dp, df) = (c, 2c) (8.29) (8.30) where

c = min In - In 1 5 f
2 1 - 4 1 - 6f

The performance comparison between the MR-based and the MD-based schemes are

mixed. When the outage probability is small, the MR-based scheme achieves a better

performance, as illustrated in Figure 8-1. However, when the outage probability is

large, the MD-based scheme wins out, as illustrated in Figure 8-2. In order to

2xl MIMO, D-D Tradeoff

-- MD-SD
MR-SPC

. .... ....... . I .

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
dp, -=0. 16

Figure 8-1: MR-Based Scheme v.s. MD-Based Scheme, Constant Outage Probability
Case, 6p = 0.16 and 6 f = 0. 6 4
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1.6 .
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
dparte partiaK--

0
.
6 4

Figure 8-2: MR-Based Scheme v.s. MD-Based Scheme, Constant Outage Probability
Case, 6, = 0.64 and 6f = 0.96

confirm this observation, we carry out performance comparison in the two extreme

cases where the outage probability either decreases to 0 or increases to 1 as SNR

decreases. We expect the MR-based scheme to wins out in the former case while the

MD-based scheme to outperform in the latter case.

8.3.2 Low Outage Probability Case

For given partial and full diversity orders (6p, 6f), the distortion exponents achieved

by the MR-based scheme are (dp, df) = (1 + 6,, 1 + f) (8.14) (8.15), while the

MD-based scheme achieves distortion exponents of (dp, df) = (1 + 6, 1 + 6) (8.34)

(8.35), where 6 = max 6,, 6f}. Since

1 1 1 1
2 6 <max 2 6p, f - f < 6 f < max 26p 6f '

we conclude that the MR-based scheme outperforms the MD-based scheme in the low

outage probability case. This extreme case confirms the observation we made in the

constant outage probability case (Figure 8-1).



8.3.3 High Outage Probability Case

For given partial and full diversity orders (6,, f), the distortion coefficients achieved

by the MR-based scheme are (8.16) (8.17)

(dp, df)= ~p6, I7 S P + 2 )6

where 'y E (0, 1). The MD-based scheme achieves the following distortion coefficients

(8.38) (8.39),

(dp, df) = min { , S 65, 6) }. (8.40)

Lemma 8.3.1 (High Outage Probability Case). For the high outage probability case

in the low SNR regime, the MD-based scheme outperforms the MR-based scheme from

the perspective of distortion-diversity tradeoff.

Proof. To show that the MD-based scheme outperforms the MR-based scheme, we

only need to show that both (LS , 6p) and (16f, !wf) lie above the achievable (dp, df)

boundary of the MR-based scheme. Note that the (dp, df) boundary of the MR-

based scheme is a line segment connecting (1P,, 1,p) to (0, 13). Clearly, the point

( 1p, Op) lies above the line segment, since (lop, 3p) > (lop, lIp). To show that

the point (lf, 13f) also lies above the line segment, we find out the corresponding

point on the line segment with the same d,, which turns out to be

26 (p I ( 2/3P) (Of 1) ( Of + (fp - Of)) < (f f

Since both ( 6,, 6,) and (6Sf, 6f) lie above the achievable (dp, df) boundary of

the MR-based scheme, the (dp, df) point achieved by the MD-based scheme also lies

above the the achievable (dp, df) boundary of the MR-based scheme. Therefore, we

conclude that, for the high outage probability case, the MD-based scheme outperforms

the MR-based scheme. l
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Chapter 9

Conclusions and Further Directions

The new performance metric we have proposed in this paper, the distortion-diversity

tradeoff, provides more detailed characterization of source-channel schemes. In essence,

the distortion-diversity tradeoff is a re-parameterized version of the cumulative distri-

bution function of the end-to-end distortion level achieved by source-channel schemes.

This performance metric is in significant contrast to the traditional average distor-

tion performance metric, which is essentially the statistical mean of the end-to-end

distortion level. We have demonstrated the effectiveness of this distortion-diversity

tradeoff framework by revisiting the two source-channel coding schemes that have

been studied in [25], the MR-based and the MD-based source-channel schemes. In

[25], the authors conclude that the average distortion exponent achieved by both

schemes are identical. However, our results in Section 6 provides more operational

intuitions. Therefore, the distortion-diversity tradeoff could be used as a powerful

tool to study source-channel schemes.

Aided with the distortion-diversity tradeoff framework, we propose a triple-level

source-channel scheme to unify the MR-based and the MD-based schemes. Though

the triple-level scheme seems to include both the MR-based and the MD-based schemes

structurally, it is not true that the triple-level scheme includes the two double-

level schemes as special cases, due to the rate explosion issue. However, within the

distortion-diversity framework, we are able to show that the triple-level scheme does

indeed include both double-level schemes as special cases. Therefore, we conclude



that the triple-level scheme unifies the MR-based and the MD-based schemes from

the distortion-diversity perspective.

Another interesting observation is that the specifically designed channel codes do

not necessarily provide good end-to-end performance. In our study of the double-class

broadcast network, we found that the superposition channel codes, usually regarded as

good channel codes, limits our choice in source code and do not universally outperform

the MD-based scheme. This performance comparison is demonstrated in Figure 6-

3. One drawback in this comparison is that a joint source-channel decoder has to

be implemented at the receiver for the MD-based scheme. However, we provide

one example showing that a joint-source channel decoder is not always necessary for

MD-based scheme to outperform MR-based scheme. In particular, we consider a

2 x 1 MIMO channel in the low SNR scenario and demonstrate that the MD-based

scheme could outperform the MR-based scheme without breaking the source-channel

interface.

Here are some future directions that could emerge from the results reported in

this paper,

* Extend the distortion-diversity tradeoff to general MIMO channel models. How

would the performance of the MR-based scheme compare with that of the MD-

based scheme?

* Extend our single-block analysis to multiple-block scenario and compare differ-

ent source-channel scheme within the distortion-diversity framework.



Appendix A

Two Useful Lemmas

The outage events in the high SNR regime often reduce to the following form,

{Z(1-,)+<0}, SCZ + . (A.1)

A typical example of S in this paper is a subset of {(i, 1), i = 1, 2, 1 = 1, ... , L}. In

this paper, we only need to deal with the ISI = 1 and SI = 2 cases, as we focus on a

single fading block, which only has two fading coefficients hi and h2. However, the

general form (A.1) is useful in dealing with multiple fading blocks, which have more

than two fading coefficients. In this section, we provide two lemmas to characterize

outage events in (A.1). The first lemma reduces (A.1) to a simpler format, from

which one could easily read off the boundary of the outage event. The second lemma

characterizes the minimal value of Zse a, in (A.1), which is essentially the diversity

order of the outage event (A.1).

Lemma A.0.2 (Boundary of { E s(1 - a,)+ < 0}). Let S be a set of finite size.

Let Sk denote the size-k subset of S (k = 0, - -- , IS). For positive a, (s E S) and

0 < 0 < ISI, the outage event in (A.1) can be expressed as follows,

(1 - a )+ < 0  - (1 - as)+ < 0 n=  n >k- . (A.2)
se s k=[0 Sk SSk



Remark A.0.3. For the sake of clarity, we illustrate the special case of S = {1, 2}

in Figure A-1.

(-a,) + -a,)

\ I<0<2

0<0<1

a, +a 2 =2-0

Figure A-1: Illustration of (1 - a,) + + (1 - a2) + < 0

Proof. Without loss of generality, we let S be the index set Z(n) = {1, - -- , n}, where

the set size n e N+ . The proof proceeds by mathematical induction in the set size n.

The induction step is detailed in the following.

Suppose that (A.2) holds for set S of size up to n. We need to show that (A.2)

also holds for I(n + 1) = Z(n) U {n + 1}. We abbreviate Z(n) and its size-k subsets

as I and k respectively, where k = 0, - - , n. We also Z(n + 1) and its size-k subsets

as ' and Zk respectively, where k = 0,- - , n + 1. Since

(1 - n+l) - {= 1 - ,

O,

if an+1 < 1,

if an+1 > 1,

we are able to express { EiE, (1 - ai)+ <0 } as the following union of two sets,

n+ > L (1 - Oi)+ < U 1n+I < (1 Oi)+ < - (1 -O+l)

i{ iEl
(A.3)

Since (A.2) holds for all sets of size up to n, it should apply to I. Therefore, we can



express the first term on the right hand side of (A.3) as follows,

Sa,+ > 1, Z(1 - ai) < 0

k= [o] 1
k iElk

, > I E >[U{n+1} 01 0
-T1 - Eiee-iUfn+1}

nNNS ai>k-0, YS
k=[r0 1 k iEk i EkU{nl- 1}

= fn> 1i nna>k-0

Sk + - 0}}

Step (A.4) follows from the induction assumption that (A.2) holds for all sets of

size up to n, which include I. Step (A.5) can be shown in two steps. On the one

hand, (A.4) clearly includes (A.5) as a subset, since every set that shows up in the

intersection of (A.4) also shows up in the intersection of (A.5). On the other hand,

we need to show that (A.4) is also a subset of (A.5). Firstly, since a,+l > 1 implies

an+ 1 > [01 - 0, which together with ai > 0, implies that iE Zrol_1un+ aQ > [r ] - 0

for any Irol-1, we then have that

a,1 > 1} C an+1 > 1, n i ,Zli> [0] - 0

rl-1 foj- 1U{n+1}

(A.7)

Secondly, for each Zk, ieik ai > k-0 and an+I > 1 imply ZiZkUl{+ 1 ai > k+1-0,

we then have that

SIII II
i a > k-0 }c >k-0, E

iEEkU{fn+l}

ai>k+l-0 }

(A.8)

Combining (A.7) and (A.8), we have that (A.4) is also a subset of (A.5). Therefore,

(A.4)

(A.5)

(A.6)



the equality in (A.5) follows. Step (A.6) follows by noting that

{Zk, U n + 1},

The second term on the right hand side of (A.3) can be expressed as follows,

= {ol

J-(1
iEZ

- 0< Can+ 1

U {n+1 < F01 - 0,

- ai)+ < - (1

n nE(1-an+1)1 Ik iE-Tk

1, n
k=[O] 'k ie

III

n nk= [01 - I k iE

- an+)}

ai > k - 0 + (1 - an+l)

E ai > k + -O 0
kU >n+1 -

157.ai >k + -
TkU{n+i} J

Step (A.10) follows by applying (A.2) to { iez(1 - ac) + < 0 - (1 - a,+l) }. Step

(A.11) follows by breaking a,n 1 < 1 into two regions: if [o] - 0 < a,_1 < 1, then

[r - (1 - an+i)] = [0], while if an+l < [0 ] - 6, then [r - (1 - an+l)] = [0] - 1.

Now, let us consider the first term of (A.11).

nirol-, {EiEIrOl- u{n+1} ai > [01

Firstly, since an+1 > [0] - 0 implies

- 0}, we have that

{ [o - 6 < an+1 5 1} = [r1 - 0 < aln+1 1,0 Z
rol-1 ielro1-U{n+1}

S> ] - o}}

(A.12)

Secondly, since [0] - 0 < Cn+1 < 1 and fk= [o1 lzk {iEJ-kU{n+} cY >

k=n+1.
(A.9)

an+1 < 1,

-On+I __ 1, (A.10)

(A.11)

k+l1 -

I z}=

k=[o-

}



imply nik=o] [lk {iZ k ,i > k - 0}, we then have that

[o - <an+<1, n n ai>k+l- 0
k=f01 Zk iE TkUf+1}

[0] -- < an 1 <1 n ai>k+ ai> - 0, ai >k-4.
k=r0] k i1 kU{n+1} iEk

Combining (A.12) and (A.13), we can express the first term of (A.11) as follows,

FO] - <a < n+l < i n oai>k+1- -O
k=[O] 1 k iEZkU{n+1}

fO1 -0 < zn+1 < 1, n n ai > F0l -o
k=[0]-1k iE-kUfn+l }

knNF1 n ai>k+1-0, Za > k-0
k= [O] Ik iEkU(n+l} iE)k

= [0] - <an+l<1, aN r i>k-O (A.14)
k=[O] -' iEZl'

where the last step follows from (A.9). Now, let us consider the second term of (A.11).

Since an+l < [0] -0 implies a,+l < 1, which, together with iEkU{n+l} ai > k+1-0,

implies that iZ-ik ai > k - 0, we then have that

an 1 < [F] - o, n n 1: ai > k + 1 - 0
k=[l k iEzkU{Un+l)

S an+, < 0] - 0, ai >k+1-0, ai >kk-O }
k= [0] Ik iEzkUn+l} iEzk



Therefore, we can express the second term of (A.11) as follows,

{an+i < FO1 - 0,

= a{On+ 1 < F1] - 0,

= an+l < [9] - 9,

k= rO -1 Ik iCEkU{n+1}

I"

k=lO]-1 Ik i ku{n+l}

III

n n a > k -
k= [01 I' i El

ai > k+1-

i > k + 1 -

0}

0

k= [1 Zk ikk

,

where the last step follows from (A.9). Combining (A.6), (A.14) and (A.15), we have

that

{Z(1

= cl~

o)+ <9}

>1,

k= O i ie2l
ai > k-9 U {[0] - < a,+1 < 1, n n Zia > k-

k= [O] I iEl

U an+ < [0] - 0,

k=l] z ie z

= [a ,> k -
{k={I' ~k

a > k -

9} 1 ,

where the last step follows by applying the distributive law of set algebra, (A n B) U

(An C) U (An D) = An (BuCU D), where

A= n n a >ik-
k=[O I 1 iE k

0}

and

B = {an+ 1 > 1} , C = {f [ - 0 < an+l < 1} , D = {an+1 < []1 - 0}

oi > k - 9

(A.15)



Lemma A.0.4. Let S be a finite set and as(s E S) be positive.

of the outage event { ss(1 - as)+ < 0} is,

min a, IS- -0,
sEs(1-a )+<O EsES

min E as
S(1-a)+< sES

Lemma A.0.2

S0< <ISI

min
Nk=rol NsEsk

5as
Os>k-01 Es

_> max min as
Sk sES k as>k-O

k=[ ,--. ISl sES

= max k -0
k=[O ,--. ,ISl

Isl- 0,

which can be achieved by a, = 1 - (V s E S).'SI

The diversity order

Proof.



94



Appendix B

Proof of Lemma 6.1.1

Proof. The partial diversity order can be simplified as follows,

a i>0, i= 1,2 ((1-
min E ai
ai)+ -(1-3-ai)+ )<d i=1,2

min ai
ai !O) i=l, 2(,3-(-(1ai))+)<dp i=1,2

min
ai20, Ei= 2(-(1-ai)+)+ >2 -dp

I a ,
i=1,2

min
i, U,= r2-dp/ USk {Z es (1-aj)+<k/-(2 3-dp)

min
k=[2-dp/],--- ,2

min
k=[2-dp/0],.. ,2

min min
Sk ai>O, EiCSk (1-ai)+<kp-(20-dp)

k(1 -/3) + (20 - d,)

(2 - dp) + F-dpl/] (1 - 0),

where 0 < dp < 2/. Note that step (B.1) follows from the following equality,

(1- ai,) - (1 - a, - )+ = - ( - (1 - a,)+) +

Lemma A.0.2

(B.1)

Lemma A.0.4
= _.

E ai
i=1,2

i=1,2
i=1,2

6 (dp, df, p)



Similarly, the full diversity order can be simplified as follows,

min {6(dp, df,f), 6'(dp, df, ) }

min {p(dp, df, 3),

min {p(dp, d, f ),

-0F- i=1,2(1- -ai) + i=1,2min Ci

m0, i Ei=1,2(1- )+p< -=1,2
_ 2 _' -: i= 1 ,2

Lemma A..4 min{ 6(dp, df, ), 2(1 - ) - (df - dp)},

where 0 < df - dp < 2(1 - 13).

6f(dp, df, P)



Appendix C

Proof of Lemma 6.2.1

We first repeat Lemma 6.2.1 as follows,

Lemma C.O.5. The symmetric MD-based source-channel scheme achieves two levels

of distortion exponents dp, df with the following diversity orders,

J, = 2-df,

b5  = min 2-df,1 df - dP

where 0 < dp < df < 2.

Proof. By applying Lemma A.0.2, we simplify the full outage event as follows,

Of (d, df) d, + df
2

(1 - a~i) +)

2
d +d(1
dp +df

-a)+)

> dp

2dp
dp + df

= U {(1-ai)+ <

i=1,2

= u o u UO,

df - d,

{ (1 - ozi)+ <i=1,2

i=1,2
df, (C.1)

i=1,2



where

i=1,2

Li=1,2

df - dp}

- a)+ < d

i = 1,2,

By applying Lemma A.0.4, we derive the full diversity order as follows,

f = min ai
Of i

min min ai, min a,O0/
2

min ai
3

= min 1

= min {1

df - dp
,12

df - d

2

df - d 2-,22

- df.

Similarly, with the following notation,

Oi = (1 - ai)+ < d, + d

we can simplify the partial outage event as follows,

Op (dp, df) = ni=1,2 {(1- ai) + d, + d}

= O1 n 02n Of

(01 n 02) n (o1 u O2 u O)

distributive(1 n 2 n 0')u(01 2 n 0 u(01 n 2 n )

ooco,ooco1

o'nO2CO

distributive

022CO

( 0 2)u (01 n 0) u (01 n 02 n )

(of n 02n ol) u (Oo n 2 n o1 n02n o')

((On 0 2) U (01 n O) u (O1 n 0 2)) n O

1 n 2 n O'.

- d}

(C.2)

n o (Dp, D f)



Therefore, the partial diversity order can be lower bounded as follows,

6, min a
Op

min Ci
OinO2nO3 i

> max min ai, min ai,
/ i

Lemma A.0.4 a df - dp df - dp
2

min
O

ati

2 - df

2 2-df .

Moreover, this lower bound is achieved by al = a2= 1 - df/2. Hence, we conclude

that 6, = 2 - df. Ol
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Appendix D

Proof of Lemma 7.0.1

Proof. Preceding Lemma 7.0.1, we have obtained the following expressions for the

partial, full and refinement outage events,

- limS

i=1, 2

Rs,b

log SNR
- g(ai,))

- Of(dp, df, d, 13) n ni=1,2 {(i, /)

- Of(dp, df, dr,) U { (1- 3- a)+
Si=1, 2

> lim I(Sb,1; sb,2)
SNR-oo log SNR

lim Rs,b

NR - oologSNR '

log }
< lim ogSR

SNR-cmlogSNR

where

g(a, 3) = (1 - ai) - (1 - / - ai)+

In the following, we treat two cases, dp < df and dp = df, separately.

characterize the full outage event and diversity order.

e Case 1: 0 < dp < df < dr. The full outage event is

lim sb limi,
SNR-*oo log SNR (

> lim I(sb,1; Sb,2)
SNR-oo log SNR

101

O (dp, df, dr, /)

Op(dp, df, d,, p)

Or(dp, df, d,, p)

We first

Of(dp, df, d,, p)



Let D = SNR - dp, D = SNR - df and DR = SNR -dr. Since 0 < dp < df < dr,

lim Rs,b dp + df
SNR-coo logSNR 2

The full outage event is then simplified to be

Of(dp, df, dr, 3)
d, + df

2
- g(ail 0))

2

2 + d
d -dp

P3) < d

2d,

dp + df

U { g(ai,3) <
i=1,2

where, in the last step, we have applied Lemma A.0.2. The first term can be

simplified as follows,

g(ai, ) -d, }P) < )+)+ < d d

= {-(= {( -
(1 - 'i) +) > ,

1
-(1
0

- ai)+
> df - dp> 1 -2

2P

while the second term can be simplified as follows,

i=1,2 ) <df

(1 - ai)

I(Sb,1; Sb,2)SNR-lim = dSNR
SNR-+oo log SNR

> dp

- Ui= 1,2

=Ui=1,2 9t' df

{i=1,2

{i=1,2

i=1,2

df> 2- 
-

0

102

i= 1,2

(,f - (, - (1- j) +) + ) <df}

(f - (I - ai)+) + > 20 - dr}

1 -



Therefore, the full outage event reduces to

Of(d, df, d, d )

1- Ui=1,2{ ( (1-i

{ai > 0} ,

Ui=l,2 ( i 

U {Ei=1,2(1 - ai)

Ui=1, 2 (1 - ai) <

>1 df - dp I2

df2 p IU i=1,2 ( 1 - <i) + < df -13}

<dl

a2p } i=1,2(1- ai)+ < d} ,

(1- ai)+)

if/3 < d2

if - </3 < df,

if /3> df.

Hence, the full diversity order is characterized as follows,

sf(dp, df, d,, p) min { 1

min { 1

- df~, 1 + P - df, 2 -

-dfdp 2 - df}

0,

min{1 - d  1 +l - df}

min{1 df, 2 - df,

if3 < d,

if f <3 < df,

if /3> df,

since ) < 1 implies that 1 + - df < 2 - df;

If 0 < d = df < d,, we let d dp = df, Dp = SNR - d, Dr = SNR - dr and

- lim log) =+8,SNR--oo log SNR
8>0,

where we essentially characterize that the second smallest exponent of Df is d+

0. With this distortion assignment, we have the following rates characterization,

Rs,b - (d + 8/2) log SNR,

Rs,, - (d, - df) log SNR,

I(Sb,1;Sb,2) - (d + 0) log SNR.
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d>
02

df

if/3 <

if < < df,

if p > di.



The full outage event is then characterized as follows,

Of(dp, df, d,, #)

- g(aj, 3)) > lim I(Sb,1; Sb,2)
SNR--oo log SNR

0
(d + )

2

Lemma A.0.2

i= 1, 2

- g(ai, ))

{ai > O} ,

Ui= 1,2 {(1 - ai) + < d - U i=1,2(1 ai)+

{-i=1,2(1- Ci)+ < d}

< d}

if/3 <

if </3 < d,

if /3 > d.

Therefore, if 0 < dp = df ( d) < d, the full diversity order is

1+P-d,

2-d,

if/3 < d

if 4 </3 < d,

if >d.

The partial outage event and the partial diversity order are characterized as follows,

If 0 < dp < df < d,, we let Dp = SNR -d , Df = SNR - df and DR = SNR -d r

The partial outage event is characterized as follows,

Op,(dp, df, dr, /3)

= O(dp, d, d, p) n ni=1,2 {g(, )

{(oi, 0) <
df - d

U 1 g(ai ,) < df) n ni=1,2 {g(i, )< d+ d) }

g(vi, /) < df nn i=1,2

lim
SNR-*oo

{i=1,2

i=1, 2

Rs,b

log SNR

> d + 0

d}

2/ - d

{

dp + df

2

i=1,2

ai' /) dp + df

2
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Y= (0 - (I - ai) +) +>
Si= 1, 2

= Ui=1,2



where the last step follows since U {g(ai, /) < dfd } together with ni {g(a, /) <

implies i =1, 2 g(ai, 0) < dr. The partial outage event can be further simplified

as follows,

) < df n fni=1,2 9(ti, /3)= g( a,
i= 1, 2

df

dp + d

2

n ni=1,2 { (/3- (1 -

- ({21

{ai > 0},

=i=1,2 (1

i=1,2 (i

> 2 - ,

>2- n i1> 2 - L n i=1,2 (113t -ai)+ < d+df

ifd </3< d.

if >dp+df
if/3> 2~

which can be further categorized as follows,

{ai > 0} ,

Ui=1, 2 {(1 - 1}U { i=1,2 (1 - ai) - <
df}

U {-i=1,2 (1 - ai)+ <Ui=1,2 (-i)+ < - 1

i=,2 (1-- i)+ < d+d

{ i=1 ,2 0(1- i) n< n n

{ai > 0}

Ui=1, 2 ( ( - 1}
i=1,2 (1 - )+

i=1,2 {(1 - )+

U {Ei=1,
2

<dp+df
2

- aO)+ <}

n ni=1, 2 (1- ai)+ < d2df

if3 < d~2

if-f < < df

if/3 > dr.

ifl .L

if L < < d,

ifp > f2
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2+df
2

(p(dp, df, d,, 0)

0 dd}2- ai) +)+ > 20 -

- ai)+)- (1Mi0\

- (1 - ai) +

- ai)+ <



Therefore, the partial diversity order is

0,

jp = min{l+P-df,2-d} ,

max1 - ,+df 2-df

if 3 <

if <P< d ,+d

if >

1 +0-df, if < /3 < d

2 - df, if/ > dp+df2

SIf 0 < dp= df < d , we let d dp = df, Dp = SNR - d, D=

lo g(D, - Df)- lim log(Dp D) =d+ 0,SNR---+oo log SNR

SNR-d" and

S>0,

where we essentially characterize that the second smallest exponent of Df is

d + 0. The partial outage event is then characterized as follows,

Op(dp, df, dr, 13) = Of (dp, df, dr, /3)n ni=1,2 {g(a , 3) <

Z (d +4
i=1,2 i /

E g(ai, )3) <
i=1,2

- (anil,2

d n ni=1,2

> d + 0

S(ai,
n ni=1,2 {g(ai, /3)

/3)< d+
20

g(oa, /) <d}

d}= (0 - (1 - ai) + ) > 2 / -
i=1,2

{ai > 0} ,
Ui=1,2 {(1 - i)+ < d - U

Ei=1,2(1- ai) + <d}

{Ei=1,2(1 -i) +

106

(D.1)

0}

<d}

if /3< 2'

if~ </3

if/> d.

<d+~2

=1,2



Therefore, the partial diversity order is

0, if/3 < ,

1 + p - d, if < p < d, (D.2)

2- d, if 3 > d.

Note that the partial diversity orders (D.1) and (D.2) are essentially the same. There-

fore, for dp, df < dr, the partial diversity order is

0, if 3< df

1+/3-df, ifL </< ,2

2 - df , ifp > dp+d2

The refinement outage event is characterized as follows,

Or(d , df, d,, 3) = Of(dp, df, d,, )

= Of(dp, df, d,, ) u

Of (d,, df, dr, ) U {a~i 0 ,}

Of (dp, df, dr,, ) U (Ui=1, 2 c i > (1 - )- (dr - df)

U{Ei=1,2ai > 2(1- /3) - (dr - d)) ,

if 1 - p < dr - df,

if 1 - p > dr - df.

Therefore, the refinement diversity order is

6r = 0,
min (6 f, 2(1 - P) - (d, - df)} ,

if 1 - 3 < dr - df,

if 1 - 3> dr - df .
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6P =

df

{i=1,2

a1 ) +

1-0

dr - df
1-3

(1 - / - ai)+ < dr -
Li= 1, 2



108



Bibliography

[1] E. Biglieri, J. Proakis, and S. Shamai, Fading channels: information theoretic
and communications aspects, IEEE Transactions on Information Theory, Vol. 44,
No. 6, pp. 2619 -2692, October 1998.

[2] T. Marzetta and B. Hochwald, Fast transfer of channel state information in
wireless systems, IEEE Transactions on Signal Processing, volume 54, issue 4,
April 2006.

[3] M. Medard, The effect upon channel capacity in wireless communications of per-
fect and imperfect knowledge of the channel, IEEE Transactions on Information
Theory, Vol. 46, No. 3, pp. 933 -946, May 2000.

[4] L. Ozarow, S. Shamai, and A. Wyner, Information-theoretic considertations in
cellular mobile radio, IEEE Transactions on Vehicular Technology, Vol. 43, pp.
359C378, May 1994.

[5] L. Zheng and D. N. C. Tse, Diversity and multiplexing: a fundamental tradeoff
in multiple antenna channels, IEEE Transactions on Information Theory, Vol. 1,
No. 8, August 2002.

[6] D. N. C. Tse, P. Viswanath, and L. Zheng, Diversity-multiplexing tradeoff in
multiple-access channels, IEEE Transactions on Information Theory, Vol. 50,
No. 9, September 2004.

[7] T. M. Cover, Broadcast channels, IEEE Transactions on Information Theory,
Vol. IT-18, No. 1, January 1972.

[8] S. Dusad, S. N. Diggavi, N. Al-Dhahir, and A. R. Calderbank, Diversity embedded
codes: theory and practice, IEEE Journal of Selected Topics in Signal Processing,
Vol. 2, No. 2, April 2008.

[9] S. N. Diggavi and D. N. C. Tse, Fundamental limits of diversity-embedded codes
over fading channels, IEEE International Symposium on Information Theory,
Adelaide, Australia, pp 510-514, September 2005.

[10] S. N. Diggavi and D. N. C. Tse, On opportunistic codes and broadcast codes with
degraded message sets, IEEE Information Theory Workshop, Lausanne, Switzer-
land, pp 227-231, March 2006.

109



[11] S. Shamai (Shitz), A broadcast strategy for the Gaussian slowly fading channel,
IEEE International Symposium on Information Theory, pp. 150, June 1997.

[12] S. Shamai (Shitz) and A. Steiner, Single user broadcasting in a MIMO channel,
IEEE Information Theory Workshop, pp 38-41, April 2003.

[13] T. M. Cover and J. A. Thomas, Elements of information theory, New York:
Wiley, 1991.

[14] C. E. Shannon, A mathematical theory of communication, Bell System Technical
Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.

[15] W. H. R. Equitz and T. M. Cover, Successive refinement of information, IEEE
Transactions on Information Theory, Vol. 37, No. 2, March 1991.

[16] B. Rimoldi, Successive refinement of information: characterization of achievable
rates, IEEE Transactions on Information Theory, Vol. 40, No. 1, pp. 253-259,
January 1994.

[17] M. Effros, Distortion-rate bounds for fixed- and variable-rate multiresolution
source codes, IEEE Transactions on Information Theory, Vol.45, No. 6, Septem-
ber 1999.

[18] V. K. Goyal, Multiple description coding: compression meets the network, IEEE
Signal Processing Magazine, Vol. 18, No. 5, pp. 74-93, September 2001.

[19] H. Witsenhausen, On source networks with minimal breakdown degradation, Bell
System Techical Journal, Vol. 59, No. 6, pp. 1083-1087, July-August 1980.

[20] J. Wolf, A. Wyner, and J. Ziv, Source coding for multiple descriptions, Bell
System Techical Journal, Vol. 59, No. 8, pp. 1417-1426, October 1980.

[21] L. Ozarow, On a source coding problem with two channels and three receivers,
Bell System Techical Journal, Vol. 59, No. 10, pp. 1909-1921, December 1980.

[22] H. S. Witsenhausen and A. D. Wyner, Source coding for multiple descriptions
II: a binary source, Bell Lab Techical Report TM-80-1217, December 1980.

[23] A. El Gamal and T. M. Cover, Achievable rates for multiple descriptions, IEEE
Transactions on Information Theory, Vol. IT-28, No. 6, pp. 851-857, November
1982.

[24] M. Effros, R. Koetter, A. J. Goldsmith, M. Medard, On source and channel codes
for multiple inputs and outputs: does multiple description beat space time? IEEE
Information Theory Workshop, San Antonio, Texas, pp. 324-329, Oct. 2004.

[25] J. N. Laneman, E. Martinian, G. W. Wornell and J. G. Apostolopoulos, Source-
channel diversity for parallel channels, IEEE Transactions on Information The-
ory, vol. IT-51, no. 10, pp. 3518-39, Oct. 2005.

110



[26] S. M. Alamouti, A Simple Transmit Diversity Technique for Wireless Commu-
nications, IEEE Journal on Selected Areas in Communications, Vol. 16, No. 8,
October 1998.

[27] P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, V-BLAST:
an architecture for realizing very high data rates overthe rich-scattering wireless
channel. URSI International Symposium on Signals, Systems, and Electronics
(ISSSE), Pisa, Italy, pp 295-300, Sep. 1998.

111


