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We study general Lorentz invariant theories of massive gravitons. We show that, contrary to the

standard lore, there exist consistent theories where the graviton mass term violates Pauli-Fierz structure.

For theories where the graviton is a resonance, this does not imply the existence of a scalar ghost if the

deviation from a Pauli-Fierz structure becomes sufficiently small at high energies. These types of mass

terms are required by any consistent realization of the Dvali-Gabadadze-Porrati model in higher

dimension.

DOI: 10.1103/PhysRevLett.101.171303 PACS numbers: 04.60.�m, 11.10.Kk, 11.10.Lm, 11.30.Cp

Introduction.—The current accelerated expansion of the
Universe is arguably the most relevant observation in
modern cosmology. The fact that it might be signaling a
failure of General Relativity (GR) at large distances is a
compelling idea that motivates the investigation of large
distance modifications of gravity. Since GR is the unique
consistent theory of massless spin 2 field, whose low
energy limit is fixed by the principle of invariance under
general coordinate transformations, any infrared modifica-
tion of GR requires some sort of mass for the graviton.

The subject of massive spin-2 fields traces back to the
classical work of Pauli and Fierz [1]. At quadratic order
around a flat background, there are two possible mass
terms compatible with Lorentz invariance,

V ¼ M2
4

4
½m2

PFh
��ðh�� � ���hÞ þm2h2�; (1)

where h�� is the metric fluctuation and h ¼ h��. The

celebrated Pauli-Fierz (PF) mass term [1] corresponds to
m ¼ 0. Because of the mass, h�� propagates more degrees

of freedom than in the massless case (2). In the PF case, the
graviton has five polarizations while when also m � 0,
there is an extra scalar. This can be seen as follows. The
scalar longitudinal degree of freedom of the graviton can
be isolated performing the diffeomorphism [2],

h�� ¼ ĥ�� þ
2@�@��

m2
PF

: (2)

The mass term (1) is not invariant and generates a kinetic
term for the scalar,

��L¼M2
4

�
m2

m2
PF

ðh�Þ2þ�ð@�@�ĥ���hĥÞþ . . .

�
: (3)

For m ¼ 0, the scalar obtains a (healthy) kinetic term by
mixing with the transverse polarizations of the graviton
[2]. For m � 0, � acquires a four derivatives kinetic term
signaling the presence of a second scalar. The higher
derivative structure in fact implies that this extra degree

of freedom is a ghost. For this reason, graviton mass with
structure different from PF is normally discarded.
The purpose of this Letter will be to show that this

conclusion does not hold in general and that non-PF mas-
sive gravity theories can be consistent if the graviton is a
resonance. This corresponds to the case where the mass
parameters depend on the energy scale which is natural
from the point of view of extra dimensions. In fact, the only
Lorentz invariant nonlinear theories of massive gravity
known to date resort to extra dimensions. The prototype
of these types of theories is provided by the Dvali-
Gabadadze-Porrati (DGP) model [3] where five dimen-
sional gravity is localized on a codimension one defect
by means of a brane kinetic term for the graviton. An
important feature of these geometrical models is that the
tensor structure depends on the number of extra dimen-
sions. For instance, one can show that the DGP model
describes a graviton resonance with a mass term of the
PF form [1]. The higher dimensional generalizations of
DGP [4] require a different mass term, and essentially for
this reason, they were thought to be inconsistent. Recently,
however, a counterexample was presented where a ghost-
free model in 6 dimensions was constructed [5]. As we will
discuss, this can be understood as the first realization of a
consistent non-PF massive gravity theory.
Consistent massive gravitons.—The basic reason why it

might be possible to find a ghost-free theory of non-PF
massive gravitons is due to the fact that such a theory is
equivalent to a scalar-tensor theory. From the point of view
of the irreducible representation of the Lorentz group, the
spectrum can be decomposed into scalars and PF massive
gravitons. Since they belong to different representations, it
is consistent with Lorentz symmetry to change the UV
behavior in Eq. (3) that is responsible for the presence of
ghosts. To show how this works, let us consider mass terms
of the form (1) where we assume in general thatmPF andm
are scale-dependent functions. Adopting a parameteriza-
tion similar to [6], by Lorentz invariance this implies that
mPF andmmust be functions of the d’Alembertian,h. The
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connection with scalar-tensor theories can be realized in-
tegrating in a scalar field in the action,

L ¼ M2
4

4
½h��ðEhÞ�� �m2

PFh
��ðh�� � h���Þ�

þ ��hþ ��2 þ h��T�� (4)

[here, ðEhÞ�� ¼ hh�� þ . . . denotes the linearized

Einstein tensor]. This is equivalent to the non-PF massive
graviton (1) if �2 ¼ m2M2

4�. We now perform the diffeo-
morphism (2) followed by a rescaling of the metric,

h�� ¼ ~h�� þ���� þ
2@�@�

m2
PF

�; (5)

where the shift of the metric is chosen in order to remove
the kinetic mixing term �ðEhÞ in Eq. (3). One obtains

L ¼ M2
4

4
½~h��ðE ~hÞ�� � ~h��m2

PFð~h�� � ~h���Þ�

þ ��

�
~hþ 4�þ 2h�

m2
PF

�
þ ��2 þ 3M2

4

2
m2

PF�
~h

þ
�
~h�� þ���� þ

2@�@�

m2
PF

�

�
T��: (6)

By choosing � ¼ � 3
2M

2
4m

2
PF, we cancel the mixing be-

tween � and h, and we arrive at

L¼M2
4

4
½~h��ðE ~hÞ��� ~h��m2

PFð~h��� ~h���Þ�þM2
4

2
�O�

þ
�
~h��þ����þ

2@�@�

m2
PF

�

�
T��; (7)

with O � 9

2

m4
PF

m2
� 3ðhþ 2m2

PFÞ: (8)

Therefore, the non-PF graviton can be rewritten in terms of
a PF graviton and a scalar decoupled from each other, in
agreement with [6]. Note that an analogous decomposition
is impossible for the scalar longitudinal component of a PF
graviton because this polarization belongs to the same
representation of the Lorentz group. The propagator of
non-PF graviton can be reconstructed using Eq. (5) in
terms of PF and scalar propagators. We can also read off
from (7) the amplitude for the exchange between two
conserved sources,

A ¼ 1

M2
4

�
T��T

0�� � ð1=3ÞTT0

h�m2
PF

þ 1

2

TT0

O

�
(9)

where the first contribution corresponds to the massive PF
graviton contribution and the second to the scalar
exchange.

More in general, for massive gravitons, gauge invariance
does not demand conservation of T��. However, the non-

conserved part is still constrained and has to vanish in the
limit of zero graviton mass. At the quantum level, this
brings the following subtlety. For a nonconserved source,

the coupling of the form
�@�@�

�m2 T�� can generate a higher

derivative kinetic term for �,

@�@��

�m2
hT��T��i@�@��

�m2
: (10)

For the conserved T��, the correlator hT��T��i is propor-
tional to the transverse projector, and the higher derivative
kinetic term (10) vanishes. For nonconserved sources, the
structure can be nonzero but, as we mentioned, the non-
conserved part of the source must go to zero at least as �m2

itself. This means that the higher derivative kinetic term
will be suppressed by the cutoff of the theory, and the
resulting ghost pole is automatically at the cutoff. Notice
that the same correlator will generate exactly the same type
of higher derivative mass term for the helicity zero polar-
ization of the PF graviton, with �m2 ¼ m2

PF. So the absence
of any ghost pole below the cutoff requires that the diver-
gence of T�� is controlled bym

2
PF. Since our scalar couples

to T�� with �m2 ¼ m2
PF, the absence of ghosts at the quan-

tum level in the PF graviton automatically implies the
absence of similar ghosts in �.
Coming back to Eq. (8), in any theory with constantmPF

and m, the scalar propagator has a pole at p2 ¼ � 3m4
PF

2m2 þ
2m2

PF. From the sign of the kinetic term in Eq. (8), this pole
is always a ghost, with positive or negative mass squared
depending on the sign ofm2. One interesting feature is that
no matter how small the deviation from PF structure is, the
amplitude (9) has the same tensor structure of massless
gravity in the UV. This is because the ghost couples to T�

�

with the same strength as the longitudinal polarizations of
the massive graviton, and therefore it exactly cancels its
contribution at high energy. Form ! 0, the ghost becomes
heavy and decouples from the theory.
When m and mPF are scale dependent and different,

however, then one does not necessarily have ghosts in the
spectrum due to the positive contributions in Eq. (8). Let us
now discuss how the consistency of the theory actually
constrains the masses. In general, absence of ghosts de-
mands the spectral decomposition of the scalar and spin-2
amplitudes in Eq. (9) to be positive definite. A necessary
condition is that the coefficient of the scalar contribution is
strictly positive since a negative value (corresponding to
repulsion) could only be provided by ghosts. This strongly
restricts the form that mPF and m can take.
We can obtain different constraints considering the in-

frared (IR) and ultraviolet (UV) behavior of the amplitude.
In the UV, the positivity of the scalar amplitude requires

m2ðhÞ< 3

2

m4
PFðhÞ
h

(11)

in the limit h ! 1. If this condition is violated, then a
ghost appears. Note that in this case, O scales as h in the
UV so this ghost corresponds a 4D scalar bound state. The
condition above can also be understood as the fact that non-
PF term does not generate ghosts as long as it is sufficiently
subleading at high energies. This also agrees with the
effective field theory intuition that small deviations from
PF are acceptable [2].
In the IR, we can parameterize the behavior of the tensor

and the scalar as
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m2
PF � A2ð�hÞa2 ; �O � A0ð�hÞa0 : (12)

Since we are interested in large distance modifications of
gravity, we consider a0;2 < 1 so that these terms become

dominant with respect to the kinetic term at large distances.
As discussed in [6], the spectral decomposition requires
that the scalar and spin 2 amplitude should not vanish at
zero momenta. This implies a0;2 � 0 and A0;2 > 0. Note
that if the positivity constraint is violated in the IR, the
amplitude has a branch cut corresponding to a continuum
of ghosts. From this and (8), one finds that the healthy
forms of m2 in the IR are

m2ðhÞ ¼ 3

4

A2ð�hÞa2
1� A0=ð6A2Þð�hÞa0�a2

: (13)

This automatically classifies all possible cases in 3 fami-
lies. (i) a0 > a2, corresponding to the scalar being ‘‘ligh-
ter’’ than the tensor (�O � m2

PF) in the IR. These cases
have m2=m2

PF ! 3=4. (ii) a0 ¼ a2, which includes the
geometrical models discussed below. In this case,
m2=m2

PF approaches a constant with a value outside the
range between 0 and 3=4. (iii) a0 < a2. In this case, m2 !
ð9=2Þðm4

PF=OÞ, so one has �m2 � m2
PF � �O.

Geometrical realizations.—We now turn to the geomet-
rical realization of gravitons with non-PF structure. As
mentioned earlier, a natural arena for theories of massive
gravitons is higher dimensional theories of gravity.
Following [3,4], the addition of a kinetic term for the
graviton on the lower dimensional defect insures the ex-
istence of a 4D regime,

S ¼ M2
4

2

Z
R4 þM2þn

4þn

2

Z
R4þn: (14)

The connection with massive gravity theories can be
made manifest computing the boundary effective action
obtained by integrating out the bulk degrees of freedom.
Expanding the action (14) around flat space, one can
choose a gauge where the brane is located at ~y ¼ 0 in the
n-dimensional transverse space. The induced metric fluc-
tuation perceived by brane observers then reduces to the 4-
dimensional components evaluated on the brane, h��ð ~y ¼
0Þ. One can further fix the gauge so that the graviton
propagator takes the form

GMNPQ ¼ 1

M2þn
4þn

1

p2 þ ~q2

�
1

2
�MP�NQ þ 1

2
�MQ�NP

� 1

2þ n
�MN�PQ

�
(15)

where M, N. . . denote (4þ n)-dimensional indices and p
( ~q) the 4- (n-) dimensional components of the momentum.
Neglecting the 4D term in (14), the amplitude between two
brane localized sources is

Z
d4pGðpÞ

�
~T��ðpÞ ~T0��ð�pÞ � ~TðpÞ ~T0ð�pÞ

2þ n

�
(16)

where ~T��ðpÞ is the Fourier transform of the source and

GðpÞ ¼ 1

M2þn
4þn

Z dnq

p2 þ ~q2
: (17)

This integral is divergent for n � 2 and therefore requires
some regularization. Introducing a momentum cutoff �,
[7]

GðpÞ ’ �n

M2þn
4þn

�
�n�2

n� 2
þ . . .þ ð�1Þðn=2Þpn�2 log

p

�
þ . . .

�
;

(18)

where �n ¼ 2�n=2=�ðn=2Þ and local terms of the form
ðp=�Þ2k�n�2 with k ¼ 1; 2 . . . that are present for n > 4
have been omitted. The displayed cutoff-independent non-
local term generates the higher dimensional Newtonian
potential �1=rnþ1.
The amplitude (16) can be derived from the boundary

effective action,

Z
d4xh��G�1ðhÞ

�
h�� � 1

n� 2
���h

�
þ h��T

�� (19)

where h�� is the metric measured by the brane observer.

The addition of the brane localized kinetic term
R
R4 then

leads to a massive gravity action where the bulk provides a
scale-dependent mass term for the graviton. For the case
n ¼ 1, the 5D DGP model, this corresponds to a resonance
with Pauli-Fierz mass. For n > 1, the tensor structure of the
higher dimensional theory is encoded in a non-PF mass
term.
From (18) and (19), we can identify

m2
PF ¼

1

M2
4GðhÞ ; m2 ¼ n� 1

n� 2
m2

PF: (20)

The necessity of the non-PF mass for n > 1 can also be
understood from the Kaluza-Klein decomposition of these
theories. For n > 1, aside from the tower of gravitons,
there is a tower of spin-0 states, which are encoded in the
scalar � that we integrated in.
We are now in the position to see why the n > 1 theories

propagate ghosts, as first shown in [8,9]. This is just a
consequence of m not obeying (11) in the UV. More
precisely, from (9), one derives that there is a light ghost
pole with a mass

m2
ghost � � 1

2�n

nþ 2

n� 1

n� 2

�n�2

M2þn
4þn

M2
4

: (21)

The most important feature of this formula is the depen-
dence on the inverse cutoff (for codimension 2 this be-
comes logarithmic). While a heavy ghost can be consistent
within an effective field theory approach, this formula
shows that the ghost is light. For this reason, higher di-
mensional generalizations of DGP were believed to be
inconsistent.
Following our general analysis, this conclusion is a

manifestation of the fact that mPF and m have the same
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momentum dependence so that m never becomes sublead-
ing. As we have seen, this is not mandatory because the
extra scalars can, consistently with 4D Lorentz invariance,
couple differently than the massive spin 2 states. In order to
possibly avoid the ghost, m and mPF should scale differ-
ently in the UV. This was explicitly realized in the ‘‘cas-
cading DGP model’’ [5]. In the 6 dimensional case con-
sidered in that Letter, a 3-brane is embedded within a co-
dimension 1 brane, each with its own induced gravity term

S ¼ M2
4

2

Z
R4 þM3

5

2

Z
R5 þM4

6

2

Z
R6

In a certain limit of the model [12,5], with the addition of a
tension 	 on the 3-brane, it was found that the 4D boundary
effective action reduces to

L4 ¼ �M3
5

2
h��

ffiffiffiffiffiffiffiffiffi�h
p ðh�� � h���Þ � 3M3

5�
ffiffiffiffiffiffiffiffiffi�h

p
h

þM2
4

4
h��ðEhÞ�� þ 9	

4m2
6

�h�þ h��T��; (22)

where m6 ¼ M4
6=M

3
5. The scalar � corresponds to the

brane bending mode of the 4-brane whose 4D kinetic
term arises from the tension. To see the relationship with
our general analysis, one can integrate out � using its

equation of motion, � ¼ �ð2M3
5m

2
6Þ=ð3	Þð�hÞ�1=2h.

Substituting into the action generates a non-PF mass,

m2
PF ¼ 2M3

5

M2
4

ffiffiffiffiffiffiffiffiffi�h
p

; m2 ¼ �4
M6

5m
2
6

M2
4	

: (23)

SincemPF grows linearly with energy,m becomes sublead-
ing in the UV, and the condition (11) is satisfied for 3	 >
2M2

4m
2
6. This reproduces the bound of Ref. [5].

Outlook.—Before concluding, we wish to speculate on
other realizations of graviton resonances with non-PF
structure. One possible direction is the generalization of
the cascading DGP model to higher codimensions. To
realize this, we need to consider a tower of DGP kinetic
terms embedded into each other,

S ¼ M2
4

2

Z
R4 þM3

5

2

Z
R5 þ . . .þM2þn

4þn

2

Z
R4þn: (24)

At very large distances, physics is dominated by the 4þ
n-dimensional kinetic term and asymptotically can be
described by a non-PF resonance with parameters given
by Eq. (20). As in the codimension 2 case, the lower
dimensional kinetic terms generate brane localized ghosts
which can be studied using the method of the boundary
effective action. This can be derived integrating out the
bulk degrees of freedom step by step starting from the
highest codimension. To obtain a consistent theory, one
should insure that at each step, one obtains a consistent
massive gravity theory on the lower dimensional defect.
This should be achieved by introducing sources, such as
the tension in codimension 2, which render the non-PF
mass term appropriately subleading in the UV.

A different possibility is to consider theories with a
noninteger number of extra-dimensions, which corre-
sponds to a fractal extra space. Formally for a brane
observer, these theories can be obtained by analytic con-
tinuation of Eqs. (16) and (17). In the range 0< n< 2,
(17) is finite and one obtains m2

PF ¼ pn
cp

2�n with

pn
c ¼ �ðn=2Þ sinðn�=2Þ

�1þðn=2Þ
Mnþ2

4þn

M2
4

and m2 ¼ ðn� 1Þ=ðn� 2Þm2
PF. For the case n < 1, the

scalar amplitude corresponds to the propagation of a con-
tinuum of light ghosts. This can be readily seen because the
scalar exchange in Eq. (9) is negative. This rules out the
range n < 1. For 1< n< 2, the masses above satisfy the
constraints in the IR (13) but not in the UV (11). The ghost

pole is at p2 ¼ p2
c½ð1þ n=2Þ=ðn� 1Þ�1=n so that for n

close to 1, it is heavy and hence could be accepted within
an effective field theory approach. From a geometrical
point of view, these theories can be realized through a
bulk space which is fractal. At quadratic order, they can
be defined using a lattice as in [10] (see, however, [11] for
difficulties at the interacting level). It is appealing that this
construction only generates n > 1. Theories with 1< n �
2 are also the most interesting from a phenomenological
point of view as they could be tested by future lunar
ranging experiments [6]. We leave the detailed construc-
tion of these generalizations and their possible implications
for the acceleration of the Universe to future work.
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