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Abstract—This paper describes the new dynamic recovery
mechanisms in the ATLAS Trigger and DataAcQuisition (TDAQ)
system. The purpose of the new recovery mechanism is to mini-
mize the impact certain errors and failures have on the system.
The new recovery mechanisms are capable of analyzing and
recovering from a variety of errors, both software and hardware,
without stopping the data-gathering operations. An expert system
is incorporated to perform the analysis of the errors and to decide
what measures are needed. Due to the wide array of sub-systems
there is also a need to optimize the way similar errors are handled
for the different sub-systems.

The main focus of the paper is to consider the design and imple-
mentation of the new recovery mechanisms and how expert knowl-
edge is gathered from the different sub-systems and implemented
in the recovery procedures.

Index Terms—ATLAS, error recovery, expert system, TDAQ.

I. INTRODUCTION

THE ATLAS High-Level Trigger and DataAcQuisition
(TDAQ) system is a large heterogeneous system con-

sisting of a wide variety of software and hardware components.
The final production system will consist of approximately 3000
nodes running more than 20 000 processes. The system is
divided into a number of sub-systems each performing a well
defined task. A detailed description of the TDAQ system can
be found in [1].

II. BACKGROUND AND MOTIVATION

The TDAQ system has been under development for more than
a decade. Even so, the development of an advanced Error Re-
covery (ER) system has not been a priority. Previous error re-
covery systems have been simple and, thus, were only able to
handle trivial cases such as restarting or ignoring a dead process
or putting the system into an error state. As we approach the
start-up of the experiment, larger and larger system configura-
tions are being used. Ideally, the system should gather data from
the detector over long periods of time (several days) without
interruption. Due to the very large time frames and volumes
of data to be collected, errors will most certainly occur, and
it is important that it is possible to recover from these errors
without the need to restart the particular stage of the experiment.
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It should also be possible to perform this recovery with the need
for as little user interaction as possible. The various sub-systems
will have their specific requirements for handling errors and er-
rors might have different impact, depending on the state of the
sub-system or the system as a whole.

III. REQUIREMENTS

There are a number of main requirements that have guided
the general design of the ER system.

• Error handling: The ER should be able to react to errors
reported in the system, analyze them and take appropriate
actions to ensure that the system returns to or stays in an
operational state.

• Customizable: It must be possible to ensure that different
behavior will take place in response to similar, or indeed
identical, problems arising in different sub-systems. For
example, a dying application within one of the computing
farms might have no overall effect on the system other than
a slight reduction in computing power. However, if an ap-
plication in the ReadOut System (ROS) dies, this will have
considerable impact on several other sub-systems.

• Configurable: It must be possible to easily change the be-
havior of the recovery system. The TDAQ system is under
development, and it must therefore, when completed, be
able to accommodate for new components. Even in the
final system, there will be a relatively large number of dif-
ferent configurations to run. It must, therefore, be possible
to configure the ER system to accommodate any needs that
may arise.

• Abstraction: The ER should be such that any parts can
be replaced without the need to change any other compo-
nents. For example, applications should be able to report
errors through a fixed interface without knowing anything
about the mechanisms of the recovery system. This will
also help to minimize the need for change in user imple-
mentation. This is very important because the ER system
is being introduced relatively late in the development of the
TDAQ system.

• Performance: The ER should be able to analyze the errors
and reach a decision within reasonable time span, usually
on the order of seconds. The longer these decisions take,
the longer the TDAQ system will remain in an error state,
causing a loss off data taking capability.

IV. DESIGN AND IMPLEMENTATION

The ER system is closely related to the TDAQ RunControl
system, and naturally, design and implementation choices are
guided by this. The following sections will first give a brief
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Fig. 1. TDAQ FSM.

overview of the TDAQ system, including some of the most im-
portant components. We will then move on to consider the Run-
Control system in detail before discussing specific design and
implementation choices for the ER system.

A. TDAQ System Structure

Applications in the TDAQ system are organized in a tree
structured manner. In addition, there are a number of services
that are provided which use a classic client-server model. Com-
munication is realized using a dedicated Inter Process Commu-
nication (IPC) package based on CORBA [2]. The most impor-
tant services in the context of the recovery system are the Mes-
sage Reporting System (MRS) and the Error Reporting Service
(ERS). The MRS is a service for passing messages between
different applications using a subscription-notification model.
The ERS provides several services, including a common format
and a fixed range of severity levels for all errors reported in the
TDAQ system. The ERS relies on the MRS in order to pass error
messages between different applications.

B. Configuration Database

A common database stores the configuration of the TDAQ
system. It contains everything from command line parameters
to the overall organization of both hardware and software con-
nections. The database defines a set of segment objects, typi-
cally representing a subsystem or a collection of applications
with similar functionality, e.g., a set of Readout modules. Each
segment contains a set of applications, resources, and other seg-
ments. The configuration database is available to all applications
through a database server.

C. TDAQ Runcontrol

The TDAQ RunControl system is responsible for distributing
commands from the operator(s) throughout the system. It starts,
stops, and monitors all applications in the TDAQ system and en-
sures that the system is in a coherent state. To synchronize op-
erations Finite State Machine (FSM) principles are used. Fig. 1
shows the FSM used for the TDAQ system. In addition to the



SLOPER et al.: DYNAMIC ERROR RECOVERY 407

Fig. 2. TDAQ control tree.

states shown, it can also go into an error state, indicating that
the application cannot continue its function.

The RunControl is constructed using the configuration data-
base with controllers arranged in a tree structure, where each
controller is responsible for a segment. Normally, commands
are only sent to the topmost controller and are then propagated
throughout the control tree. Interaction with the RunControl is
performed through a graphical interface which, among other
things, displays the RunControl tree, including the current state
and any errors. Fig. 2 shows the logical layout of the RunCon-
trol.

D. Design

There are two main parts of the dynamic error recovery
system: a local unit and a global unit. The local unit is inte-
grated with each controller in the control tree. It has a complete
“map” of the applications within its controller’s segment. Any
changes in the applications status are reported to the ER system
by the controller. The main goal of the local recovery unit is to
handle errors that can be dealt with at a segment level, that is,
errors that do not have an immediate effect on the rest of the
system. The local recovery unit receives information directly
from the with which controller it is integrated. It will then
analyze any problems, taking into account information such
as the configuration, system state, other errors, and so on. It
can set the error state of the controller, but will also be able to
perform more advanced actions such as restarting applications
or notifying other applications. In addition to receiving errors
directly from the controller, it can also receive errors directly
from applications. All errors gathered by the local unit will
be reported to the global unit, including information such as
whether the action has been taken and if the problem has been
solved or not.

The global unit handles errors that have a system-wide im-
pact, where applications in different segments will be affected
by the recovery actions. It should also be able to take actions

based on information received from the local units. The server
keeps track of all errors in the system, including the ones re-
ported from the local units. This allows for more general de-
cisions to be made, based on parameters such as frequency of
errors within a segment and/or the system as a whole.

Both the global and local unit has access to the configuration
database and uses it to build maps of the connections in the
system, read default recovery actions whose tests are associated
with the different applications, etc.

In addition to handling errors from the TDAQ system, the
ER must also be able to handle errors from systems outside of
TDAQ such as the Detector Control System (DCS), networking,
farm monitoring tools, and so on. This is realized by integrating
a proxy application into the control tree and passing error mes-
sages through the proxy. A detailed description of this interac-
tion in the DCS case can be found in [3].

The ER system is designed to interface with related compo-
nents such as the Diagnostics and Verification System (DVS)
[4]. This allows it to actively test components in the system. This
is especially useful in cases where the actual fault is not imme-
diately apparent. For example, if an application is reported not
to be responding, the recovery system can test the network con-
nections or the host of that application to see if the error is in
fact a hardware problem. There are well-defined tests for dif-
ferent hardware objects and applications that can be used by the
recovery system to properly identify the problem.

Due to the distributed nature of the system, it is, in most cases,
not practical to perform a synchronous recovery. Even though
the system does support synchronous communication between
applications, the ER is designed to perform the recovery in an
asynchronous manner. There are several reasons for this. First
of all, to ensure that the abstraction requirement is fulfilled, it
is better not to have a direct connection between applications
that are reporting errors and the ER system. Also, due to time
constraints, it might not be practical for some applications to
wait for an answer from the ER system before continuing its
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Fig. 3. General structure of both local and global ER units.

operation. For example, an application might report that another
application is not responding, but it may still be able to continue
its own operation.

E. Implementation

The two parts of the system are implemented in a similar way.
Fig. 3 shows a diagram describing the building blocks of both
the local and the global ER units. The main difference between
them is that the local unit is directly integrated with a controller
and can communicate directly with it. The global unit, on the
other hand, is a standalone server that is completely outside the
control tree. The global ER server also has a simple interface
both for reporting errors to it (used by the local recovery sys-
tems) and for retrieving information about errors that have been
reported and had actions taken. This is mainly used for moni-
toring purposes but can be a useful tool for a human expert as a
help in identifying problems in the system.

Both the local and the global ER units rely on a rule-based ex-
pert system, which is also known as a knowledge-based system,
to analyze errors and decide on appropriate recovery actions.
The main advantages of a rule-based expert system are that it is
simple to implement in the first place and that changes and addi-
tions can be easily made as the need arises. It is very difficult to
predict a priori all the different errors that might occur and what
appropriate actions should be taken. It is therefore very impor-
tant that the expert system can be easily changed and customized
as more data is gathered and a better understanding of the system
is gained through experience. The main disadvantage with using
a rule-based system is that it can be difficult to manage such sys-
tems as the size of the knowledge base increases. Experience
suggests that when the number of rules grows, it becomes in-
creasingly difficult to keep track of the impact each change will
have on the system. This not withstanding, we find that with
careful implementation, this problem can be avoided, and the
flexibility of the approach makes it a good choice for our system.

The expert system is being implemented using CLIPS [5].
The CLIPS technology was chosen for several reasons. First of
all, it has been used for many years in the ATLAS experiments,
both in the controllers [6] and in the DVS framework, and there-
fore, there exists considerable experience among the developers.

Fig. 4. Sample rule.

Another reason is the ease with which the system can be ex-
tended and interfaced with C++ , which is the main language
used in TDAQ development. C++ extensions are used to inter-
face the CLIPS environment with other parts of the system, such
as IPC, ERS, DVS, etc.

The CLIPS system consists of a knowledge base and an in-
ference engine. The knowledge base consists of a number of
text files where expert knowledge can be encoded as IF-THEN
rules. CLIPS also supports procedural and object-oriented pro-
gramming, which is used to build a class hierarchy representing
proxies of the applications and hardware in the system. These
proxy objects are created dynamically using the information
from the configuration database, and the information about the
objects can then be used in the recovery rules.

CLIPS parses the knowledge base at runtime. This allows the
behavior of the ER unit to be easily customized by supplying
different sets of files, which describe the knowledge base and
rules, as arguments to the application. Fig. 4 shows an example
of a simple knowledge-base rule. This simple rule detects the
case where an application has died, and it notifies the associated
supervisor and the controller to ignore the application from now
on.

We will now look in detail at the different steps of the
recovery procedure and how each step is handled and imple-
mented in the ER system.

1) Error Detection: The recovery system itself does not do
any direct error detection. It relies on the applications them-
selves and the controllers to notify whenever an error occurs.
However, the recovery system might perform tests as a conse-
quence of reported errors. These tests may then discover prob-
lems that have not been reported directly.
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Fig. 5. Overview of interaction with the global recovery server.

2) Error Reporting: Applications report errors to the re-
covery system using the ERS. This system is being used for
all error reporting in the TDAQ system, and there is therefore
no specific need for changes to be made for these applications.
However, to ensure that all errors are sent using the same
format, a set of error classes is defined to be used for specific
types of errors. The recovery system (both local and global)
subscribes to a set of these classes, depending on its config-
uration. The applications reporting the error do not need to
have any direct knowledge of the recovery system but merely
reports the error using one of the predefined classes. The error
can then be picked up anywhere in the system and handled
appropriately. Note that the recovery units in different segments
might subscribe to different classes of problems and that some
classes are only handled by the global unit and will never be
picked up by the local units, and vise versa. One example is a
faulty front-end driver. This is known to have impact on several
parts of the system and is therefore only picked up by the global
server. Errors can also be reported from the local units directly
to the global one using the IPC framework. Fig. 5 shows how
the global recovery server interacts with the system as a whole.

In addition to the messages reported through ERS, the local
unit receives error notifications directly from the controller. This
includes notifications such as dead applications (in that seg-
ment), errors, timeouts, etc. It also receives updates about the
state of the applications and the controller and can use this in-
formation to decide on what action to take.

3) Error Analysis: There are two main types of errors that
can occur in the TDAQ system. The first type is transient,
meaning that the error will not necessarily persist in the system
if a full restart is performed. Most software errors/failures are of
this type. The other type consists of non-transient errors which
will be present even if the system is restarted. Most hardware
errors are non-transient and therefore need to be dealt with
differently. In many cases, it is likely that hardware errors will
not be reported but might cause a software error instead (e.g., an
application cannot contact a machine due to a malfunctioning
cable). It is therefore important that the recovery system is able

to recognize as many of these cases as possible. The DVS is
very useful in this respect, allowing the recovery system to
automatically test a piece of hardware as a consequence of
certain error reports. Also, the configuration database provides
some information about how to deal with different errors. The
configuration database defines a default behavior in case of
an application dying, going into error, etc. However, this is
clearly limited as decisions need to be taken based on dynamic
parameters such as system state and other errors.

One of the most difficult challenges is handling situations
where one error leads to an error in a different part of the system,
and so on, creating an “avalanche” of errors. To solve this, it is
important to classify which applications are depended upon by
others and are likely to cause avalanche errors. One should then
try to identify which specific applications will send errors in
this case. In this regard, the configuration database is extremely
important as it must be possible to automatically retrieve in-
formation about how the applications are interconnected, what
hardware is being used by which applications, and so on. Even
though a human expert might have the knowledge and expe-
rience to track down the real error, it is not trivial for a com-
puter program to do the same. It is therefore important to gather
knowledge about the consequence of different errors to be able
to build a system that will be as effective as possible.

The ER system is able to recognize cases where the system is
likely to be non-functional and no recovery is possible. In this
case, the run should be stopped, but the general policy is that
there should not be a means whereby the execution of the system
will be stopped automatically. Hence, the recovery system will
therefore need to notify a human operator who can then make
the final decision.

4) Recovery Actions: Both the local and the global recovery
unit can send commands to all applications in the system
through IPC. All controllers and applications share the same
command interface, which helps to simplify the recovery pro-
cedures. The most important commands are enable and disable.
These commands are used to notify affected components as
to whether an application is operational and whether it should
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be a part of the system or not. For example, if a processing
application in the trigger system is malfunctioning, the recovery
system can tell its supervisor and its controller to ignore it using
the disable command, effectively removing the application
from the system. It can then try to restart the application and
bring it back to the correct state. If the recovery actions are
successful, the ER can notify the supervisor and controller
again, this time to enable it.

In the case of a non-transient error, the recovery system can,
if appropriate, make changes to the configuration database. For
example, if a connection is known to be malfunctioning, it can
be disabled in the database so that at the next reconfiguration
of the system, applications will not use it. This type of action is
available in addition to the standard recovery procedures.

V. GATHERING KNOWLEDGE

Gathering knowledge is a crucial point for all expert systems.
A large number of developers are involved in the TDAQ project
making the task of gathering knowledge even more demanding.
As a first step, the ideas for the new recovery mechanism, and
especially the reporting mechanisms, have been presented at
several ATLAS and TDAQ meetings and conferences in order
to make sure that the sub-system developers are aware of the
system.

Due to the size and complexity of the system, recovery anal-
ysis and actions must be customized for each sub-system. The
knowledge of what errors might occur and what actions to take
are often held by the individual sub-system experts. A series
of discussions have been held with some of the sub-system de-
tector experts to try do define the most effective recovery be-
havior possible. Even though the knowledge base is written in
a human-readable language, it is still too complex for a regular
user to modify it. All changes to the knowledge base should be
done by a system expert.

As for any computer program, it is very difficult to prove
its correctness. This is extra complex with rule-based programs
where the execution is done by the inference engine. Testing and
feedback from users is therefore an invaluable means by which
to both ensure that the system behaves as intended and to fur-
ther develop the knowledge base. The system is regularly run on
test-beds using some standard configurations. Additions to the
knowledge base are tested using these setups before being made
available for use in the experiment.

VI. PERFORMANCE AND SCALABILITY

In a system of the size of TDAQ, scalability can be a real
issue. As the local recovery units are mapped to each controller,
they will scale with the control tree as the system grows. The
global unit, on the other hand, is implemented using a single
instance per partition. However, as the recovery unit deals with
errors, there is a natural limit to the number of messages that
need to be processed. If error messages are too frequent, it is
unlikely that any recovery is possible. Performance is still an
issue as the recovery mechanism should be able to analyze the
errors and reach a decision within reasonable time span, that
is, within a few seconds after the error has been reported. The
longer these decisions take, the longer the TDAQ system might
be nonoperational. In addition, the likelihood of an error causing
an avalanche throughout the system increases as time goes by.
This may be due to timeouts on connections or multiple requests

to the component in error, and so on. Also, as the knowledge
base grows, the execution time of the CLIPS inference engine
will increase. Regular performance tests will therefore be per-
formed to ensure that an acceptable level of performance can be
maintained.

If performance proves to be a problem, the global unit can be
divided into several units which perform dedicated tasks. This
will both reduce the number of errors to be handled by each
unit and also reduce the size of the knowledge base and, hence,
increase performance. However, one must be careful to do this
for well-separated tasks, or one would lose the benefit of having
a server with a global view of the system.

VII. CONCLUSIONS

While the dynamic error-recovery system is still in the early
stages of development, the current experience of the system
is positive. Several sub-systems have started defining recovery
scenarios, and customized recovery units have been designed. It
is already possible to keep the system running in cases where it
previously would have had to be stopped or manually fixed by
an operator.

The extendible design and the use of a knowledge-based
system means we are able to add or change the behavior of
the recovery system in a simple way without affecting other
components. This is very important, especially since many of
the error scenarios have yet to be identified or documented,
and as feedback is received, additions, modifications, and
improvements must be made.

VIII. FURTHER WORK

The error recovery system is a work in progress. Focus over
the next year will be concerned with expanding functionality
to include more recovery scenarios for dealing with failures in
all the sub-systems. As feedback is received, the system will
be modified and improved, and new rules will be added to the
knowledge base. There is also an ongoing investigation to try to
identify related technologies which may play a significant role
in the development of the system. For example, fuzzy logic is
being investigated as a possible means via which to deal with
“unknown” errors and other such situations.
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