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We consider extremal black hole attractors [both Bogomol’nyi-Prasad-Sommerfield (BPS) and non-
BPS] for N =3 and N = 5 supergravity in d = 4 space-time dimensions. Attractors for matter-
coupled N = 3 theory are similar to attractors in N = 2 supergravity minimally coupled to Abelian
vector multiplets. On the other hand, JN' = 5 attractors are similar to attractors in N =4 pure
supergravity, and in such theories only %-BPS nondegenerate solutions exist. All the above-mentioned
theories have a simple interpretation in the first order (fake supergravity) formalism. Furthermore, such
theories do not have a d = 5 uplift. Finally we comment on the duality relations among the attractor
solutions of JN" = 2 supergravities sharing the same full bosonic sector.
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L. INTRODUCTION

The attractor mechanism [1-4] is an important dynami-
cal phenomenon in the theory of gravitational objects,
which naturally appears in modern theories of gravity,
such as supergravity, superstrings [5-8], or M theory
[9,10].

Even if such a phenomenon was originally shown to
occur for %—Bogomol’nyi—Prasad—Sommerﬁeld (BPS) ex-
tremal black holes (BHs) in N =2, d = 4 ungauged
supergravity coupled to Abelian vector multiplets, it has
a more general validity, since it may take place also for
non-BPS extremal BHs, irrespectively, whether the under-
lying gravitational theory is endowed with local supersym-
metry or not [11-66] (for further developments, see also
e.g. [67-70]). Moreover, such a phenomenon also exists in
higher space-time dimensions for black p-branes coupled
to scalar fields, provided certain constraints are met.

In theories with N” > 2 local supersymmetry, extremal
BH attractors with regular horizon geometry and nonvan-
ishing classical Bekenstein-Hawking entropy exhibit a new
feature, namely, the Hessian matrix of a suitably defined
effective BH potential Vg may present, in contrast with
the N =2 case, “flat” directions even for (%—)BPS
configurations. This is, for instance, the case when the
scalar manifold is a locally symmetric space, as it holds
for all N > 2, d = 4 supergravities. A general analysis of
extremal BH attractors in N =2 symmetric special
Kihler geometry was performed in [25], and the related
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moduli spaces were discovered and classified in [41]. For
N > 2 supergravities similar results were obtained in
[56,71]. In [38] it was further observed that flat directions
for 2N > 2 (both % -BPS and non-BPS) attractors, as well
as for ' = 2 non-BPS attractors, are closely related to the
fact that in N' = 2 ungauged supergravity the hypermul-
tiplets’ scalars do not participate in the attractor mecha-
nism. As a consequence, the moduli space of &-BPS
attractors in N > 2 supergravities results in being a qua-
ternionic manifold, spanned by the leftover would-be hy-
permultiplets’ scalar degrees of freedom in the
supersymmetry reduction of the original theory down to
N =2.

The corresponding orbits of electric and magnetic BH
charges, supporting the critical points of Vgy which deter-
mine the attractor scalar configurations on the BH event
horizon, have also been classified in [25,56]. The non-
compactness of the stabilizer of such orbits (with the
only exception of N" = 2 BPS orbits) is responsible for
the existence of flat directions of the BH potential at its
corresponding critical points.

Most of the supergravities based on symmetric scalar
manifolds have the property that the classical BH entropy,
as given by the Bekenstein-Hawking entropy-area formula
[72], is given in terms of the square root of the absolute
value of a (n unique) invariant I, of the relevant represen-
tation of the U-duality group. Such an invariant is quartic
in electric and magnetic BH charges:

(1.1)

A
SpH = 7 = 7TVBH|6VBH=O =1 |I4|-

1,, which is moduli-independent, can also be written in
terms of the “dressed” charges, i.e. in terms of the
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(moduli-dependent) central charge matrix and matter
charges, in a (unique) combination such that the overall
dependence on moduli drops out. However, a peculiar class
of d =4 supergravities exists such that the unique
U-duality invariant (and thus moduli-independent) combi-
nation of dressed charges turns out to be a perfect square of
a quadratic expression in the skew-eigenvalues of the
relevant central charge matrix. Namely, this holds for
pure N = 4 [73] and N = 5 [74] supergravity.

Furthermore, another class of d = 4 theories exists, such
that the unique U-invariant I, is quadratic in BH charges,
yielding:

A

Sgu = 7 = TVnulav,,—0 = 7l 1,l. (1.2)

N

T, is also given by a quadratic expression in terms of the
dressed charges. Such a class of theories is given by N =
2 supergravity minimally coupled to Abelian vector mul-
tiplets [75], and by N* = 3 supergravity coupled to matter
(Abelian vector) multiplets [76].

For both the peculiar class of theories admitting J, as a
perfect square of the skew-eigenvalues of the central
charge matrix and the supergravities admitting J,, there
is a very simple alternative expression for the classical
Bekenstein-Hawking entropy in terms of a (square) effec-
tive horizon radius Ry, which turns out to be moduli
independent, and dependent only on the set of magnetic
and electric BH charges, shortly indicated as (p, g). The
formula for the entropy of the extremal BH in these cases
reads:

A w |—74|
Sgu = 4 = 7TVBH|aVBH=0 = WR%{(P’ q)=1q or
7T|]2|

1
= W[r%-l(gooo’ b, q) - EGuh(gom)Ea(SDoo: D, (])

X S (g P, q)], (13)

where ry is the radius of the unique (event) horizon of the
extremal BH, 3¢ denotes the set of scalar charges asymp-
totically associated to the scalar field ¢“, and G, is the
covariant metric tensor of the scalar manifold (in the real
parametrization). Notice that the first line of Eq. (1.3) only
contains the definition of R%, itself, whereas the second line
of the very same equation expresses it through a moduli-
independent combination of moduli-dependent quantities,
holding only for the aforementioned d = 4 supergravity
theories.

Actually, R% can be expressed as a suitable integral in
terms of a (square) effective radius R, as follows:
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r=ru(@e. p,q) }
r=1/2)G o (02) 2 (000, 1, ) 2 (000, 9 0)

(1.4)

R} = R* (1, ¢oo, P, q)

RA(r, 0o P, @) = 1 = 3G 11 (060) 2 (@0, P, )20 (€006, P2 )
(1.5)

= rz,
where r is the usual radial coordinate, and in the last
inequality the positive definiteness of G,;, was exploited.

It is worth pointing out that the second line of Eqs. (1.3),
(1.4), and (1.5) are generalizations of the formulae holding
in the so-called Maxwell-Einstein-axion-dilaton system
(actually also in the nonextremal case, see e.g. [77,78];
see also the treatment, and, in particular, Egs. (2.7), (2.8),
and (2.15), of [63]). Notice that in the first of Refs. [77] the
variable R is named physical radial coordinate (see e.g.
Eq. (72) therein). Clearly, as the second line of Eq. (1.3),
also the definition (1.7) of R*(r, ¢w, p, ¢) holds only for
the aforementioned d = 4 supergravity theories.

Within the first order (fake supergravity) formalism [79],
recently used to describe non-BPS attractor flows of d = 4
extremal BHs [35,40], the quantities appearing in the
second line of Eq. (1.3) can easily be expressed in terms
of a real “fake superpotential” W (e, p, q) as follows (see
Egs. (2.5) and (2.6) below, respectively):

1@ D, @) = W(pw, P, q); (1.6)

3 @wr P, ) = 26 (@) 0y W) (9o, ) (1.7)
An explicit expression for ‘W can be given for the super-
gravity theories mentioned above [40]. It is here worth
noticing that for %—BPS nondegenerate attractor flows,
simply W(e, p, q) = | ZI(¢, p, q), where |Z]| is the big-
gest (absolute value of the) skew-eigenvalues of the central
charge matrix Z,p, saturating the BPS bound [80].

Equation (1.3) would seem to yield a moduli-dependent
expression for RZ,, but, as we prove explicitly in the present
paper, for the class of d = 4 ungauged supergravities under
consideration it just turns out that the dependence on
moduli drops out in the combination r; — 3G, 227,
when Egs. (1.6) and (1.7) are taken into account.
Summarizing, such a phenomenon happens in the follow-
ing theories:

(1) N = 2 supergravity minimally coupled to Abelian
vector multiplets [75], whose scalar manifold is
endowed with a symmetric special Kéhler geometry
with the completely symmetric rank-3 tensor C;j; =
0, and with U-invariant quadratic in BH charges. For
such a theory, in [63] Eq. (1.3) has been proved to
hold for both %—BPS and non-BPS (Z = 0) attractor
flows;
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(i) N = 3 supergravity coupled to matter (Abelian
vector) multiplets [76], with U-invariant quadratic
in BH charges;

(ili) N = 4 pure supergravity [73], with U-invariant
quartic in BH charges;

(iv) N = 5 supergravity [74], with U-invariant quartic
in BH charges.

It is worth pointing out that N° = 2 supergravity mini-
mally coupled to one Abelian vector multiplet, correspond-
ing to the (U(1))® — (U(1))? gauge truncation of N = 4
pure supergravity, is nothing but the so-called Maxwell-
Einstein-axion-dilaton system, studied in [77,78] and re-
cently discussed in [71] and in [63], for which, as stated
above, the formula (1.3) indeed holds true (actually, with
suitable changes, also in the nonextremal case).

Furthermore, it is interesting to notice that all the above-
mentioned theories are all the N = 2, d = 4 supergrav-
ities based on symmetric scalar manifolds which do not
admit an uplift' to d = 5 space-time dimensions [81].

The present paper is organized as follows.

In Sec. II we briefly introduce the fundamentals of the
first order (fake supergravity) formalism for the nondegen-
erate attractor flows (both BPS and non-BPS) of extremal
BHs in d = 4 space-time dimensions.

Then, Sec. III is devoted to a detailed study of N = 2,
d = 4 supergravity minimally coupled to Abelian vector
multiplets. In Subsection III A the related attractor equa-
tions are explicitly solved, for both the classes of non-
degenerate critical points of Vpy: the %-BPS one
(Subsubsection III A 1) and the non-BPS Z = 0 one, this
latter with related moduli space (Subsubsection Il A 2). By
exploiting the first order (fake supergravity) formalism, in
Subsections IIIB and HIC the Arnowitt-Deser-Misner
(ADM) mass M,py [82], covariant scalar charges 2,
and (square) effective horizon radius R? are explicitly
computed, respectively, for %—BPS and non-BPS Z =0
attractor flows, proving that (the second line of) Eq. (1.3)
holds true. This latter result, already proved in [63], gen-
eralizes the findings of [77,78] (also holding in the non-
extremal case).

Section IV deals with N =3, d =4 supergravity
coupled to matter (Abelian vector) multiplets. In
Subsection IV A the related attractor equations are explic-
itly solved, for both the classes of nondegenerate critical
points of Vpy: the %—BPS one (Subsubsection IVA 1) and
the non-BPS Z,; = 0 one (Subsubsection IVA 2), both
with related moduli space. Once again, by using the first
order (fake supergravity) formalism, in Subsections IV B
and IV C the ADM mass M ,py, covariant scalar charges
3, and (square) effective horizon radius R%, respectively,

"Throughout all the treatment of the present paper, by “uplift
to d = 5 we mean the dimensional uplift to a d = 5 Poincaré
supergravity theory, having the same massless degrees of free-
dom of the original d = 4 supergravity.
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for %-BPS and non-BPS Z,p = 0 attractor flows are ex-
plicitly computed, proving that (the second line of)
Eq. (1.3) holds true also for such a theory which, as the
minimally coupled N = 2 supergravity, has a unique
U-invariant quadratic in BH charges.

Comments on the invariance properties of BH entropy in
minimally coupled N = 2, as well as in matter coupled
N = 3, ungauged d = 4 supergravity are given in Sec. V.

Next, Sec. VI deals with N = 5, d = 4 supergravity,
which does not allow for matter coupling and whose field
content thus only consists of the gravity multiplet (pure
theory). In Subsection VI A the related attractor equations
are explicitly solved for the unique class of nondegenerate
critical points of Vpy, namely, the %-BPS one. In
Subsubsection such a class is studied, along with the
related moduli space and Bekenstein-Hawking classical
BH entropy [72]. This latter is proportional to the unique
U-invariant I, of IN' =35 supergravity, whose quartic
expression in terms of the BH charges is explicitly derived,
as well. Through the formal machinery presented in Sec. I,
in Subsection VI B the ADM mass M zpy, covariant scalar
charges 3, and (square) effective horizon radius R, for the
é-BPS attractor flow are explicitly given, proving that (the
second line of ) Eq. (1.3) holds true also for such a theory.
This is somewhat surprising because, as mentioned above,
N = 5 supergravity, in contrast to the minimally coupled
N =2 and matter coupled N = 3 cases, has a unique
U-invariant quartic, rather than quadratic, in BH charges.

Then, in Sec. VII the extremal BH attractors in N = 4,
d = 4 pure supergravity are revisited. In Subsection VII A
the resolution of the corresponding attractor equation [71]
is reviewed for the unique class of nondegenerate critical
points of Vpy, namely, the %—BPS one. Its corresponding
Bekenstein-Hawking classical BH entropy [72] is given by
the unique U-invariant I, of N = 4 pure supergravity,
which is also reported. By using the formulae of Sec. II, in
Subsection VIIB the ADM mass M py, covariant axion-
dilaton charge X, and (square) effective horizon radius R%,
for the i-BPS attractor flow are explicitly given, proving
that (the second line of)) Eq. (1.3) holds true also for such a
theory. Also such a result is rather surprising, for the same
reason mentioned above: pure N = 4 supergravity, as
N =5 theory and in contrast to the minimally coupled
N =2 and matter coupled N = 3 cases, has a unique
U-invariant quartic, rather than quadratic, in BH charges.

However, as pointed out in the introduction, pure N =
4 and N = 5 supergravities are peculiar theories, because
their unique (moduli-independent) U-duality invariant,
quartic in BH charges, when expressed as a (unique)
combination of dressed (moduli-dependent) charges, turns
out to be a perfect square of a quadratic expression in the
skew-eigenvalues Z; and Z, of the relevant central charge
matrix. Such a key feature is studied in Sec. VIIL

In Sec. IX we consider all ungauged N =2, d =4
supergravities sharing the same bosonic sector, and thus
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with the same number of fermion fields, but with different
supersymmetric completions. Besides the well-known case
of the duality between N = 2 Jg'" (matter coupled) and
N =6 (pure) supergravity (see [25] and references
therein), other two cases exist, namely:
(i) the duality exhibited by N = 2 supergravity mini-
mally coupled to 3 Abelian vector multiplets, and
N = 3 supergravity coupled to 1 matter (Abelian
vector) multiplet;
(ii) the duality between JN° = 2 supergravity coupled to
6 Abelian vector multiplets, with scalar manifold
given by the symmetric reducible special Kéahler

. SU(L,1) 50(2,6) _
manifold o0 X 5005506 and N = 4 super-

gravity coupled to 2 matter (Abelian vector)
multiplets.

It is here worth commenting that such dualities are
evidences against the conventional wisdom that bosonic
interacting theories have a unique supersymmetric exten-
sion. The sharing of the same bosonic backgrounds with
different supersymmetric completions implies its dual in-
terpretation with respect to the supersymmetry-preserving
properties. Consistently with (local) supersymmetry, the
number of fermion fields is the same in both theories, but
with different spin/field contents, simply related by the
interchange among spin- % (gaugino) and spin-% (gravitino)
fields.

Section X contains some comments, outlook, and direc-
tions for further developments.

Finally, the appendix concludes the paper. It presents
N = 4, d = 4 ungauged supergravity coupled to 1 matter
(Abelian vector) multiplet (upliftable tothe NN = 4,d = 5
pure theory) as a counterexample of a theory with unique
(moduli-independent) U-duality invariant quartic in BH
charges which, when expressed as a combination of
dressed (moduli-dependent) charges, does not turn out to
be a perfect square of a quadratic expression in the skew-
eigenvalues of the central charge matrix and in the matter
charge(s). As a consequence, the explicit expression of R%,
given by (the second line of) Eq. (1.3) does not hold for
such a theory, as well as for all other d = 4 (ungauged)
supergravities not explicitly mentioned above and in the
treatment given below.

II. FAKE SUPERGRAVITY FORMALISM AND
EFFECTIVE HORIZON RADIUS FOR d = 4
EXTREMAL BLACK HOLES

We recall some facts about the first order (fake super-
gravity) formalism [79] for static, spherically symmetric,
asymptotically flat dyonic extremal (i.e. with ¢ = 0) BHs
in d = 4, introduced in [35,40] (see also [63]).

Let us start with the general formula for the (positive
definite) BH effective potential of d = 4 supergravities:

VBH = %ZABZAB + Z]ZI, (21)
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where Z,p = Zjpp) (A, B=1,...,N) is the central
charge matrix, and Z; (I =1,...,n) are the matter
charges, n € N being the number of matter multiplets (if
any) coupled to the gravity multiplet. Equivalently, in the
first order formalism (see Eq. (2.23) of [35]):

VBH = W2 + 4G[](81W)5]W

= W? + 4GV, W)V; W, (2.2)
where W is the moduli-dependent so-called first order
fake superpotential, and V denotes the relevant covariant
differential operator.

An alternative expression for Vpy can be given as fol-
lows (see Eq. (5.7) of [22]):

Ve = e9[1 + G(0,G)3;G] = 5[1 + G'(V,G)V;G],
(2.3)
where now
W = 92, (2.4)

By recalling Eq. (65) of [63] and Eqgs. (84) and (114) of
[63] (which in turn can be traced back to Eq. (29) of [40]),
in the same framework the covariant scalar charges and the
squared ADM mass [82] can, respectively, be written as
follows:

3,=2 1ir(¥v,.w =2 1ir§aiw; (2.5)
Mipy = 15 = Tl_i{(r)l_[VBH - 4Gij(aiw)a_jw]
= lim w2, (2.6)

where 7= (ry —r)”'. Then, one can introduce the
(square) effective horizon radius (recall the notation
Ry .—0 = R_ .~y = Ry; see the treatment of [63]):

2 = i = = 1li 2
Ry —TEIPOOVBH VBHlaVBHz(),VBH¢O TEI_HOOW

Aeii(p. 9) _ Seu(p. 9)
41 T

= w2|awzo,w;&o = 2.7
where (p, g) denotes the set of magnetic and electric BH
charges, A (simply named A in the introduction) is the
effective area of the BH (i.e. the area of the surface
pertaining to Ry), Spy is the classical BH entropy, and
the Bekenstein-Hawking entropy-area formula [72] has
been used.

Whenever allowed by the symmetric nature of the scalar
manifold, R can thus be expressed in terms of a suitable
power of the (generally unique) invariant of the relevant

’Here and in all our analysis we assume all functions of
moduli to be sufficiently regular, in order to allow one to perform
smoothly the radial asymptotical (7 — 0~) and near horizon
(7 — —o0) limits.
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representation of the U-duality group G, determining the
symplectic embedding of the vector field strengths. In d =
4 Spy is homogeneous of degree two in (p, ¢), and only
two possibilities arise:

Ry =1L(p, @)l or Ry =4114p, q)l,
where I, and J, respectively denote U-invariants qua-
dratic and quartic in BH charges.

By exploiting the 7-monotonicity of ‘W (which is in-
deed an example of C-function [17] for extremal BHs)
[40]:

(2.8)

dW((n), 21 9) =

2.9
dr 9

the following inequality (holding for ¢ = 0) can be ob-
tained [63]:

M3 ppg (Zows Zoon P2 @) = lim [V — 4G77(5; W)3; W]

™0~

= Ry(p.q) = lim W? = lim Vgy,

T——00

(2.10)

where the radius ry of the BH event horizon was intro-
duced. More concisely,

YV (Zoos Zoo) € Mo,
2.11)

121 (Zoo Zoos P> @) = R%(p, q),

holding in the whole asymptotical scalar manifold M.
In the minimally matter coupled N = 2, d = 4 super-
gravity based on the sequence of symmetric special Kéhler

manifolds (complex Grassmannians) % [75] (see
also the treatment of [63]), as well as in N = 3, pure
N =4, and N =5, d = 4 supergravity, it is possible to
specialize further the inequality (2.11). Indeed, for such
theories it holds that [recall Eq. (1.3), as well as Eqgs. (1.4)

and (1.5)]

SBH(P, 61)
T

5y (2eor 2o, P, @) — 4 1im GY(a, W)3; W,

R%—[(p; Q) = = r%-](Zocy Zooy p, q) - G,j‘zlil

(2.12)

where in the last step Eq. (2.5) was used. Equation (2.12),
clearly yielding the inequality (2.11) by the presence of
nonvanishing scalar charges and the (strict) positive defi-
niteness of G;, is nothing but a many-moduli generaliza-
tion of the formula holding for the so-called (axion-)
dilaton extremal BH [77]. The crucial feature, expressed
by Eq. (2.12) and shared by the aforementioned super-
gravities, is the disappearance of the dependence on the

asymptotical moduli (Zo., Zs,) in the combination of quan-

PHYSICAL REVIEW D 78, 065003 (2008)

tities 7%, — G;72'3/, which separately do depend on
moduli.?

As a generalization of the formula holding (also in the
nonextremal case) in the Maxwell-axion-dilaton super-
gravity (see e.g. [77,78], and also [63]), in [63]
Eq. (2.12) was proved to hold in the extremal case for the
whole sequence of N = 2, d = 4 supergravity minimally
coupled to Abelian vector multiplets [75], in terms of the
(unique) invariant J, of the U-duality group G =
SU(1, n), which is quadratic in charges:

Ry(p. ) = 132 Zon P, q) = 4 1im GY(0; W)3; W

= |I,(p, 9l (2.13)

We will report such results in Subsections III B and III C.

Then, by exploiting the first order formalism for d = 4
extremal BHs outlined above, we will show that the same
happens for the following d = 4 supergravities:

(i) N =3 (matter coupled) [76], as intuitively ex-
pected by the strict similarity with the so-called
minimally coupled N =2 theory
(Subsections IV B and IV C);

(i) N =5 [74], with |I,| replaced by +/[I,]
(Subsection VIB);

(iii) pure N =4 [73], with |I,| replaced by /[1,]

(Subsection VIIB).

Let us here note that while N = 5 theory cannot be
coupled to matter, in the case N = 4 matter coupling is
allowed, but Eq. (2.12) holds only in N" = 4 pure super-
gravity. Having a (n unique) U-invariant I, quartic in
charges, the aforementioned N = 4 and N = 5 theories
are pretty different from the minimally coupled N = 2
and N = 3, d = 4 supergravity, as we will point out in the
treatment below.

3rH(zm, Zw» P, q) is the radius of the BH event horizon, which
is the unique geometrical horizon for extremal BHs (in which
¢ =0 r_ =r,; = ry; for arecent treatment, see e.g. [63]). It
depends on the dyonic BH charges p* and ¢,, but, in the
presence of nonvanishing scalar charges, also on the asymptot-
ical scalar fields (Zeo, Zoo)-
In order to make contact with the attractor mechanism, and thus
to characterize ry as the fixed point of the scalar radial dynamics
(in the considered static, spherically symmetric, and asymptoti-
cally flat extremal BH background), one has to evaluate ry at the
peculiar geometrical locus in the (asymptotical) moduli space
defined by the (nondegenerate) criticality condition of Vgy (i.e.
by dVgy = 0, with Vpyl,y,.—o # 0). Equation (2.5) yields that

S zu(p @) Zu(p. @) p.@) =0 Vi,
where (z4(p, q), Zu(p, q)) are defined by
[0Ven(z 2 P, D)co=cutp.arzntpay = O-
Thus, Egs. (2.6) and (2.7) [or Eq. (2.12)] consistently yield that

ru(zu(p, @), Zu(p. @), P, @) = Ru(p, q).
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It is here worth pointing out that in the nonextremal case
(i.e. ¢ # 0) the expression generalizing Eq. (2.12), namely

SBH,c#0(Zo0s Zoor P> q)
T

= R2 (Zoo» Zoor P> )
= 1% (Zoos Zoos P @) — G733 (2.14)

R% (Zooy Zoor P, q) =

can be only guessed, but at present cannot be rigorously
proved. Indeed, for static, spherically symmetric, asymp-
totically flat dyonic nonextremal BHs a first order formal-
ism is currently unavailable, so there is no way to compute
the scalar charges (besides the direct integration of the
equations of motion of the scalars, as far as we know at
present feasible only for the (axion-) dilaton BH [77],
and—ypartially—for the stu model [54]).

1. N = 2 MINIMALLY COUPLED
SUPERGRAVITY

We consider N =2, d =4 ungauged supergravity
minimally coupled (mc) [75] to ny Abelian vector multip-
lets, in the case in which the scalar manifold is given by the

sequence of homogeneous symmetric rank-1 special
Kihler manifolds
M _ GNZZ,mc,n _ SU(L I’l)
NI Hamen SUM XU (31
dimp = 2n, n=ny €N.

The 1 + n vector field strengths and their duals, as well as
their asymptotical fluxes, sit in the fundamental 1 + n
representation of the U-duality group Ga—pmen =
SU(1,n), in turn embedded in the symplectic group®
Sp(2 + 2n, R).

The general analysis of the attractor equations, BH
charge orbits, and attractor moduli spaces of such a theory
has been performed in [25,41].

By fixing the Kihler gauge such that X° = 1 and in a
suitable system of local symplectic special coordinates, the
geometry of M nr_s ., is determined by the holomorphic
prepotential function:

F@=-30-C7 (3.2)

The Kéhler potential of M ar_5 .., can be computed to

be (A=0,1, ..., n throughout all the present section, and
|zl = X2, 121%)
K(z,2) = —log[i(X Fy — X F )] = —log[2(1 — [z]*)],

(3.3)

yielding the metric constraint 1 — |z|*> > 0, and the cova-

“In all our analysis we consider the (semi)classical limit of
continuous (unquantized), large BH charges.
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riant and contravariant metric tensors to be, respectively,
(Gij(z, 2)G™(z, 2) = 8%
(121?85 + 2’/

(1= 1z1?)?

Gilz2) = = 2eK5; + 4e2K 717/,

(3.4)

Gl(z,2) = (1 = |2)(87 — 2i2) = Je K(87 — 2'2).
3.5)
From its very definition (see e.g. [83], and references

therein), the covariantly holomorphic N = 2, d = 4 cen-
tral charge function can be computed to be

Z = eX2W = X2[qy + ip® + (q; — ip")Z']
1

= ﬁ 71 =7 (3.6)

[q0 + ip® + (q; — ip)Z'],

where W is the N = 2, d = 4 superpotential [also named
holomorphic central charge function, with Kidhler weights
(2, 0)].

On the other hand, the so-called matter charges read

1
Z,=D,Z=09,Z+ 5(a,-K)Z = eX2[0,W + (9,K)W]

1 .
\/5(1 _ |Z|2)3/2 [(Qt - lp)
+(qo + ip")Z + (q; — ip))/Z]

(1—1z?
3.7

Here, D denotes the U(1)-Kahler and H ar—j . ,-cOvariant
differential operator. Because of the global vanishing of the
C;jr-tensor of special Kéhler geometry, there are only two
(U(1)-Kéhler) and H pr—j e, invariants, namely,

a; = |Z|; (3.8)

@, =427 =\/G2,Z; = Gi(D.2)D:Z,  (3.9)
both (homogeneous) of degree 1 in BH charges (p, ¢) [in
particular, square roots of quantities quadratic in (p, ¢)].
By a suitable rotation of U(n), the vector Z; of matter
charges can be chosen real and pointing in a given direc-
tion, e.g.

Zi = ZJZJ(SZI = 0125,»1. (310)

As recalled at the start of the next subsection, only (%)-
BPS and non-BPS (Z = 0) attractor flows are nondegen-
erate (i.e. corresponding to large BHs, see below) [25], and

the corresponding (squared) first order fake superpotentials
are ([40]; recall Eq. (4.3) and (4.5), respectively)
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o _ Lgo +ip° + (i — ip)z'lqo — ip® + (g, + ip))Z]

PHYSICAL REVIEW D 78, 065003 (2008)

W(Z(I/Z)*)BPS =|Z|* = ay 2(1 — |Z|2) ; (3.11)
Wﬁon-BPS(,Z:()) = Gl](DlZ)D_j—Z = a%

1 S o o | B

= a0 e T e —ipH = |217) + (g0 + iP")Z + (g, — ip)Z'Z']
[(g; + ip)(A = |z + (g0 — ip") + (g, + ip")Z"] (3.12)

where use of Egs. (3.6) and (3.7) was made. A — ieKI2(ZXA — ZRA),
- _ 3.16)
{QA = ieX/A(ZF )\ — ZF ). (

A. Attractor equations and their solutions

The BH effective potential can be written as

Veu = 1Z* + Gif(DiZ)D_jZ_ = a? + al. (3.13)
The N =2, d =4 attractor equations in the case of
minimal coupling to Abelian vector multiplets are
nothing but the criticality conditions for such an
H oy mep-invariant (and Kéhler-gauge-invariant) quan-
tity. Such criticality conditions are satisfied for two classes
of critical points:
1) (%)—BPS:

DZ=0 Vi=1...,nea,=0, Z +0;

(3.14)

(i) nonsupersymmetric (non-BPS with Z = 0):

D;Z # 0 (at least for some i),
7 = 0 =g | = O

(3.15)

It is worth counting here the degrees of freedom related
to Egs. (3.14) and (3.15). The %—BPS criticality conditions
(3.14) are n complex independent ones, thus all scalars are
stabilized by such conditions. On the other hand, there is
only one complex non-BPS Z = 0 criticality condition
(3.15). This fact paves the way to the possibility to have
a moduli space of non-BPS Z = 0 attractors, spanned by
the n — 1 complex scalars unstabilized by Eq. (3.15); this
actually holds true [41], as it will be explicitly found below
for the first time (see Subsection IIT A 2).

1. 3-BPS attractors

An algebraic, equivalent approach to the direct resolu-
tion of the n complex %—BPS criticality conditions (3.14) is
based on the resolution of the special Kihler geometry
identities evaluated along the geometrical locus in
M nr=2,quadr,» defined by the constraints (3.14). By follow-
ing such an approach, the electric and magnetic BH
charges are constrained as follows [2]:

Summing such two sets of symplectic-covariant equations,
one gets

X2gs — pAFs = ieX?Z(X Fs — X Fs),  (3.17)
in which the scalars z' and 7' and the central charge
function Z are understood to be evaluated at the BH
horizon. Then we can proceed to solve for the scalars,
stabilized at the BH horizon in terms of the BH charges;
by rewriting Egs. (3.17) in components, one achieves the
following result:

(A’ 2) = (O, O):qO + lpo = 231(/22;
(A, 3) = (0,i):q; — iz'p® = —eX2Z(2 + 27
. . o (3.18)
(A, 3) = (i,0):2'qp + ip' = X1?Z(' + 7);
(A, 3) = (i, i):2(q; — ip') = —2e52Z]z|.

The decoupling of such 2ny, + 2 real algebraic equations in
terms of the n, complex unknowns z' [the two additional
real degrees of freedom residing in the homogeneity of
degree 1 of the system (3.18) in BH charges] allows for an
effortless resolution, yielding the following explicit ex-
pression of the n complex scalars determining the %-BPS
attractor scalar horizon configurations:

; (i +ip") .

bpg = —————, Vi=1...,n

B T =i

Notice that all ny, complex scalars z' are stabilized in terms
of the BH charges, and thus, as is well known, no classical
moduli space for §-BPS attractors exists at all. By recalling
Egs. (1.2) and (3.13), and plugging Eqs. (3.19) into
Egs. (3.6) and (3.7), one obtains that

(3.19)

S A
BHBPS _ ZHBPS _ ) — a? gps = | ZIps
- 4
_ 1,0 (3.20)

where I, is the (unique) invariant of the fundamental/
antifundamental (1 +n, 1+ n) representation of the
U-duality group Gar—pm,, (not irreducible with respect
t0 G n—2.mc,n itself), quadratic in BH charges [see Eq. (5.1)
below]:
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I, =Yg} — ¢+ (" — )21 =4g* + p»), (32D

where ¢> = n*%g,qx and p* = nsp™p*, nNF = px
being the (1 + n)-dim. Lorentzian metric with signature
(+, —, ..., —) (see the discussion in Sec. V). In terms of
the dressed charges Z and D;Z, the (only apparently
moduli-dependent) expression of I, reads (see e.g. [25]):

PHYSICAL REVIEW D 78, 065003 (2008)

It can be explicitly checked that zjpg given by Egs. (3.19)
satisfy the metric constraint 1 — |z/|> >0 [yielded by
Eq. 3.3)].

It is well known that %-BPS critical points of Vgy are
stable, at least as far as the metric Gi_; of the special Kdhler
scalar manifold is positive definite (at such points); indeed,

the 2ny X 2ny (covariant) Hessian matrix FH gf;‘g of Vgy at

I,=1z? - Gif(DiZ)D_;Z — a% _ a%, (3.22) its %—BPS critical points has rank 2ny, and it reads [4]:
|
0 G
3l = 21212 ( ,,>
BPS B\ G5, 0 )
Keps § .- + ¢2Kpesz. o7
=102 — g2 + (p°)2 — (pk)2] - ¢ ij i,BPSZ],BPS 3.23
[qO qk (p ) (p ) ] (eKBPS 5]; + ezKBPSZj,BPSZ{’BPS 0 > ( )

where use of the stabilization equations (3.19) was made.

2. Non-BPS (Z = 0) attractors and their moduli space

As yielded by Egs. (3.15), non-BPS (Z = 0) attractor
solutions are given by D;Z # 0 for at least some i €
{1, ..., ny}, and by the vanishing of the central charge Z,
which in the considered theory reads as follows [(within
the metric constraint 1 — |z|> > 0; recall Eq. (3.6)]:

Z=0eqy+ip®=—(q; —ip)z ypps.  (3.24)
As noticed above, this is one complex equation in terms of
ny complex unknowns z’, thus at most only one of them
will be stabilized in terms of the BH charges. Indeed, one
can choose, without any loss of generality, to solve
Eq. (3.24) for 7!, getting (i = 2, ..., ny):

! _ (g3 = iP)Zhonmes 90 T ip?

Znon-BPS ] 1
q1 —p q1 —p

(3.25)

The remaining scalars z' are not stabilized at the consid-
ered (nondegenerate) non-BPS Z = 0 critical points of
Veu- As known from group-theoretical arguments (see
Table 3 of [41]), such scalars span a moduli space given
by the rank-1 symmetric special Kdhler manifold

y _ Su(ln-1)
N'=2,mc,n,non-BPS SU(n — 1) X U(1)
= MN:Z,mc,n*l’

dimp = 2(n — 1). (3.26)
The unique element of the sequence M ar—p e, 1 € N,
in which the non-BPS Z = 0 attractors have no associated
moduli space is the n = 1 case (the so-called > model), in
which all nondegenerate critical points of Vpy are stable,
with no flat directions at all.

The existence of n — 1 flat directions at all orders in the
(covariant) differentiation of Vy at its nondegenerate non-

I
BPS Z = 0 critical points in the considered theory can be
realized also by the following argument.

First, it can be explicitly computed that the application
of an odd number of covariant differential operators on
Veu always yields a vanishing result (here the tilded in-
dices can be either holomorphic or antiholomorphic; m €
N throughout):

(Dilsz cee sz,,,,] VBH)non-BPS =0. (3.27)

Then, the 2ny, X 2ny (covariant) Hessian matrix Xj:_BPS
of Vpy at its non-BPS Z = 0 critical points can be com-

puted to be
) , (3.28)
non-BPS

and it has thus rank 2, with 2 strictly positive and 2ny, — 2
vanishing real eigenvalues (massless ‘“‘Hessian modes”).
In order to investigate the persistence of such 2n, — 2
massless ‘“Hessian modes’’ to higher order in the covariant
differentiation of Vgy, one can define a “putative” mass
matrix H ,‘:}3“ for scalars, such that FH ,‘,/f:”o = H Ve (co-
variant Hessian matrix of Vpy), in the following way:

(3.29)

0 (D,Z)D:Z
Veu = o i J
Hnon—BPS 2( (DJZ)D{Z 0

H ¥ = (D;D;D;, ... D;, Vey)Z' ... Z0n,

where Z denotes the relevant contravariant matter charge.
It can be thus calculated that

H r‘t/z},ar}fon-BPS = 22" (Vginon-nps) " H 23 g (3.30)

Therefore, regardless of m the putative mass matrix
has rank 2, with 2 strictly positive and 2ny, — 2 vanishing
real eigenvalues, and these latter thus span a moduli space.

By recalling Eq. (3.7) and plugging Eq. (3.24) into the
matter charges D;Z, one obtains

q; — ip’

\/EV 1 - |Z|%on—BPS

D Z|yon-Bps = (3.31)
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By such a result, H 1‘1/(])31]1{—BPS can be rewritten as follows:

H B e =
non-BPS

Because of Egs. (3.24) and (3.25), in general the matter
charges D;Z and HH Vs are not stabilized in terms of the
BH charges at the considered non-BPS Z = 0 critical
points, but nevertheless this does not affect the moduli
independence of the BH entropy. Indeed, by recalling
Egs. (1.2) and (3.13), and plugging Eqgs. (3.15) and (3.24)
into Egs. (3.6) and (3.7), one obtains that

— AH,non-BPS

SBH,non—BPS =V | — 2
_— 4 BH Inon-BPS az,non-BPS

T
= [Gi';(DiZ)DjZ]non-BPS
= [Gij(aiz)éjz]non—BPS =-1,>0,
(3.33)

where I, is the (unique) quadratic Gy ,-invariant
given by Egs. (3.21) and (3.22).
|

1
1 = 12I2,,-5ps ((qj —ip/)(g; +ip') 0

PHYSICAL REVIEW D 78, 065003 (2008)

0 (gi — ip")(g; + ip)) ) (3.32)

[

Thus, in N = 2, d = 4 supergravity minimally coupled
to Abelian vector multiplets, the BH charges supporting
nondegenerate critical points of Vpy are split in two
branches: the (%)—BPS one, defined by J, >0, and the

non-BPS (Z = 0) one, corresponding to J, < 0.

B. Black hole parameters for %-BPS flow

By using the explicit expressions of leaps given by
Eq. (6.32), using the differential relations of special
Kihler geometry of M nr—5 .., (see e.g. [83], and refer-
ences therein), and exploiting the first order (fake super-
gravity) formalism discussed in Sec. II, one, respectively,
obtains the following expressions of the (square) ADM
mass covariant scalar charges, and (square) effective hori-
zon radius for the %—BPS attractor flow” [63]:

731,805 (Zoor Zoor P @) = MApy pps(Zoor Zoor P2 @) = Wips(Zeor Zoor P2 ) = lim |Z1?(z(7), Z2(7), P, q)

_ g0 +ip® + (qi — ip)2hdlgo — ip® + (g, + ip))Zh]

2:8ps(Zoos Zoo Db @) = 271_1{(1)1,(3in1>5)(2(7), A7), pq) =

1 \ll]o —ip® + (q; + ip))zh
qo +ip® + (g, — ipH)Zk

T 20— |z

+ (g, — ip")zh k]

2
RH,BPS

= Tim [Wips(2(7), 2(7), p, q) — 4G (2(7), 2(n))(9; Wips)(z(7), 2(7), p, q)  (3; Weps)(2(7), 2(7), p, @)]

D ’ (3.34)
1 —_
lim (ZD;Z 3(7), p,
M ApmBps (Zoos Zoos P> q) TH(I},( Z)(z(7), 2(7), p, q)
g =P = Jzel) + (g0 + 1P
(3.35)
(3.36)

SBH,BPS(P, 51)

= I,(p, q) = Vpupps =
a

Equation (3.36) proves Equation (2.13) for the %-BPS
attractor flow of the N =2, d = 4 supergravity mini-
mally coupled to n = ny Abelian vector multiplets.

Notice that in the extremality regime (¢ = 0) the
effective horizon radius Ry, and thus Ay and the
Bekenstein-Hawking entropy Sgy are independent on the

5 Throughout the whole paper, for all the considered functions
f(z, % p, q) we assume

f(22 P D)o = lim f(2(7), 2(7), P @) = f(2e0s Zeo P> G).

Furthermore, we assume f(z, Z, p, ¢) to be smooth enough to
split the asymptotical limit of a product into the product of the
asymptotical limits of the factors.

|
particular vacuum or ground state of the considered theory,
i.e. on (74, 7.,), but rather they depend only on the electric
and magnetic charges ¢, and p?, which are conserved due
to the overall (U(1))"*! gauge invariance. The indepen-
dence on (zi,, z%,) is of crucial importance for the consis-
tency of the microscopic state counting interpretation
of Sgy, as well as for the overall consistency of the
macroscopic thermodynamic picture of the BH. However,
it is worth recalling that the ADM mass M ,p); generally
does depend on (zi, z,,) also in the extremal case, as
yielded by Eq. (3.34) for the considered %—BPS attractor
flow.

Furthermore, Eq. (3.34) yields that the %—BPS attractor

flow of the N = 2, d = 4 supergravity minimally coupled
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to n = ny Abelian vector multiplets does not saturate the
marginal stability bound (see [54,84]).

C. Black hole parameters for non-BPS (Z = 0) flow

By using the explicit expressions of Wﬁon_Bps given by
Eq. (3.12), using the differential relations of special Kahler
|

PHYSICAL REVIEW D 78, 065003 (2008)

geometry of Mar_p ., (see e.g. [83] and references
therein), and exploiting the first order (fake supergravity)
formalism discussed in Sec. II, one, respectively, obtains
the following expressions of the (square) ADM mass,
covariant scalar charges, and (square) effective horizon
radius for the non-BPS Z = 0 attractor flow [63]:

r%{, non—BPS(ZOO’ ZOO’ p; q) = MIZA,DM, non—BPS(ZOO’ ZOO’ p, q) = W%on—BPS(ZOO’ Z00’ p; q) = TEI(E{[Gl](D,Z)D_iZ_](Z(T), Z(T)r )2 (/I)

N

[(g; + ip)(1 = |zwl®) + (g0 = ipV)2ho + (g, + ip")Zmh];

252 (87 = 2,7%) - [(qi — ip)(1 = |zeol®) + (g0 + ip®)Zh + (g, — ip")2beZ]

(3.37)

1

2i, non-BPS(Zoor Zoos )2 Q) = 2Tgrg(aiwnon-BPS)(Z(7): Z(T)’ p; Q) = h%l, (ZDzZ)(Z(T)’ Z(T): p; Q)

o
V2 (1= |zl

+ (g — ip™z0zh] - [(8"7 — 478

M ADM, non-Bps (Zoos Zoos P» q) ™

[q0 — ip® + (q; + ip)zh] - [(q; — ip)(1 = |zoo?) + (g0 + ip®)Zh

) - [(g, — ip") (A = |zel?) + (g0 + ip®)Z%

+ (g, — ip9)z%25] - [(q, + ipP)(1 = |ze|?) + (g0 — ip®)zh + (g, + ip")Z%25]1712  (3.38)

2
RH,non-BPS

X (z(7), 2(7), p. q)]

=-1 2(P, q) = VBH, non-BPS = .

Equation (3.39) proves Eq. (2.13) for the non-BPS Z =
0 attractor flow of the N = 2, d = 4 supergravity mini-
mally coupled to n = ny Abelian vector multiplets. The
considerations made at the end of Subsection III B hold
also for the considered attractor flow.

It is worth noticing out that Egs. (3.36) and (3.39) are
consistent, because, as pointed out above, the (%)—BPS— and
non-BPS (Z = 0)-supporting BH charge configurations in
the considered theory are, respectively, defined by the
quadratic constraints J,(p, g) > 0 and I,(p, q) <O0.

As yielded by Egs. (3.35) and (3.38) for both nondegen-
erate attractor flows of the considered theory it holds the
following relation among scalar charges and ADM mass:

MADM ™0~

(3.40)

Furthermore, Eq. (3.37) yields that the non-BPS Z = 0
attractor flow of the N =2, d = 4 supergravity mini-
mally coupled to n = ny, Abelian vector multiplets does
not saturate the marginal stability bound (see [54,84]).

As it will be proved in the next sections, for all non-
degenerate attractor flows of the considered d = 4 super-
gravities the marginal stability bound is not saturated. A
more detailed discussion of such an issue falls beyond the

SBH, non—BPS(p: Q)

= lim [ W7, gps(2(7), 2(7), p, q) = 4G(2(7), Z2())(3; W aon-ps) (2(7), Z(7), P, q) * (37 W non-5ps)

(3.39)

|
scope of the present investigation, and it will be given
elsewhere [85].

IV. N = 3 SUPERGRAVITY

The (Kéhler) scalar manifold is [76]

SU(3, n)

M _ G.’}\f:3,n _
N=3n SUB) X SUn) X U(1)’

H.']\f:B,n

dimp = 6n. @.1)

The 3 + n vector field strengths and their duals, as well
as their asymptotical fluxes, sit in the fundamental 3 + n
representation of the U-duality group G ar—3 , = SU(3, n),
in turn embedded in the symplectic group Sp(6 + 2n, R).

Zap = Ziag) (A, B =1,2,3 = N) is the central charge
matrix, and Z; (I = 1, ..., n) are the matter charges, where
n € N is the number of matter (Abelian vector) multiplets
coupled to the gravity multiplet. By a suitable transforma-
tion of the R-symmetry U(3), Z,p can be skew-
diagonalized by putting it in the normal form (see e.g.
[40] and references therein):

Z
ZAB:< 16 O)y

where € is the 2 X 2 symplectic metric, and Z; € Ry is

4.2)
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the unique N = 3 (moduli-dependent) skew-eigenvalue,
which can be expressed in terms of the unique U(3) (and
also Har—3, = U(3) X U(n))-invariant as follows:

Z] = "’%ZABZAB.

On the other hand, by a suitable rotation of U(n), the vector
Z,; of matter charges can be chosen real and pointing in a
given direction, e.g.

4.3)

ZI = p511, (44)

where p can be expressed the unique U(n) [and also
H =3, = U(3) X U(n)]-invariant as

The simplest holomorphic parametrization of M ar_;,,
can be written in terms of the (3 + n) X (3 + n) coset
representative [86,87]

L:<\/1+XXT X )

4.5)

4.6
xt V1+xtx (4.6)

where X is a complex n X 3 matrix in the bifundamental of
SU(3) X SU(n) = Har—3,\U(1), whose components are
|
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nothing but the 3n complex scalars z' (i = 1, ..., 3n) span-
ning M 3 ,. The embedding of G—3, into the sym-
plectic group Sp(6 + 2n, R):

SU@B,n)— Sp(6 + 2n, R),
g = L(z) — S(g) = S(L(2)),

is determined by the (6 + 2n) X (6 + 2nr) matrix

4.7)

_(P0 &
S(g) ( " ¢o) € SUB, n) C Sp(6 + 2m,R), (4.8)

such that the (3 + n) X (3 + n) sub-blocks ¢, and ¢,
satisfy the relations

¢(’)r¢0_¢1r¢l =1, ¢(J)r<,51 _(f’Mo:Q

Let us here recall that in the Gaillard-Zumino formalism
[88], the vector kinetic matrix can be written as (A =
1,2,3,4,...,3 + n throughout all the present section)

N s = (@ + oD U pd — o).

The embedding SU(3, n) — Sp(6 + 2n, R) is determined
once S is written as a function of X(z), namely,

4.9)

(4.10)

V1 + xxt 0 0 X
0 JV1+XTX X7 0
S(X) = _ _ , 4.11
*) 0 X V1 + Xx" 0 10
X7 0 0 V1+Xxtx
that is e _i<1/1 + xxt -X )
0 X A 2\ —xt T+ XX
o= o) (4.12) PR
= (hajag hap) = h; (4.16)
7 o (VT+xxT 0 _ LY+ xxT X\ =t
bo = 1+¢1¢1=< 0 Jrx% ) I3 2 xt M+ XTx (fAB’fI) .
“.13) 4.17)

The vector kinetic matrix N ,s can be written in terms
of the (3 + n) X (3 + n) symplectic sections (and their
inverse) as follows (see e.g. [83], and references therein):

N as = hop(fHE.

The explicit dependence of the symplectic sections on the
sub-blocks of S(X) is simply

(4.14)

) 1
hys = _é((ﬁo_d’l), f%z\/—z(d’o"‘%),
4.15)

whereas in terms of the matrix X(z) they read

By rewriting Eqgs. (4.9) in terms of the symplectic sections,
one finds [89,90]

i(fth — htf) = 1; (4.18)

h7f — ht? = 0. (4.19)

The central charge matrix Z,5 and the matter charges Z;
are, respectively, defined as the integral over the 2-sphere
at infinity S2, of the dressed graviphoton and matter field
strengths [89-91]:

Zyp = — f52 Thp=— ,/52 Thp = fian — hajasp™;

(4.20)
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Z]E_[ T[:_[T
sZ, 2,

= fraa — happ®. (421)

Using the explicit expression for the symplectic sections
given in Egs. (4.16) and (4.17), one obtains

= \/%[(Vl + XXN)Sp(gc + ip©) + Xiip(q; — ip)];

(4.22)
|

WZ

AB — 72
((1/3)-)BPS — Z

ZABZ
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—ip" + W1+ XTX),/(q; + ip)].
(4.23)

As recalled at the start of the next subsection, only (%)-
BPS and non-BPS (Z,5 = 0) attractor flows are nondegen-
erate (i.e. corresponding to large BHs), and the correspond-
ing (square) first order fake superpotentials are ([40]; recall
Eq. (4.3) and (4.5), respectively)

= (XD

=l(gc — ipO W1 + XX + (g; + ipH(XT) T [V1 + XXN)P(gp + ipP) + X/(q; — ip)]]

=11 + xx1)"B(g, —

+ (XTI + xx1)B(g, —

ip®)(q; —

WZ

— 51— 52
non-BPS(,Z,5=0) ZIZ =P

=l(gp + ip?)XP + (g, —

= H(xXXH)P(ge + ip)gp —

where Eqgs. (4.22) and (4.23) were used. Notice that, since
all the contractions of SU(3) and SU(n) indices of electric
and magnetic BH charges are uniquely defined with respect
to the row or columns of the matrix X, every transposition
index has been suppressed in Egs. (4.24) and (4.25).

By introducing the complexified graviphoton and matter
BH charges, respectively, as follows:

Oc = qc + ipS; (4.26)

0, =q; +ip', (4.27)
Egs. (4.24) and (4.25) can be rewritten as follows:
Wies =31+ XX1)80,05 + (V1 + XXTX)Y 0,04
+ (X1 + XXT)VE0,0; + XTX)M0,0,];
(4.28)

W2, mps = [(XXT)ABQAQB + W1+ xtxx1)10,0,

+(XV1+XTX)50,40; + (1+ X1 X)H0,0,1

(4.29)

A. Attractor equations and their solutions
The BH effective potential can be written as
Vay = 3Z4pZ*% + 2,21 =

22+ p. (4.30)

The N = 3, d = 4 attractor equations are nothing but the

iph(V1 + XTX)"7 - [(X1)(g¢c —
ipP) + (V1 + XTxx1)C(q, —

+ (XV1 + Xt X)Pi(gy + ipP)(g; + ip') + (1 + XTX)i(q, —

ip")(gp + ip?) + (V1 + XXTX)4(q; + ip')(gqs + ip*)

i) + (XTX)H(q + ip)ay — P

(4.24)

ip€) + W1+ XTX)(q; + ip)]]
ip")(gc — ip©)

ip")(g; + ip)).] (4.25)

|
criticality conditions for such an Hj —; ,-invariant (and
Kéhler-gauge-invariant) quantity. Such criticality condi-
tions are satisfied for two classes of critical points:

1) (%)—BPS:

Z;=0 VI=1,...,n<=>p=0; Zsp * 0

(4.31)

(i) nonsupersymmetric (non-BPS with Z,5 = 0):

Z; # 0 (at least for some I);

4.32)
B = 0 Zl =0.

It is worth counting here the degrees of freedom related
to Egs. (4 31) and (4.32).

The —-BPS criticality conditions (4. 31) are n complex
1ndependent ones, thus a moduli space of z-BPS attractors,
spanned by the 2rn complex scalars unstablhzed by
Eq. (4.31) might—and actually does [25]—exist.

Furthermore, there are only three complex non-BPS Z =
0 criticality conditions (4.32). This fact paves the way to
the possibility to have a moduli space of non-BPS (Z,5 =
0) attractors, spanned by the 3(rn — 1) complex scalars
unstabilized by Eq. (4.32); this actually holds true [41],
as it will be explicitly 