

Commissioning of Particle ID with early LHC data

Tetiana Berger-Hryn'ova CERN

on behalf of the ATLAS and CMS collaborations

Disclaimer: This talk will only concentrate on lepton (e, μ , or τ) and photon particle identification

HCP 2008, Galena, IL, USA

Particle ID: Motivation

Some Processes of Interest:

- Use early data for commissioning and calibration of the detector in situ with well-known physics samples
- Low luminosity (10³¹ vs 10³³cm⁻²s⁻¹)
 - Limit EW samples statistics (rate <1Hz vs ~50Hz): $Z \rightarrow ee/\mu\mu/\tau\tau$ and $W \rightarrow e/\mu\nu$
 - Give access to other lower p_T samples:
 - $J/\psi(Y) \rightarrow ee/\mu\mu$, b,c $\rightarrow e$
 - $W \rightarrow \tau v$
- Triggers are crucial for low p_T samples:
 - Events not selected by trigger are lost forever!
 - Need ~10⁴ reduction for events to tape:
 - PID is going to be used in the triggers too!

Parameter	Phase A
k _b / no. bunches	43-156
Bunch spacing (ns)	2021-566
N (10 ¹¹ protons)	0.4-0.9
Crossing angle (mrad)	0
$\sqrt{(\beta^*/\beta^*_{nom})}$	2
σ* (mm, IR1&5)	32
\mathcal{L} (cm ⁻² s ⁻¹)	6x10 ³⁰ -10 ³²
Year ? (Oct schedule) $\int \mathcal{L} dt$? (my guess)10	2008 0-100 pb ⁻¹

Electron/Photon PID

Inner Detector Tracking

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3

1.7

Electron and Photon Reconstruction

- Calorimeter-based reconstruction
 - Used for photons and electrons
 - Photons do not match any track or match a conversion
- Electrons need to have a loose track match in (η,ϕ) and in energy vs momentum
 - Bremsstrahlung recovery is part of default electron reco in CMS; various algorithms exist in ATLAS
- Soft-electrons (low- p_T and electrons in jets): extrapolate Inner Detector tracks to the calorimeter

<u>General requirements for e/γ ID:</u>

- Trigger efficiency
- Understanding of detector (alignment, material)
- ECAL calibration
- Tracker momentum measurement
- ✓ Difficult PID: e/jet ~ 10⁻⁵ at 40GeV

Tetiana Berger-Hryn'ova, HCP 2008

ATLAS Electron and Photon performance*

* Updated results from CMS are expected this summer

Photon Performance

- Selection efficiency with isolation ~85%
- Jet rejection factor ~5000 (before isolation) and ~9000 (after) for all jets

Selection cuts	$E_T >$	25 GeV	$E_T > 40 \; { m GeV}$		
	Quark jets	Gluon jets	Quark jets	Gluon jets	
Before isolation	1770 ± 50	$15000{\pm}700$	$1610{\pm}100$	15000±1600	
After isolation	2760±100	27500±2000	2900±240	28000±4000	

Electron Performance

Cuts	$E_T > 17~{ m GeV}$				
	Efficien	Jet rejection			
	$Z \rightarrow ee$	b,c ightarrow e			
Loose	87.97 ± 0.05	50.8 ± 0.5	567 ± 1		
Medium	77.29 ± 0.06	30.7 ± 0.5	$2184~\pm~7$		
Tight (TRT.)	61.66 ± 0.07	22.5 ± 0.4	$(8.9 \pm 0.2)10^4$		

After Tight selection expect:

- Isolated Electrons 11%
- b,c→e 63%
- Background 26%

To go further

Multivariate methods: improve rejection by 40-60% for a fixed efficiency, or gain of ~4-8% in efficiency for a fixed rejection

Photon Conversions

- Outward/Inward seed/track
- finding is crucial for conversions implemented in ATLAS
- Conversion Types
 - -Double: Pairs of opposite charge tracks fitted to common vertex
 - -Single: asymmetric with soft electron lost or two tracks merged
- Determined photon direction helps to find primary vertex

True conversion radius

11/35

Understanding of the Material

Photon conversions used both in ATLAS and CMS

- use $\pi^{o} \rightarrow \gamma \gamma$ from minbias events •~10⁹ minbias events
- for 1% uncertainty

Results from ATLAS study with "distorted material" simulation 300k minbias events

ATLAS:

- 2nd sampling E_T in minbias events
 - 2M events ~ 1 day of datataking
 - sensitivity 20% extra material in 0.1x0.1 regions
- 1st sampling energy deposit (W/Z)

CMS:

- E/p distribution
- Use of the bremsstrahlung fraction for electron tracks:
 - $\langle X/X_0 \rangle \sim -\ln(1-f_{brem})$

Main Calibration Samples

- Fairly simple selections
- For Z robust analysis is planned in the beginning (without tracker)

Z→ee ~40k events in 100pb⁻¹

Expected number of signal events passing L1 and offline tight soft electron selection with E_T>5GeV (×10³) with 100 pb⁻¹ at 10³¹ cm⁻² s⁻¹

J/ψ	Y(1S)	Drell-Yan
230k	45k	14k

$Z(J/\psi) \rightarrow$ ee calibration, energy scale

- Mass constraint to correct residual long-range non-uniformities
- In ATLAS, inter-calibrate large locally uniform regions
 - assuming ID material is known to a good accuracy
 - − ~30k Z→ee events achieve uniformity of ~0.7% in 0.1x0.1 ($\eta \times \phi$)
 - ~200k J/ ψ →ee events for 0.6%
 - two samples provide cross-check of calibration and check the linearity of calorimeter
- In CMS, local crystal to crystal response is non-uniform
 - Use single jet triggers to inter-calibrate ϕ rings (need ~11M events, e.g. a few hours of full trigger bandwidth to reach 2-3% precision)
 - Need 2fb⁻¹ to reach 0.6% uniformity: this is required for $H \rightarrow \gamma \gamma$ searches

Calorimeter-ID inter-calibration

Inter-calibrate in small regions using E/p peak

Main Electron Samples:

- Isolated electrons of $W \rightarrow ev$
- Non-isolated electrons from b,c \rightarrow e (10 times more statistics with E_T>10GeV, dominate up to p_T~35GeV)

- Keeping single electron trigger threshold as low as possible is crucial!

Muon PID

Tetiana Berger-Hryn'ova, HCP 2008

17/35

Muon System Design

Standalone muon spectrometer in air-core toroid

- Resolution
 - –Not limited by multiple scattering
 - –Uniform in η
- Accurate measurement of very non-uniform B field required

Instrumented return yoke of inner detector solenoid ⇒ high bending power and momentum resolution in ID

- Resolution
 - Limited by multiple scattering
 - $-\eta$ -dependent
- •Uniform B field in the barrel

Muon System Design

Optical Alignment System (<35µm resolution)

Pseudorapidity coverage <2.7

- Thin Gap Chambers (TGC)
- Resistive Plate Chambers (RPC) High Resolution
- Cathode-Strip Chambers (CSC)
- Monitored Drift Tube (MDT)
- Spatial Resolution 80µm/MDT tube

Laser alignment of muon and ID with 200µm precision Pseudorapidity coverage <2.4

Fast Trigger Chambers (<10ns time resolution):

- mbers (RPC) · Resistive Plate Chambers (RPC) High Resolution Tracking Detectors:
 - Cathode-Strip Chambers (CSC)
 - Drift Tube Chambers (DT)

Spatial Resolution <=100µm

Tetiana Berger-Hryn'ova, HCP 2008

chambers

precision

Main Calibration Samples

Sources of low invariant mass di-muons

Dilepton resonances (mostly Z) sensitive to:

- Tracker-spectrometer misalignment
- Uncertainties on Magnetic field
- Detector momentum scale
- Width is sensitive to muon momentum resolution

 J/ψ and Z Cross-checks between samples

These will be the first peaks in data

Events in 100pb⁻¹: J/ψ→μμ ~1600k (+~10% ψ') Υ→μμ ~300k (+~40% Υ'/Υ") Z→μμ ~60k

First Cosmics Results

~ 170k good cosmic muons collected with EM calorimeter used for this study (rate in ATLAS cavern is O[10 Hz]) \rightarrow can record ~ 10⁶ events before collisions start

■ enough to check part of calibration $vs \eta$ to 0.5% in best exposed modules

- Use 25M of events (of 200M) from Magnet Test and Cosmic Data Challenge (2006)
 - − 15M with B-field \ge 3.8T
- A section of all subdetectors included
- Standalone muon reconstruction
- Full trigger + offline chain tested
- Test part of the alignment procedure

Tau PID

...will show only ATLAS results...

Tetiana Berger-Hryn'ova, HCP 2008

25/35

Tau characteristics

• Heavy Lepton: $m_{\tau}=1.78$ GeV

- Decay Length: ct ~= 87mm
- Decays into leptons and hadrons

- Produces **t-jet**
- Main backgrounds for taus
 - QCD jets
 - Electron that shower late or with strong bremstrahlung
 - Muons interacting in the

Tetiana Berger-Hryn'ova, HCP 2008

Tau-jets at LHC:

- Very collimated
 - •90% of the energy is contained in a 'cone' of radius R=0.2 around the jet direction for E_T >50 GeV
- Low multiplicity
 - •One, three prongs
- Hadronic, EM energy deposition
 Charged pions
 - •Photons from p^o

Algorithm	$E_T = 10-30 \text{ GeV}$	$E_T = 30-60 \text{ GeV}$	$E_T = 60-100 {\rm GeV}$	$E_T > 100 \text{ GeV}$	
Track-based	$1_{\rm P}:740\pm70$	$1p: 1030 \pm 160$			
(neural network)	$3p: 590 \pm 50$	$3p: 590 \pm 70$			
Calo-based		1p: 1130 ± 50	$1p: 2240 \pm 140$	1p: 4370 ± 280	
(likelihood)		3p: 187 ± 3	3p: 310 ± 7	$3p: 423 \pm 8$	
Tetiana Berger-Hryn'ova HCP 2008					

27/35

Tau Trigger Slice

- ✓ Tau physics can be done without tau triggers
 - ✓ Leptonic tau decays are triggered with lepton triggers
- ✓ Triggering on hadronic tau decays is difficult
 - ✓ huge QCD background, high occupancy in the events
 - ✓ Difficult not to bias track multiplicity spectra
 - ✓ Intensive effort in ATLAS to develop algorithms and optimise performance
- ✓ Tau Trigger configuration
 - ✓ high thresholds alone (E^{τ}_{T} >60GeV),
 - \checkmark lower thresholds in combination with other signature (E_T^{miss} , lepton, jet)
- ✓ Increases dicovery potential for many physics channels, in few cases the only trigger
 - ✓ W→ $\tau\nu$ trigger (single tau + E_T^{miss}) only accessible at L=10³¹cm⁻²s⁻¹
 - \checkmark Higgs in fully hadronic tau decays

ATLAS Trigger System

L1: (hardware) 40MHz->75kHz (2.5ms) L2: (software) 75kHz->2kHz (40ms) Calorimetry + tracking EF: (software) 2kHz -> 100 Hz (4s)

Tau Trigger Slice

Calorimetry Same algorithms as off-line

W→τv events with 100pb⁻¹

- 1600 - 9 - 1400

• The most abundant source of taus in SM processes.

• Triggered on single tau + E_T^{MISS} : only accessible at 10³¹!

• Dominant bgd from QCD jets

- S/B is 10 times worse a LHC than at TeVatron

• W→ev important background, but also excellent control channel.

• Main tau signature: Observe excess of events in the track multiplicity spectrum of identified taus.

F	euts 10				W W Z Z	/→ev /→μv →ττ →ee		
$10^{31}!$	<u>⊸</u> 1000					Jul		.
D jets	800				Α		AS	
ıt	600				р	reili	minary	
	400							
ound,						•••••		
	0	12	3	4	5	6	7 8 Track multipli	9 city
	1 1	_		-				
Events for 100pb ⁻¹			$W \rightarrow \tau v$		7	QCD		
n pp co	pp collisions		$1.7 \ 10^{6}$			$1.9\ 10^{12}$		
rigger			8.8 10 ⁴		8.6 107			

1550

Offline selection

510

CD (J0+J1+J2+J3)

$Z \rightarrow \tau \tau$ events (lep-had) with 100pb⁻¹

• 10 times smaller cross-section than $W \rightarrow \tau v$ but more interesting topology

- Triggered on single lepton.
- same-sign events (almost signal free) used to control bgd in opposite sign events (signal enriched).

• Observe excess of events in invariant mass of visible decay products, then reconstruct complete invariant mass (collinear approximation).

With statistical uncertainty only from visible mass determine precision

- τ energy scale: $\pm 3\%$ (visible τ energy)
- cross-section: ± 6%

$Z \rightarrow \tau \tau$ events (lep-had) with 100pb⁻¹ (cont)

Taking into account only statistical uncertainty and assuming taus are well calibrated. From Z invariant mass determine E_T^{miss} scale (additional selection, collinear approximation)

seeing new and interesting physics events expected at LHC

