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ABSTRACT

The ability of autonomous or semi-autonomous unmanned ground vehicles (UGVs) to
rapidly and accurately predict terrain negotiability, generate efficient paths online and have
effective motion control is a critical requirement for their safety and use in unstructured
environments. Most techniques and algorithms for performing these functions, however,
assume precise knowledge of vehicle and/or environmental (i.e. terrain) properties. In
practical applications, significant uncertainties are associated with the estimation of the
vehicle and/or terrain parameters, and these uncertainties must be considered while
performing the above tasks. Here, computationally inexpensive methods based on the
polynomial chaos approach are studied that consider imprecise knowledge of vehicle and/or
terrain parameters while analyzing UGV dynamics and mobility, evaluating safe, traceable
paths to be followed and controlling the vehicle motion. Conventional Monte Carlo methods,
that are relatively more computationally expensive, are also briefly studied and used as a
reference for evaluating the computational efficiency and accuracy of results from the
polynomial chaos-based techniques.
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1. INTRODUCTION

1.1. Motivation

Future army operations will employ autonomous or semi-autonomous unmanned ground

vehicles (UGVs) in both cross-country and urban environments. Fundamental requirements

for systems operating in such unstructured terrain include the capacity to quickly and

accurately predict their ability to negotiate rugged regions and surmount obstacles, as well as

to generate feasible trajectories online, and to have robust motion control schemes at their

disposal to move the vehicle along desired paths. These capabilities are critical to the safe

and efficient operation of vehicle navigation systems and hence to the successful deployment

of UGVs that can operate effectively on challenging terrain with minimal human supervision.

With UGVs being employed for applications such as exploration, military reconnaissance

and material transport on rugged terrain, autonomous navigation of such systems at high

speeds has therefore received substantial research attention recently, as highlighted by the

DARPA Grand Challenge competition. However, while significant work has been done to

understand and predict the mobility of vehicles in natural terrain [1], [2], these efforts

generally assume precise knowledge of vehicle parameters and wheel- (or track-) soil

interaction properties, gathered from terrain measurement devices such as cone

penetrometers. In the context of path generation, many techniques focus on generation of

time- or distance-optimal paths while obeying some dynamic constraints [3]-[6], but often

assume precise knowledge of the vehicle and/or terrain properties and do not analyze terrain

mobility explicitly during the planning process. A similar deterministic approach is followed

by most predictive motion control algorithms.

In summary, most previous methods for mobility prediction, path planning and predictive

control rely on deterministic analyses that assume accurate knowledge of vehicle and/or

terrain parameters. In field conditions, however, UGVs often only have access to sparse and

uncertain soil parameter estimates. Moreover, significant uncertainties are often associated

with estimates of vehicle parameters, due to effects such as loading, wear, fuel consumption,



etc. It is therefore critical to explicitly consider these uncertainties when deriving predictions

of vehicle mobility, evaluating safe paths for the vehicle to follow and controlling vehicle

motion along these routes.

1.2. Objective

As explained in Section 1.1, there has been little research that explicitly addresses the

challenge of autonomously assessing the traversability of ground vehicles over a given

terrain region. Further, most path planning approaches and motion control schemes do not

explicitly consider parametric uncertainty during their analysis and predictions. It is essential

that the effects of uncertainty be included in order to get more realistic predictions, especially

for situations involving aggressive vehicle movement over uneven, uncertain terrain.

Many statistical techniques exist for evaluating processes that are subject to uncertainty and

generating probabilistic results for various outputs. These include the conventional Monte

Carlo approaches, as well as the relatively recent polynomial chaos-based techniques. The

Monte Carlo approach involves sampling of random points within the domain of each

uncertain parameter, followed by simulation of the model under consideration using this

parameter set. The probability distribution for the output(s) and the corresponding statistical

properties can then be obtained from the ensemble of simulation results. However, this

technique is often time consuming and infeasible for most on-line planning and control

operations for vehicle systems.

On the other hand, the relatively recent polynomial chaos-based techniques, although

marginally compromising on the accuracy, are significantly more computationally efficient.

These response approximation methods rely on constructing simplified models to capture the

relationship between the stochastic inputs and outputs. While the original polynomial chaos

framework could be applied only to normally distributed inputs, this was later extended to

include inputs having other probability distributions, through the introduction of the

generalized polynomial chaos method. Numerous extensions have been proposed to the

underlying framework to enhance the applicability and accuracy of the technique, and these



include the stochastic response surface approach as well as multi-element generalized

polynomial chaos method.

In this thesis, an attempt has been made to apply some of these approaches to the areas of

vehicle dynamic analysis and navigation, and particularly to vehicle stability, path planning

and motion control. A comparison has been performed between the various methods with

regard to computation efficiency and accuracy.

1.3. Contributions

1.3.1. Mobility Analysis

There has been little research done in the past that explicitly deals with the challenge of

autonomously assessing the traversability of a vehicle over a given terrain region or obstacle

under uncertainty, as most techniques either do not explicitly analyze vehicle mobility on

rough terrain or rely on a deterministic study that assumes precise knowledge of vehicle

and/or terrain parameters.

In the present work, roll-over of the vehicle has been considered for studying its mobility in

unstructured environments and a suitable metric has been adopted. Subsequently, a stochastic

analysis using the polynomial chaos-based approach has been performed so as to incorporate

the effects due to vehicle parameter uncertainty. Significant differences can be found

between the deterministic and stochastic results, particularly when the variance in the

predicted mean value is also considered in the stochastic analysis to indicate the vehicle roll-

over tendency in realistic, uncertain scenarios. In other words, while the deterministic results

may indicate safe traversal of the vehicle over a rugged terrain, especially for an aggressive

maneuver, inclusion of parametric uncertainty can introduce a probability distribution for the

expected output that provides an insight into the possibility of roll-over under uncertainty.

The approach has also been used to analyze the ability of the vehicle to traverse a terrain that

has uncertainty in soil parameters. This scenario has been modelled by considering a wheeled

ground vehicle traveling on flat, firm outdoor terrain (heavy clay), then attempting to

navigate up an inclined region of highly deformable terrain (dry sand) and the mobility has



been defined as the probability that the vehicle will have a positive velocity after traversing

the sandy incline.

In addition to mobility analysis, the method can also be applied to predict the expected mean

value and the corresponding variance for each of the vehicle state variables such as slip angle

and roll angle, as well as its path coordinates, in order to better approximate the vehicle

dynamics in the presence of significant parametric uncertainty.

1.3.2. Path Planning

While evaluating a suitable path for the vehicle to follow through in an environment,

important considerations include avoidance of obstacles and ensuring the stability of the

vehicle along the proposed path. However, the presence of significant uncertainty in the

vehicle and/or terrain parameters can lead to substantial deviation of the vehicle from the

proposed path as it attempts to traverse the region. This may be attributed to the effect of

uncertainty on the dynamics of the vehicle as it negotiates the terrain.

In other words, due to the uncertainty in the values of vehicle and/or terrain parameters, there

exists a range of possible values for the position coordinates of the vehicle at any instant of

time. As a result, any of the various possible paths may be tracked by the vehicle, which can

even lead to collision with nearby obstacles while traversing certain trajectories. Further,

there is a heightened probability of roll-over due to the variation of the dynamic state

variables due to uncertainty induced effects. Incorporation of uncertainty within the planning

framework has therefore been considered in the present work to deal with the above

considerations, in order to generate safe and easily trackable paths.

1.3.3. Motion Control

Motion control constitutes another important feature that must be considered for

successful operation of autonomous navigation systems. In the present work, the application

of model predictive control (MPC) to UGV path tracking is studied due to its ability to

systematically handle constraints and multi-variable systems. The technique uses a system

model and optimization of constraints to determine control inputs that minimize a



performance objective and satisfy inequality constraints over a finite prediction horizon.

While there have been attempts to make the framework more robust to uncertainty and

include stochastic effects, there has been little research that explicitly considers uncertainty

in vehicle and/or terrain parameters.

A feature of the predictive control approach is that it operates close to the constraint

boundaries in order to obtain better performance than traditional approaches. However, the

presence of uncertainty can lead to violation of these boundaries when the vehicle is actually

traversing the region. Hence, inclusion of uncertainty is critical while determining the

optimal control inputs, especially when the values of the state variables lie close to the

constraint limits. In the present work, stochastic analysis is performed whenever such a case

arises in order to obtain a better approximation to the expected values of the state variables.

Further, control inputs are determined once the range of variation of the state variables from

the corresponding mean values is incorporated in the analysis through a 'constraint

tightening' approach. In other words, once the range of variation of the state variables is

obtained through the stochastic analysis, the constraints are modified accordingly to

incorporate the effects due to uncertainty. This has been found to yield more robust

predictions.

1.4. Organisation of the Thesis

This thesis is organized as follows. In Chapter 2, conventional uncertainty analysis

techniques are briefly introduced. This is followed by a description of the polynomial chaos-

based approaches and their applicability to the study of robot dynamics and mobility analysis

in Chapter 3. The application of these methods to predicting vehicle mobility is studied in

Chapter 4, and to path planning is discussed in Chapter 5. The applicability of the approaches

to a predictive control framework is also analyzed and simulation results for the integration

of a polynomial chaos-based method into a model predictive control framework are shown in

Chapter 6. Results from the conventional uncertainty analysis techniques are also compared

to those from polynomial chaos-based methods and it can be seen that accurate,

computationally efficient predictions can be achieved using the latter framework.



2. CONVENTIONAL UNCERTAINTY ANALYSIS TECHNIQUES

2.1. Overview

There exists a vast body of literature on techniques to estimate the probability

distributions of processes that are subject to uncertainty. Such techniques can be applied to

the domain of vehicle motion under uncertainty, by specifying the probability distribution of

the uncertain vehicle and/or terrain parameters, defining a range for their probable values,

and finally analyzing the performance of an analytical or numerical robot model over that

parameter space, as in [7]. This analysis can be performed using a variety of techniques such

as interval mathematics, fuzzy set theory and probabilistic methods such as the Monte Carlo

approach among others [8]-[10].

The objective of interval analysis is to estimate the bounds on model outputs based on the

bounds on the input parameters. In this approach, the uncertain parameters are assumed to be

unknown but bounded (i.e. each parameter has lower and upper limits; knowledge of their

probability distributions is not required) and described by an interval. Correspondingly, the

outputs would also belong to respective intervals and be determined after performing suitable

interval arithmetic [11]. Another approach for the study of uncertain systems and processes is

the concept of fuzzy analysis, wherein the uncertain parameters are described by fuzzy

numbers in contrast to random numbers (which are used in stochastic approaches).

Yet another traditional method for estimating the probability density function of a system's

output response from known or estimated input distributions is the Monte Carlo method [12],

[13]. This approach involves sampling values for each uncertain parameter from its

uncertainty range, weighted by its probability of occurrence, followed by model simulation

using this parameter set. This process is repeated many times to obtain the probability

distribution of an output metric. Since parameter values are selected randomly (in case of

traditional Monte Carlo methods), a large number of simulation runs is generally required to

obtain reasonable results, leading to a (usually) high computational cost. Structured sampling

techniques such as Latin hypercube sampling, importance sampling, and others can be used



to improve computational efficiency; however these gains may be modest for complex

problems [14], [15].

2.2. Fuzzy Analysis

The modeling and simulation of uncertain systems within a fuzzy analysis framework can

be performed through the numerical representation of the uncertain parameters as fuzzy

numbers, followed by the use of the transformation method, as described in [9]. This is

briefly discussed below.

In the first step, each fuzzy numberpi (i = 1, 2, ..., n), is discretized into a number of intervals

XOi = [ai)i , bU)i ], assigned to the levels uj ( = 0, 1, ..., N), resulting from subdividing the

possible range of membership into equally spaced units of Ap = 1/N (see Figure 2.1). Next,

the input intervals i (i = 1, 2, ..., n), 6 = 0, 1, ..., N), are transformed to arrays X i that are

obtained from the upper and lower interval bounds after the application of a well-defined

combinatorial scheme [9]. Each of these arrays represents a specific sample of possible

parameter combinations and serves as an input parameter set to the problem to be evaluated.

As a result of the evaluation of the model for the input arrays X i , output arrays Y are

obtained which are then retransformed to the output intervals 1I) = [a), bU)] for each

membership level j and finally recomposed to the fuzzy-valued output q of the system.

1

a? ) X b?)

Figure 2.1. Decomposition of a fuzzy number pi into intervals
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2.3. The Monte Carlo Approach

With the advancements in computational technology, Monte Carlo techniques have found

increasing application in numerous fields over the last several years. These methods typically

involve the analysis of a (usually) large number of simulation runs of an analytical or

numerical system model with various combinations of model parameters. In other words, the

model parameters (known as "input parameters") are sampled from their respective

probability distributions, which are assumed to be known (or can be estimated) a priori, and

multiple simulation runs are conducted using each set of the input parameter values to obtain

the corresponding outputs for each case. An estimate of the probability distribution of a user-

defined output metric can then be estimated from this analysis.

In the "standard" Monte Carlo approach, random sampling of the input parameter

distributions is performed. However, to ensure representation of the entire parameter range, a

large number of simulations must be performed, often resulting in extensive computational

costs. Over the years, various methods have been developed for efficient sampling from the

input parameter probability distributions, including stratified, importance and Latin

Hypercube sampling (among others) [16], [17]. Generally, these methods attempt to ensure

that samples are generated from the entire range of the input parameter space while reducing

computational costs, and are thus an improvement over the standard Monte Carlo method

that is based on random sampling. In the present work, simulation results from the Monte

Carlo approach are used as a baseline reference to validate the accuracy of results from the

relatively recent polynomial chaos-based approaches (see Chapter 3).

2.3.1. Algorithmic Framework

The standard Monte Carlo approach considers functions of the form:

Y = g(X) (2.1)

where g represents the model under consideration, X is a vector of uncertain input variables

and Y represents a vector of estimated outputs. A general procedure for the present analysis

is as follows:

-;:;;;; ---i; -i r-- --- ;- --- ---- --- I---;~-- -- --- ---; ;~~~;.P~ .iiil~



a) Construct a vector X consisting of n relevant vehicle and/or terrain parameters. To

characterize the uncertainty in the elements of X, define the range and probability

distribution for each input parameter, based on corresponding engineering estimates. This

defines the input parameter space.

While many forms of the input parameter distribution are possible, in this thesis, the

parameter values are assumed to be either uniformly or normally distributed and to be

uncorrelated (independent of one another), which is a reasonable assumption for most vehicle

and/or terrain physical parameters.

b) Generate a sample value for each of the n input variables from the corresponding

probability distribution. More specifically, a sample set:

X =[X 1, x ,... Ix (2.2)

is generated from the input parameter space. This set may be generated randomly or using

structured sampling techniques such as stratified sampling, importance sampling or Latin

Hypercube sampling.

c) Evaluate the output response from an analytical or numerical system model under

consideration using the values from the input parameter set Xj as model parameter values.

d) Repeat steps b) and c) to generate a distribution for the output metric. The number of

simulations (N) is chosen to be large enough such that the output distribution converges to a

stable value. The probability distribution of the output metric can then be determined, and

various statistics such as its estimated expectation, ,u, or variance, a2 , be calculated as

follows:

1N
S= (X(2.3)

Nr2 (g(Xj) _ P)2 (2.4)

As already mentioned in Chapter 1, for the analysis of vehicle motion over unstructured

terrain, vehicle and/or terrain parameters are designated as uncertain input parameters. A



fundamental assumption of the proposed approach is that while these parameters may not be

precisely known, engineering estimates of their distributions are available. This is a

reasonable assumption for UGV physical parameter estimates, since the effects of loading,

component wear, and parameter uncertainty can generally be bounded with reasonable

accuracy. It is also a reasonable assumption for terrain parameter estimates, since many

methods exist for coarsely classifying terrain from standard robotic sensors such as LIDAR

and vision [18]-[20].

Figure 2.2 represents schematically the general Monte Carlo approach for uncertainty

analysis.

XI X2 X3

Fig. 2.2. Illustration of uncertainty analysis using the Monte Carlo method

2.3.2. Structured Sampling Techniques

As discussed in Section 2.1, using the standard Monte Carlo methods with random

sampling can (typically) require extensive computational costs due to the large number of

simulation runs required. Here some prominent structured sampling techniques are briefly

discussed that can lead to an improvement in computational efficiency.

In the importance sampling method, sample points are generated to lie primarily in regions

where the function (g(X)) is the strongest. Generating points evenly in the interval may

sometimes give most of the points in the weak region of the function (depending on its

probability distribution) and the contribution of these points to the total may be relatively

small. As an example, consider the functional shape shown in Figure 2.3. It is quite obvious

that most of the integral comes from the region of the peak. But if points are generated

C -- c t ~ Ix I ~L



evenly in the interval [a, b], most points won't be in the peak area, and their contribution to

the total will be relatively small. The idea behind importance sampling is to transform g(X)

into another, flatter function which is then analyzed using Monte Carlo method.

Subsequently, there is a back-transformation to give the original output of interest. Though it

can offer significant improvement over the standard Monte Carlo approach, importance

sampling has the disadvantage that the function, or at least its overall shape, must be known.

This is often not the case, as g may actually be a number returned by some other, complex

simulation.

g(X)

a b

Figure 2.3. Functional form to illustrate use of importance sampling method

Stratified sampling, on the other hand, partitions the sample space into a number of strata,

with each stratum having a specified probability of occurrence. Random samples are then

drawn from each stratum. While this ensures dense coverage of the parameter space, it

requires the definition of the strata and the calculation of their probabilities.

Latin hypercube sampling, however, can ensure dense coverage of the range of each input

variable (say, n in number) while avoiding the difficulties associated with the above sampling

techniques. It achieves this by exhaustively dividing each input parameter's range into

disjoint intervals (say, N in number) of equal probability, and then randomly sampling a

parameter value from each interval. This ensures representation from the entire range of each

variable and is illustrated in Figure 2.4. The N values thus obtained for each of the n

parameters are combined in a random manner with those from the other parameters until N n-

I _ _



tuplets (N n-dimensional input vectors to be used for multiple simulation runs) are formed.

More details can be found in [14].
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Figure 2.4. Illustration of sampling using the Latin hypercube method

~pSI, 11-~--~~-~---~-11 ' ---- C--

I ~rs



3. POLYNOMIAL CHAOS-BASED UNCERTAINTY ANALYSIS TECHNIQUES

3.1. Overview

While Monte Carlo techniques have been in prominent use for quite some time, more

recent approaches to stochastic simulation of processes subject to uncertainty include the

polynomial chaos approach, which is based on Wiener's theory of homogeneous chaos.

According to Wiener, a stochastic process can be represented through a spectral expansion

using orthogonal polynomials as:

y= ,yjHj (3.1)
j=0

where is a vector of standard normal random variables (i.e. with zero mean and unit

variance), Hj is the Hermite polynomial of order j, and yj is the corresponding deterministic

coefficient, to be calculated from a limited number of model simulations. The Hermite

polynomial of degree q is given as:

Hq (,2,..., m)= (-1) e2 2 (3.2)

For this formulation, optimal convergence is obtained only for Gaussian stochastic processes.

Recent extensions to the generalized polynomial chaos framework [21] have shown that

optimal convergence can be achieved for more general stochastic phenomena. The

fundamental principle behind this is that random processes of interest can be reasonably

approximated using orthogonal polynomial basis functions of the Askey scheme (in terms of

the corresponding random variable), and this allows treatment of a much broader range of

stochastic problems.

Since the introduction of the spectral stochastic finite element method [22], polynomial chaos

has been successfully applied to various structural and fluid mechanics problems. The

primary advantage of the technique is the reduction in the number of model simulations

relative to more conventional methods, such as Monte Carlo, thereby resulting in lower



computational cost. While being restricted to second order stochastic processes, the approach

is still applicable to most physical phenomena as they typically have finite variance.

However, although the polynomial chaos technique has been widely used, it has been shown

to perform inadequately for problems with discontinuities induced by random inputs, and for

long-term integration. In [21], the method has been successfully applied to approximate the

solution of a stochastic ODE while showing exponential convergence; however, it has been

shown that those optimal results hold only for short times [23]. For long-term integration, the

generalized polynomial chaos approximation to the analytical solution for a fixed polynomial

degree is inaccurate, resulting in increased error levels. These problems can be overcome

through implementation of the multi-element generalized polynomial chaos framework,

which involves a decomposition of the random space, to yield more consistent results [23].

Another approach that has been developed to improve the robustness and performance of the

polynomial chaos framework is the stochastic response surface method. These techniques are

discussed in more detail in the subsequent sections.

3.2. The generalized polynomial chaos (gPC) method

As mentioned in Section 3.1, the generalized polynomial chaos method involves

representing inputs and outputs of a system under consideration via series approximations

using random variables, thereby resulting in a computationally efficient means for

uncertainty propagation through complex models. In this approach, the same set of random

variables that is used to represent input stochasticity is used for representation of the

output(s). An equivalent reduced model for the output can thus be expressed in the form of a

series expansion consisting of orthogonal polynomials (of the Askey scheme) in terms of the

corresponding multi-dimensional random variable, as:

y = Y, yj () (3.3)
j=0

where y refers to an output metric, 4 = [il... 4im] is the multi-dimensional random variable,

(Sil, .i2,...) are i.i.d. (independent, identically distributed) random variables, j( l, 62, ---, im)

is the generalized Askey-Wiener polynomial chaos of degree j, and yj is the corresponding

coefficient.



While for normal random variables Hermite polynomials are the basis functions, different

orthogonal polynomial basis functions are used corresponding to the probability distributions

of other non-normal variables [21]. This is shown in Table 3.1.

TABLE 3.1
POLYNOMIAL BASIS FUNCTIONS AND CORRESPONDING RANDOM VARIABLES

RANDOM POLYNOMIAL

VARIABLE FUNCTION

Gaussian Hermite
Gamma Laguerre

Beta Jacobi
Uniform Legendre

The series in (3.3) may be truncated to a finite number of terms and rewritten as:

y = Z-yj( ) (3.4)
j=0

where N,+1=(m+p)!/(m!p!), m is the number of random variables, and p is the maximum

order of the polynomial basis.

The unknown coefficients in the expansion can be determined by projecting each state

variable onto the polynomial chaos basis (i.e. using the Galerkin projection method) [24].

Another approach that is computationally more efficient is the collocation method [11], [25]

wherein coefficient values are estimated from a limited number of model simulations [26].

This method imposes the requirement that the estimates of model outputs are exact at a set of

selected collocation points, thus making the residual at those points equal to zero. The

unknown coefficients are thus estimated by equating model outputs and the corresponding

polynomial chaos expansion at this set of collocation points in the parameter space; the

number of collocation points is equal to the number of unknown coefficients to be found.

Thus, for each output metric, a set of linear equations are formed with the coefficients as the

unknowns, which can be readily solved. If the governing equations are highly complex, the

simplicity of the collocation-based framework results in a faster algorithm, particularly for

high dimensional problems.

Though the accuracy of the gPC approach can be improved by increasing the polynomial

order, it should be noted that as the number of inputs and the expansion order increase, the



number of unknown coefficients to be determined increases exponentially, thereby increasing

the computational costs. The procedure describing the application of the generalized

polynomial chaos is given below in more detail.

3.2.1. Algorithmic Framework

A summary of the gPC procedure, in the context of the present study, is presented

here.

a) Represent uncertain input parameters in terms of random variables. Normally and

uniformly distributed parameters will be considered in the present work. An uncertain

vehicle and/or terrain parameter X can therefore be written as:

Xi = ,j + o-J (3.5)

where yj is the mean, oj is a constant (and represents the standard deviation when Xj is

normally distributed) and is a random variable (i.e. the standard normal random variable

N(O,1) when Xj is normally distributed).

b) Express the model output (y) under consideration in terms of the same set of random

variables as:

N.

y= y, j( ) (3.6)
j=0

c) Estimate the unknown coefficients of the approximating series expansion. This is

accomplished by computing the model output at a set of collocation points, which results in a

set of equations that can then be used to obtain the coefficient values. The Efficient

Collocation Method (ECM) as proposed in [11] has been used in the present study.

d) Once the reduced order model is formulated, the mean and variance for orthonormal

basis functions can be directly obtained [27] as:

Pu = yo0 o0 () (3.7)

N.

0"2 =Zy (3.8)
j=1
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As explained earlier in Section 3.1, the advantage of the polynomial chaos technique is that

the number of model simulations is greatly reduced relative to more conventional methods

such as the Monte Carlo method, thus improving computational efficiency. However, the

approach is known to fail for long-term integration, losing optimal convergence behavior and

developing high error levels [23]. This poor behavior can be somewhat mitigated by

increasing the expansion order; however, this approach is undesirable for several reasons.

First, in the general case, the gPC procedure becomes quite time consuming for high values

of the polynomial order (since computational cost generally increases exponentially with

increasing polynomial order). More importantly, increasing the maximal polynomial degree

only postpones error growth, since for a fixed polynomial degree, error levels will become

increasingly large over time. Hence, continuing to increase the integration time will require

an ever increasing polynomial degree, which is not feasible in practice. This problem has

been addressed in the multi-element generalized polynomial chaos technique [23], which

solves the long-term integration issues faced in the gPC framework and can be used for

arbitrary random variables as well. This will be discussed in the Section 3.3.

3.3. The multi-element generalized polynomial chaos (MEgPC) method

In [23], it has been shown that if the domain of random inputs is subdivided into multiple

elements, the accuracy of stochastic solutions can be improved, especially for cases with

discontinuities in stochastic solutions or for problems involving long-term integration. As a

result, the integration error at each time step can be reduced and the domain of solutions'

discontinuity can be approximated more accurately within a smaller decomposed domain.

Further, a (relatively) lower order polynomial can be used in each random element since the

local degree of perturbation has been scaled down, thereby enhancing the accuracy of

solutions for long term integration. This is the fundamental principle underlying the MEgPC

approach.

While the range of application of gPC is limited (since the polynomial order can not be

increased arbitrarily high in practice), using MEgPC therefore allows this range to be

extended. In this thesis, the standard MEgPC approach (as in [23]) has been employed while

using uniformly distributed random input variables, and the Efficient Collocation Method has



been utilized (over the Galerkin projection approach), to result in a computationally more

efficient algorithm. The general procedure is outlined below.

3.3.1. Algorithmic Framework

Let = [I, 42, ... (,m] denote an m dimensional random input vector, where i is an

i.i.d. uniform random variable, U[-1,1]. Next, decompose the domain of the random input

into Nr non-intersecting random elements. The domain of each element is contained within a

hypercube, [akl, bkl ) x [ak2, bk2) x x [akm, bkm), where aki and bki denote the lower and

upper bounds of the local random variable i.

Then, define a local random vector within each element as 4 = [1, 4k2, ... m], and

subsequently map it to a new random vector in [-1,1]m: e = gk(4) = [, e2, ... m]. This

mapping is governed by the following relationship:

bka k bk ak
gk(e): = -ik = :2 + (3.9)

2 2

Consequently, the gPC framework can be used locally to solve a system of differential

equations, with the random inputs as e instead of 4k, to take advantage of orthogonality and

related efficiencies by employing Legendre Chaos. The global mean and variance can then be

reconstructed once local approximations of the mean and the variance are obtained (see

Equations 3.11-3.13).

Decomposition of the random space can be done a priori or adaptively. In the adaptive

scenario, splitting of the random space occurs only when the local decay rate of the error of

the gPC approximation rlk (see Equation 3.14) exceeds a threshold value. The basic steps are

briefly discussed below.

Let the gPC expansion in random element k (k = 1, 2, ... Nr) be given as:

Nm

Yk Yk,j j() (3.10)
j=O

The approximated global mean and variance can then be written as:
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= ykoVk  (3.11)
k=1

Nr bk
where Vk =H k i , and

i=1 2

2 = Y(O Vk +(Yk,o- )2 Vk) (3.12)
k=l

where the local variance estimated by polynomial chaos (using orthonormal basis functions)

is obtained as:

Nm

2 = I yk2j (3.13)
j=1

To include adaptive decomposition of the random space, first define r/k as:

NmZ y2
k j=Nm-+1 (3.14)

Then, split a random element if the following criterion is satisfied:

q7kV k  1, 0 < a <1 (3.15)

where 01 is a user-defined threshold parameter and a is a constant. Another parameter 02 can

be used to choose the more sensitive random dimensions for decomposition, as in [23]. For

this, first the sensitivity of each random dimension rk is defined as:

2
Yk,j(m)

rk,i Nm  (3.16)Z 2

j=Nm_, +1

where Ykj(m) denotes the mode consisting only of random dimension i with polynomial order

m. Only the random dimensions which satisfy the condition

r, > 02. max r , 0 <02 <1 , i=1,...,m (3.17)
j=l ...m

are split into two equal random elements in the next time step, while the other random

dimensions stay unchanged. This reduces the total element number while gaining efficiency.



A critical numerical implementation involves assigning the initial condition after splitting the

random dimension into multiple elements. This can be accomplished as follows:

First, represent the polynomial expansion of the current random field as:

i(~) = - j (3.18)
j=0

Once the random space is split, let the expansion in the next level be denoted as:

() = j(g(,)) ='"j(Ij (3.19)
j=0

To calculate the Nm,+ coefficients in this new representation, choose an equal number of

uniformly spaced grid points in [-1,1]m, and solve the following linear system:

)00 01 ... 10. 0(g-1

-I) 0a I,=ONO Y31 = io (3.20)

where '1 ij = Oi(j).

3.3.2. Study of Convergence

The convergence properties of the MEgPC approach are now studied, and its

accuracy is compared to the gPC method. Consider a simple stochastic system: a first order

linear ODE, described as:

dy
dy= -ky with yto = yo= 1 (3.21)
dt

Here, the decay rate coefficient k is considered to be a random variable, k = uk + qk , with a

constant mean (fik=l) and ok =1, and 5 is a uniform random variable, U[-1,1]. While the

deterministic solution y(t) for the ODE above is Yoe-Ikt, the mean of the stochastic solutions

is given by:



Pexic,(t) y= e-k f(k)dk = yo ( rk t  
(3.22)

s 2at

To study the rate of convergence, define the error as an L2 norm difference between the

estimated result and the reference solution, normalized by the L2 norm of the latter. This

relative error measurement for the mean is expressed as:

ean (t) = II (t)- exac,(t) 112 (3.23)
II Pexac, (t) 112

where p(t) = E[y(t)]

Figure 3.1 shows the deterministic solution, the exact stochastic mean and the mean from the

adaptive MEgPC method (P=3, 01=0.001, a=0.5) for the above first order linear system.

ooo MEgPC
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Fig. 3.1. Results for first order linear system

Next, the convergence behavior of MEgPC is analyzed, with varying values of the

polynomial order P and number of elements Nr. For this analysis, the adaptive criterion is not

applied, and instead the random space is decomposed according to the number of elements

desired. The error in the mean is calculated at t = 4 s, and the results are similar to those

obtained in [23]. In Figure 3.2, the exponential convergence of MEgPC for varying mesh size



(as represented by Nr) is shown. It can be observed that as the number of elements increases,

not only does the error decrease, but the rate of convergence is higher as well.
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Fig. 3.2. Error convergence for MEgPC

In Figure 3.3, algebraic convergence of MEgPC in terms of the number of random elements

Nr is shown. A sufficiently large algebraic index of convergence is seen, which indicates that

random elements can influence the solution's accuracy dramatically.

c -5
Cz10

E
0L-
w

10-10

0
0

O

+

oo P=2
++ P=4
** P=6

2 4 6 8 10
Nr
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Next, in Figure 3.4, the time evolution of the error for gPC and adaptive MEgPC approaches

are compared at t=-4s (with parameters P = 4, 01=0.001, a=0.5). It can be seen that when the

error of gPC crosses the threshold limit, it triggers decomposition of the random space

resulting in bounding of the error and a significant improvement in the accuracy.
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Fig. 3.4. Evolution of error for gPC and adaptive MEgPC

These simulation results clearly show that the MEgPC method represents a significant

improvement over the gPC method in terms of accuracy of long-term predictions. In the next

section, the technique known as the stochastic response surface method is described which

addresses some of the stability issues associated with the collocation approach and proposes

a regression-based framework to improve upon the robustness of the gPC method.

3.4. The stochastic response surface method (SRSM)

In recent years, researchers have applied the generalized polynomial chaos technique to

various problems, including the dynamic simulation of a 7 DOF vehicle [24]. However, the

collocation approach employed therein has been noted to be inherently unstable and exhibit

convergence problems [28]. Moreover, different combinations of collocation points may lead

to considerably different output estimates, or they may not correspond to high probability

regions of the input parameter space [11]. In this context, the stochastic response surface

method (SRSM) introduced in [ 11] provides a more robust alternative.



SRSM is similar to the generalized polynomial chaos method in the sense that it expresses

random outputs in terms of a polynomial chaos expansion of generalized Askey-Wiener

orthogonal polynomials; however, it uses an efficient collocation scheme with regression to

determine the coefficients of the expansion. This polynomial form then allows

straightforward determination of statistics such as the mean and variance, and of first and

second order sensitivity information. The technique has been applied to fluid and structural

mechanics problems and its computational advantages over the conventional Monte Carlo

approaches have also been highlighted [11].

Collocation methods have been shown to be inherently unstable (especially with polynomial

approximations of higher orders). Further, since the accuracy of these methods can typically

depend on the selection of appropriate sample points (collocation points) as well, the

regression-based response surface method provides a more robust means of estimating the

coefficients of the reduced order functional approximation. The essence of this approach lies

in using a more efficient sampling scheme (based on a heuristic technique) to obtain a set of

collocation points larger in number than (typically, twice) the number of unknown

coefficients, followed by computation of the model results at the selected points. This

effectively moderates the influence of each individual collocation point. Calculation of the

model output at these points therefore results in a system of equations, with the number of

equations exceeding the number of unknown coefficients. This set of equations is then solved

using the singular value decomposition technique, to obtain values for the deterministic

coefficients in the spectral expansion.

Once the (statistically equivalent) reduced model is formulated, it can be used to facilitate

analysis of the system under uncertainty. This procedure thus results in a reduction in the

number of model simulations (and, therefore, a reduction in computational cost) required for

estimation of output uncertainty, as compared to conventional probabilistic methods such as

Monte Carlo methods. It also results in a more robust method than the generalized

polynomial chaos framework [ 11].
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3.4.1. Algorithmic Framework

Here a summary of the procedure employed in SRSM is presented, as applied to the

present analysis.

a) Represent uncertain input parameters in terms of random variables. A vehicle and/or

terrain parameter X can then be written (as in the gPC method) in the following way:

X , = P, + o-7 (3.24)

where pj is the mean, uj is a constant (and represents the standard deviation when Xj is

normally distributed) and is a random variable.

b) Express the model output under consideration in terms of the same set of random

variables (in the form of a truncated series expansion) as:

y = ao a+ aa,T(r)+ aiF2 (i, , iz)+... (3.25)
il=1 il=1 i2=1

where y refers to an output metric, = [il... 'im] is the multi-dimensional random variable,

', i2,... are i.i.d. uniform random variables, Fp,(i¢, 4i2,. , 4im) is the generalized Askey-

Wiener polynomial chaos of degree p and ail, aili2,... are the corresponding coefficients.

c) Estimate the unknown coefficients of the approximating series expansion. As

explained earlier in Section 3.4, this is accomplished via a regression-based approach, by

computing the model output at a set of collocation points [25], [26] selected using the

heuristic technique proposed in [11]. Taking their number (Nc) to be nearly twice in number

to the number of coefficients (Nm+J) has been shown to yield robust coefficient estimates

[11 ], [25]. A system of linear equations with the number of equations exceeding the number

of unknown coefficients is thus obtained after calculation of the model output at the sample

points, as:

) r ) .... yo(3.26)(t) y(t,
Fo( I)  F, ( I) .... FN ( l) yI (t) y(t, 1)

(3.26)

Fo( u) rl( U) .... FIN ( Nc) YNj(t)) XY(t, )j



This system can then be solved for the unknown coefficients using the singular value

decomposition form of the linear least square method (See Appendix Al).

The reduced equivalent model can henceforth be used for analysis, which avoids the

requirement of multiple runs of the (generally non-linear) model as in more conventional

techniques, thereby resulting in reduced simulation time.

d) Estimate the statistics of the output metric, modeled as a stochastic response surface,

using an efficient Monte Carlo method such as the Latin Hypercube Sampling Method [14],

[15]. From the set of N samples (YsJ, ys2, -.. YsN) thus generated, the mean and variance may

be obtained as:

= i ys (3.27)
N 1=1

0-2 s1 (y -)2 (3.28)

N 1=1

The convergence of the approximation may also be determined through comparison with the

results from a higher order approximation. This may be achieved by first using the next-

higher-order polynomial chaos expansion, then repeating the process for the estimation of

unknown coefficients. If the estimates of the probability density functions (pdfs) of output

metrics are found to agree closely, the expansion is assumed to have converged, and the

higher order approximation may be used to calculate the pdfs of the other output metrics.

Further, it may be noted that as with gPC, the number of model simulations is greatly

reduced relative to conventional methods, thus improving computational efficiency.

Moreover, the accuracy of the computational model may also be increased by increasing the

order of the polynomial chaos expansion.

3.5. Application Methodology

The generalized polynomial chaos method for uncertainty analysis can be extended to

solve ODEs related to vehicle dynamics in a stochastic framework. This is discussed below.

First the basic steps in applying polynomial chaos for a simple first order differential



equation are shown as an illustration. Then the method is applied to solve coupled

differential equations for a quarter-car model.

3.5.1. Simple Stochastic ODE Model

Consider the following stochastic ordinary differential equation:

du(t)d + ku(t) = 0, ut= = 1 (3.29)
dt

For k as a random variable, k = k(,), the solution u(t) of the above equation will be a

stochastic process u(t,,). Here is a standard normal random variable, N(O,1). The equation

can be rewritten as:

du(t, ) u+ k()u(t, 0) = O, ut=0 = 1 (3.30)
dt

For the following analysis, the uncertain parameter k is considered to have a normal

probability distribution, with a mean value of 1/2 and standard deviation of 1/8. Thus, k can

be represented in terms of 4 as:

1 1
k(=) = pk k ,= - + 1(3.31)

2 8

Next, u(t,4) is represented in the form of a truncated series expansion consisting of Hermite

polynomials of the random variable :, as:

No

u(t, ) =Z aj (t)Hj () (3.32)
j=0

Propagating this through the ODE, equation (3.30) can be written as:

No da (t) No

I dt Hj (4) = - aj(t)k( )Hj() (3.33)
j=0O d j=0

Choosing a set of Q collocation points, e with 0 < i Q, equality of (3.33) is enforced at

these points:



No daj (t) No

d H,(5') = - aj (t)k(5 ')H ( ) , 0< i<Q_ (3.34)
Jo dt j=O

Also, define:

Aj, =- H(') (3.35)

Therefore equation (3.34) reduces to:

N"o daj (t) No

j A -=- aj (t)k( ')Aj, , O _ i Q (3.36)
j=0 dt j=

This represents the Q+I equations (for each '), with each equation having No+] terms. Now

combine equations (3.32) and (3.35) to get:

No

ui, (t, '.) = aj (t)Aj,i , 0 _ i _ Q (3.37)
j=0

where ui(t,4) reflects the result obtained after solving the differential equation in time, using

the collocation point (.

As a result, the Q+I equations for each e can be expressed as:

du, (t, ') No

dt - aj(t)k( ')Aj,i , 0 i < Q (3.38)
j=0

Now ui(t,e) can be solved with respect to time using the initial conditions provided. Once the

time evolution for each ui(t,4) is obtained, it can be used to determine the time evolution for

the coefficients aj(t) as in Equation 3.26.

When implementing the generalized polynomial chaos method, the number of collocation

points is chosen to be equal to the number of coefficients to be determined (Q=No) and the

points are sampled using to the Efficient Collocation Method. The mean value at a time t is

then given by:

/t = ao(t)Ho( ) (3.39)

and the variance is obtained as:



2 (t) No (a(t))2 2_(ao(t))2 No (Hj) (3.40)
j=0 j=1

where (-) represents the ensemble average. For orthonormal polynomials, (H2)= 1.

In the present analysis, following the SRSM implementation described in Section 3.4, Q is

chosen such that the number of collocation points is more than (typically twice) the number

of deterministic coefficients to be determined, and points are sampled according to the

proposed heuristic technique. The resulting system of equations is then solved using singular

value decomposition (See Appendix Al).

The mean value obtained after performing Monte Carlo runs on the reduced-order model can

be compared to the deterministic solution of the equation, given by:

Aexact = e - kt (3.41)

as well as to the mean of the stochastic solutions, given by:

Jeac,(t) = e-' f(k)dk = yo(e 2  (3.42)
s 2ak

Figure 3.5 shows the stochastic solutions for the mean. The time evolution of the unit

standard deviation plotted as error bars is shown in Figure 3.6.
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Fig. 3.5. Mean solution for the first order equation
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Fig. 3.6. Unit standard deviation from the mean plotted as error bars

3.5.2. Application to a Quarter-Car Model

A two degree of freedom quarter-car model of a vehicle suspension (see Figure 3.7)

under uncertainty is now studied. The sprung mass, ms, and unsprung mass, mu, are

connected by a nonlinear spring of stiffness ks, and a linear damper with damping coefficient

c. The input is applied through a forcing function z(t), to mu, through a linear spring k,. This

represents the interaction of the quarter car system with the terrain. The governing equations

for the quarter car system are given as:

m = -k, (x,- x2 c( - 2) (3.43)
dt 2

m = k, (x, -x) 3 +c( 1 -2 )+ k. (z(t)- x2) (3.44)

C - k,

z(t) L

Fig. 3.7. Quarter-car model
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Parametric uncertainty arises in the suspension stiffness. The two springs are considered to

have uncertain spring constant values, uniformly distributed about a mean stiffness value.

This can be represented as:

ks = Pk, I ks (3.45)

k, =,Pk, + 2-k, (3.46)

The sprung mass displacement is analyzed under parametric uncertainty and expressed as a

spectral series expansion of Legendre polynomials of uniform random variables j and 2, in

U[-1,1]. In general, the state can be expressed as:

X=[x, x 2 2a 2]' (3.47)

P

xi(t,) = xi,j(t)I() i=1,2 (3.48)
j=0

P

i (t, ) = i (t)I(D ) i=1,2 (3.49)
j=0

where = [=', 2]-

The parameter values used in this analysis are shown in Table 3.2.

TABLE 3.2
PARAMETERS IN QUARTER CAR MODEL

PARAMETER C C

k, 400 N/m 40 N/m3

k, 2000 N/m 200 N/m

m, 20 kg
m, 40 kg
c 600 Ns/m

While the exact stochastic solutions may be easy to obtain for simple systems such as the one

discussed above, they may be difficult to obtain for large and complex systems. For such

scenarios, the exact solution can be replaced by a reference solution obtained from a standard

Monte Carlo (SMC) analysis.

For a step input (with a step size of 0.2 m) - which models vehicle traversal over a bump or

obstacle - it is observed that parametric uncertainty causes significant variation in the



resulting output of xj, the sprung mass displacement (see Figure 3.8), thus indicating the

importance of considering uncertainty during dynamic analysis. Similar results obtained for a

sinusoidal input (with an amplitude of 0.1 m and time period of 1 s) are also shown in Figure

3.9.
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Fig. 3.8. x, (sprung mass displacement) for various stiffness and damping values
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Fig. 3.9. x, (sprung mass displacement) for various stiffness and damping values
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The time profiles obtained for the mean and the standard deviation of the displacement of x1

(i.e. the sprung mass) are respectively shown in Figure 3.10 and Figure 3.11, for the gPC,

MEgPC (P = 3, 01=0.001, a=0.5) and SMC methods. It is observed that while the results for

the mean match closely, there is a substantial difference between the predicted variance from

the two polynomial chaos-based techniques, with MEgPC yielding more precise results than

gPC when compared to the baseline SMC analysis. This difference however, reduces with

time due to the nature of the input considered. Computation times for SMC and MEgPC

approaches with respect to the gPC method are shown in Table 3.3.
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Fig. 3.10. Mean of xl (sprung mass displacement)
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Fig. 3.11. Standard deviation of xl (sprung mass displacement)



TABLE 3.3
COMPUTATION TIME FOR THE VARIOUS APPROACHES

RATIO OF

METHOD SIMULATION

TIME (s)

SMC (2000 runs) 191.96 s
MEgPC 1.585 s

gPC 1.00 s

Next, the system was analyzed for a sinusoidal terrain input. Though the mean results still

agree closely, slight inconsistency is found in the variance predictions made using the gPC

approach as expected (see Figures 3.12 and 3.13). This is, however, not the case with the

MEgPC approach, which exhibits only a small bounded error over time. Further, for the

sinusoidal input, this difference in the variance prediction does not decay as in the previous

case. The computation times for SMC and MEgPC approaches with respect to the gPC

method are shown in Table 3.4.
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Fig. 3.12. Mean of xl (sprung mass displacement)
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Fig. 3.13. Standard deviation of xl (sprung mass displacement)

TABLE 3.4
COMPUTATION TIME FOR THE VARIOUS APPROACHES

RATIO OF

METHOD SIMULATION

TIME

SMC (2000 runs) 197.76 s
MEgPC 2.33 s

gPC 1.00 s

These results clearly show the applicability of polynomial chaos-based approaches and their

advantage over the conventional Monte Carlo-based technique in terms of reduced

computational costs. Applications of these approaches to vehicle mobility prediction, path

planning and motion control will be discussed in subsequent chapters.



4. MOBILITY PREDICTION UNDER UNCERTAINTY

4.1. Overview

As noted in Section 1.1, a "mobility prediction" capability is often integrated into motion

planning algorithms which allows the vehicle to evaluate the safety of its traversal over

unstructured environments. This functional ability is therefore critical to the efficient

operation of vehicle systems, and hence to the successful deployment of UGVs that can

operate effectively on challenging terrain with minimal human supervision. However, there

has been little research that explicitly addresses the challenge of autonomously assessing the

traversability over a given terrain region or obstacle under uncertainty. While significant

work has been done to understand and predict the mobility of vehicles in natural terrain [1],

[2], these efforts assume accurate knowledge of vehicle parameters and wheel- (or track-)

soil interaction properties (gathered from terrain measurement devices such as cone

penetrometers). In field conditions, however, UGVs often only have access to sparse and

uncertain parameter estimates drawn from "standard" robotic sensors such as LIDAR.

Moreover, significant uncertainties are often associated with estimates of vehicle parameters,

due to effects such as loading, wear, fuel consumption, etc. It is therefore imperative to

consider these uncertainties when deriving predictions of vehicle mobility.

Various statistical methods for mobility prediction have been developed by the U.S. Army

over the past 50 years, including the NATO Reference Mobility Model (NRMM), NRMM II,

and others [1], [2], [29]. These are numerical algorithms for predicting cross-country vehicle

movement at length scales of several meters to several kilometers. Further, they were

developed for vehicles weighing 500 kg or more and are based on empirical results drawn

from resource-intensive experimental testing. Thus, these techniques are generally

inapplicable to small robotic vehicles, for which extensive empirical test data does not yet

exist. Also, the mobility prediction problem considered in the present analysis is concerned

with movement over particular vehicle-sized terrain regions and obstacles, rather than gross

(i.e. km-scale) mobility characteristics.



Previous research in this area has focused on stochastic performance prediction of ground

vehicles using classical Monte Carlo simulation methods [7]. Another recent approach relies

on analysis of system performance over obstacle "primitives" such as single rocks and well-

characterized rock fields; however it is unclear how these results can be generalized to

complex terrain profiles [30]. In addition, the issue of mobility through terrain regions with

non-geometric hazards (such as highly deformable or slippery regions) has not been

addressed in this paradigm. Other related work has developed a stochastic analysis of terrain

profiles and wheel-terrain interaction [24]. Although based on the stochastic analysis

technique proposed here, it does not explicitly address the mobility prediction problem.

Most other research has attempted to designate terrain regions as "traversable" or "non-

traversable" based solely on remotely-sensed terrain geometry. One such approach for

outdoor robotic vehicles is described in [31]. An extension to the work, described in [32],

attempts to characterize the nature of various outdoor obstacles; however this work focuses

solely on identifying obstacles that are likely to be traversable despite their geometry (e.g.

tall grass, which may possess an obstacle-like geometric profile but is often traversable due

to its compliant nature). Another approach is presented in [33] to detect obstacles from color

and LIDAR data. A terrain classification component is used to distinguish vegetation from

the underlying terrain. This improves the estimate of the location of the load-bearing surface

in thick vegetation; however it is not employed for mobility prediction.

In summary, most previous methods either do not explicitly analyze vehicle mobility on

rough terrain or rely on deterministic analysis that assumes precise knowledge of vehicle

and/or terrain parameters. The present work has attempted to address some of these

concerns. In Section 4.2, the vehicle and wheel-soil interaction models that will be used in

the present analysis are described. The application of the response surface-based uncertainty

analysis technique to the domain of vehicle dynamic analysis and prediction of mobility

characteristics is discussed in Section 4.3, and results are presented in Section 4.4. Long-term

prediction results obtained using the MEgPC approach are also shown in Section 4.5.



4.2. Vehicle and Wheel-Terrain Interaction Models

4.2.1. Robot Dynamic Model

A three degree of freedom vehicle model (see Figure 4.1), is considered in this study

that takes lateral acceleration, yaw motion and roll dynamics into account, as in [34]. The

linearized equations for this model are given as:

mV(fP+ i)-msho = EF = Cf(8 - , 1 P- ( - )
V V

IZi = (M, = C, (6  fl) - Cr,(- - #)1r

V V

(I= + mh 2 )0 = M =m ghp+mhV( + @)+M,

(4.1)

(4.2)

(4.3)

where M s = -(kf + kr)o - (bf + b,)

A list of the parameter values used in the current study is provided in Table 4.1.

TABLE 4.1
VEHICLE MODEL PARAMETERS

MEAN
Symbol DESCRIPTION ME UNITS

VALUE

6 Front wheel steering angle - rad
f8 Slip angle - rad
(p Roll angle - rad

V Yaw angle - rad

I. Roll moment of inertia 834 kg m
Izz Yaw moment of inertia 2050 kg m 2

m Total vehicle mass 2030 Kg
ms Sprung mass 1830 Kg
V Longitudinal velocity 10 m/s
h Height of center of gravity from roll axis 0.35 m
ha Height of roll axis from ground 0.21 m
Yw Track width 1.56 m

Cr Cornering stiffness of lumped front wheels 1440 N/rad
C,  Cornering stiffness of lumped rear wheels 1280 N/rad
If Distance of front axle from center of gravity 0.43 m
1r Distance of rear axle from center of gravity 0.33 m
kf Front roll stiffness 30000 Nm/rad
k, Rear roll stiffness 30000 Nm/rad
bf Front axle damping rate 3600 Nms/rad
br Rear axle damping rate 3600 Nms/rad
g Acceleration due to gravity 9.8 m/s



In addition to forces from tire compliance, lateral components of the contact forces on the

vehicle can arise due to terrain unevenness. Given a terrain elevation map, modeled as a

continuous, differentiable function of planar position z(x,y), the terrain disturbance force Ti

acting at each wheel can be written as [34]:

T = N ((z/ xo)o + (az / ayo)^ o) i=1...4 (4.4)

where N, is the normal contact force at wheel i, jo and 9o, are unit vectors of the inertial

reference frame, and is a unit vector lateral to the reference path.

The suspension moment M,, including the body roll due to terrain unevenness, is given as:

M = -k, (-(P)-k( p)-(p,)-bf (O-)-b,(O-) (4.5)

where q, and p, are the front and rear terrain roll angles, with (bf and (, as their

corresponding rates.

To compute these terrain roll angles and rates, it is assumed that the wheels always remain in

contact with the terrain. Then, using knowledge of the position and velocity of each wheel

and terrain elevation z(x,y), these quantities are calculated as [34]:

(Pi =(Zi+ -Zi)Yw (4.6)

, (z - z) / y (4.7)

where the rate of elevation change can be computed as:

zi = V ((z / ax) cos(y + p) + (az / Sy) sin( +8 p)) (4.8)

A
Y

XV mzo a i n

Fig. 4.1. Vehicle model for mobility analysis under uncertainty



Finally, the linearized equations for this model can be rewritten as:

GC - KG +CyG mhM mgh2  G
f= + 1+ + + (+G ET (4.9)

mV mV mV mVI°  mVI°  mV

mgh M, mCh m5Kh CsSmh mh(4.10)
+ - -+ - P + + 6+ YT (4.10)

I I°  mI°  mVIo. mI mlo

K D + Cflf+ I , (4.11)

I. V I. I

where

C = Cf +C ,, K = C,1, -Cf,1, D = C1 +C1,2, G= l+(m,2h2)/(mI), I =I + msh2 (1-m /m).

To measure vehicle stability, a roll-over coefficient is adopted from [34]. Using the principle

of balance of moments and vertical forces, the roll-over metric for the linear model under

consideration is given as:

R= 2m3 (h, +h)(v(t + )-h h) (4.12)
mgyw

where ha is the height of the roll axis above the ground and y, is the track width. The

coefficient may further be expressed in terms of the state space variables from the equations

of motion above. For this metric, IRI> 1 indicates vehicle wheel liftoff and thus impending

roll-over.

4.2.2. Bekker Wheel-Soil Interaction Model

A classical Bekker-type wheel terrain interaction model has been used to calculate the

drawbar pull (i.e. net longitudinal wheel thrust) in the present study [35]-[37]. This model

assumes quasi-static motion, and that the wheel is stiff relative to the terrain.

Fig.2 model for rigid wheel on deformable terrain

Fig. 4.2. Wheel-terrain interaction model for rigid wheel on deformable terrain
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For the vehicle soil interaction model shown in Figure 4.2, the drawbar pull is given by:

DP= rb fr(O)cos0 dO- J(0)sin0 dO (4.13)

where o(0) and r(0) represent, respectively, the normal stress and the shear stress at the

wheel-terrain interface (divided into two regions in Figure 4.2), and are given by:

a(0) = (-+k,)(r(cos9-cosO))n  (4.14)
b

c k(0) = ( F+k,) r (Cos 01m - cos 01) n (4.15)

r(O) = (c + r(0) tan p) 1- e k[ ( (4.16)

The drawbar pull can hence be written as:

DP= rb r2 (0)cosO dO+ f r(0)cosO dO- o-2(0)sin0 dO- o-a(0)sin0 dO (4.17)
oo, o o,

The parameters employed in (4.14)-(4.17) are defined in Table 4.2.

TABLE 4.2
PARAMETERS INVOLVED IN DRAWBAR PULL CALCULATION

SYMBOL DESCRIPTION

r Wheel radius
b Wheel width
01 Angle corresponding to start of wheel-terrain contact

02 Angle corresponding to loss of wheel-terrain contact

Om Maximum stress angle
c Cohesion

(p Internal friction angle
i Wheel slip
n Sinkage exponent

kc, k Pressure sinkage moduli
k Shear deformation modulus

4.3. Mobility Analysis Scenarios

In this section simulation studies of the proposed method for mobility prediction under

uncertainty are discussed. A brief description about the incorporation of vehicle and/or

terrain parameter uncertainty, and of the mobility analysis scenarios, to study the



performance of the proposed polynomial chaos-based techniques, is also provided. In the

present work, two scenarios are studied that involve terrain and vehicle parameter

uncertainty. In the first scenario, a stochastic response surface will be generated for

calculation of the mean drawbar pull (in lieu of using more computationally expensive Monte

Carlo analysis-based on equations (4.14)-(4.17)). In the second scenario, a roll-over analysis

will be performed using reduced order response surface expansions for the state variables

associated with the vehicle's motion, for various steering maneuvers. These analyses are

discussed below.

4.3.1. Scenario I

4.3.1.1. Inclusion of Uncertainty

A reduced stochastic model is developed for the drawbar pull considering c and q as

the uncertain parameters. The parameters are assumed to be normally distributed, though

other possible probability distributions (such as uniform or beta distribution) can be

considered as well. They are represented as:

c= PC + 0C (4.18)

/ = o, -+ 2 q (4.19)

where pc and 1u represent the mean, and ac and o, represent the standard deviation for c and q

respectively, and j and 2 are standard normal random variables. The drawbar pull is now

expressed in the form of a second order polynomial chaos expansion as:

DP = ao + al1 +a +a, -1)+a4 (2-1) +a 2 (4.20)

The parameters c and (p are chosen since they exhibit significant influence on terrain thrust.

The corresponding values for c and p used in the present analysis can be found in Table 4.3.

TABLE 4.3
PROBABILITY DISTRIBUTION INFORMATION FOR UNCERTAIN TERRAIN PARAMETERS (c, (p)

DISTRIBUTION
PARAMETER DISTRIBUTION MEAN STD. DEV.

FUNCTION

c (Heavy Clay) Gaussian 69 kPa 8.50 kPa

(p (Heavy Clay) Gaussian 34 deg 2.10 deg

c (Dry Sand) Gaussian 1.04 kPa 0.125 kPa

p (Dry Sand) Gaussian 28 deg 1.75 deg
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4.3.1.2. Scenario Description

To demonstrate the application of the technique to mobility analysis, a simplified

terrain traversal scenario is presented that considers a wheeled ground vehicle traveling on

flat, firm outdoor terrain (here modeled as heavy clay), then attempting to navigate up an

inclined region of highly deformable terrain (here modeled as dry sand). This is illustrated in

Figure 4.3. It is assumed that significant uncertainty is associated with the terrain physical

parameters c and y9. A reduced order model for the drawbar pull is then formulated (as shown

in (4.20)) at each time interval to obtain the stochastic mean value for the drawbar pull to be

used in the equation of motion for the vehicle.

A simple description of vehicle mobility in the proposed scenario is defined as the

probability that, for a given initial velocity (u,) at initial position (A) (see Figure 4.3), the

vehicle will have a positive velocity at point (B), after traversing the sandy incline. This

metric has been presented as a distribution of traversal probability versus initial velocity,

which can be used to predict the velocities for which the vehicle will be able to traverse the

deformable terrain region with a reasonably high probability.

di

Fig. 4.3. Simplified scenario considered for mobility prediction under uncertainty

The governing equation of motion can be written as:

DP
S=- g sin a (4.21)

m

where m is the vehicle mass, g represents the acceleration due to gravity and a is the angle of

the incline with respect to the horizontal. The parameter values used in this analysis are

provided in Table 4.4.
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TABLE 4.4
PARAMETERS INVOLVED IN DRAWBAR PULL CALCULATION

MEAN VALUE MEAN VALUE
SYMBOL UNITS

(HEAVY CLAY) (DRY SAND)

R m 0.1 0.1
B m 0.1 0.1
M kg 4 4
N - 0.13 1.1
kc N/m (n+ )  12.7 1
k, N/m n +2  1556 1528
K m 0.025 0.025

The vehicle's mobility is then analyzed using a baseline "standard" Monte Carlo approach

(SMC), the Latin Hypercube Sampling-based Monte Carlo method (LHSMC) and the SRSM

technique.

4.3.2. Scenario II

4.3.2.1. Inclusion of Uncertainty

For the roll-over analysis scenario, the front and rear axle roll stiffness are considered

to be normally distributed about their mean values, and are represented as:

kf = P + 4rk (4.22)

kr= + 2 "kr (4.23)

where uk and uk4 represent the mean, and crkf and okr represent the standard deviation for

kf and kr respectively, and (I and 2 are standard normal random variables. Then the output

state variable X can be represented using Hermite polynomials as:
P

Xi (t, ) = ZX,j (t)Hj () (4.24)
j=0

where =[1, ]"

The roll stiffhess parameter values employed in the study are shown in Table 4.5.

TABLE 4.5
UNCERTAIN VEHICLE PARAMETERS IN ROLL-OVER ANALYSIS

MEAN STD. DEV.
PARAMETER

(Nm/rad) (Nm/rad)
kf 30x103 4x103
kr 30x10 4x10



4.3.2.2. Scenario Description

For the roll-over study, a spectral stochastic analysis [24], [38] is performed to obtain

the time evolution of the roll-over coefficient, subject to various steering input functions

(sinusoidal, ramp-like and a double lane change maneuver). The mean value as well as the

variance in the roll-over coefficient is studied for each maneuver using Monte Carlo and

polynomial chaos-based techniques. The vehicle dynamics are also studied using the

polynomial chaos expansions for the various state variables from the governing equations of

motion in (4.9)-(4.11).

4.4. Simulation Results

4.4.1. Mobility Prediction

First, results from the analysis of the mobility prediction scenario are presented here

for inclination angle (a) equal to 60 and 150 (see Figure 4.4).
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Fig. 4.4. Probability plots for mobility prediction scenario

The coefficient values obtained for the 2nd order expansion of drawbar pull (4.20) for the

sandy slope (a = 15') are:

ao= -1.4260, a, = 0.2981, a2
= 0.5586, a3 = 0.0000, a4

= 0.0091, a = 0.0000.



The results predict that increasing the robot's initial velocity increases the probability of safe

slope traversal, as expected. Also, the minimum initial velocity required for successful

traversal increases as the inclination increases. A clearly defined "transition region" can be

observed, where the probability of safe traversal is a function of terrain parameter variance as

well. This region effectively describes the "risk" of traversal at a certain critical velocity

range.

The results from application of SRSM are compared to those obtained using SMC and

LHSMC with respect to computational efficiency. To compare the methods, the ratios of the

corresponding simulation time for the SMC (TI) and LHSMC (THI) approaches to the

computation time using SRSM (To) were computed for the case when inclination angle is 10

degrees. These are given in Table 4.6.

TABLE 4.6
COMPUTATION TIME FOR MOBILITY PREDICTION ANALYSIS

RATIO OF
SIMULATION

METHOD SIMULATION
RUNS

TIME

5000 89.91SMC
20000 355.19
1000 18.39LHSMC
10000 179.21

SRSM (2 nd order) 1.00

Comparing the relative computation times, it can be inferred that the approach based on

SRSM results in a significant computational reduction compared to the baseline approaches.

There is however, not a significant difference between SMC and LHSMC because of the

simplicity of the scenario considered.

4.4.2. Roll-Over Analysis

Results from analysis of the roll-over scenario described in Section 4.3.2 are now

presented. Simulations for various vehicle maneuvers (i.e. a sinusoidal steering input with an

amplitude of 0.1 radian and time period of 4 seconds, a ramp input with a slope of 0.4

degrees/second up to 4 seconds, and a double lane change steering input with an amplitude of

0.1 radian and the maneuver lasting 8 seconds) were conducted using the stochastic response

surface method (SRSM), standard Monte Carlo approach (SMC) and Latin Hypercube
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Sampling-based Monte Carlo method (LHSMC). The accuracy of the results from SRSM is

compared to results from the application of Monte Carlo methods in Figures 4.5-4.7. Close

agreement between the three methods can be observed.
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Fig. 4.5. Vehicle roll-over analysis for sinusoidal steering input
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Fig. 4.6. Vehicle roll-over analysis for ramp-like steering input
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Fig. 4.7. Vehicle roll-over analysis results for double lane change steering input

Stochastic analysis also allows insight into the range of the variation of an output time series.

In Figure 4.8, results are shown for the steering angle input and roll-over coefficient for a

double lane change maneuver, here including uncertainty bounds on the 20 variation. In this

particular analysis, it can be observed that while the absolute value of the mean of the roll-

over metric (corresponding closely to the result from a deterministic simulation) remains less



than one, the value exceeds one when prediction bounds from the stochastic analysis are also

included, thus indicating a risk of vehicle roll-over when parameter uncertainty is explicitly

considered.
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Fig. 4.8. Vehicle roll-over analysis using SRSM



Simulation times for the Monte Carlo approaches are compared to those for SRSM in Table

4.7. It can be observed that computation time for the response surface-based method is

approximately two orders of magnitude lower than for the Monte Carlo-based methods.

TABLE 4.7
RATIO OF SIMULATION TIMES FOR VEHICLE ROLL-OVER ANALYSIS

SMC LHSMC SRSM
STEERING INPUT (1000 RUNS) (400 RUNS) (2ND ORDER)

Sinusoidal 286.97 118.62 1.00
Ramp-Like 285.76 117.68 1.00

Double Lane Change 287.29 118.91 1.00

Results of simplified mobility prediction scenarios show that the proposed method represents

a significant improvement over conventional Monte Carlo methods in terms of computational

efficiency, while showing similar accuracy. It can therefore be used to robustly and

efficiently predict the traversability of mobile robots in unstructured environments. However,

for certain problems, such as those with discontinuities induced by random inputs, or for

situations involving long-term integration, the technique may not give appropriate results. In

such scenarios, the multi-element generalized polynomial chaos approach discussed in

Chapter 3 can be utilized. This is discussed in Section 4.5.

4.5. Long-Term Predictions using MEgPC Approach

In this section, the MEgPC approach is applied to the domain of vehicle dynamic analysis

and the results for long term integration are studied (as in Section 3.5.2). For this analysis, a

double lane change steering maneuver is considered as an input, and the roll angle evolution

under vehicle parameter uncertainty is studied using the gPC, MEgPC (P = 3, 01=0.05,

a=0.5) and SMC approaches, for motion over uneven terrain. The terrain (see Figure 4.9) is

represented using a combination of trigonometric functions as:

z(x,y) = Asin +Bsin (2+Ccos (D x 2 +y 2 ))+Ecos i2+Fsin I( x2 +y ))+Hcos (4.25)

where A,B, C,D,E,F, G,H are suitably chosen constants.
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Fig. 4.9. Terrain map used in the analysis

Also, in the present analysis, roll stiffness parameters are considered to be uniformly

distributed with the corresponding values shown in Table 4.8.

TABLE 4.8
UNCERTAIN VEHICLE PARAMETERS IN ROLL-OVER ANALYSIS

PARAMETER
(Nm/rad) (Nm/rad)

kf 30x10O 4x103

k, 30x10 4x10

A spectral stochastic analysis is performed to obtain the time evolution of the mean and

standard deviation of the roll angle (see Figures 4.10-4.11). It can be seen that for the

particular scenario, though the mean values match closely, the prediction from the gPC

approach for the standard deviation differs substantially from the MEgPC and SMC results,

even for relatively short times.
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Fig. 4.10. Prediction of mean of roll angle
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Fig. 4.11. Prediction of standard deviation of roll angle

Next, the time evolution of the standard deviation of R is studied for a sinusoidal input (see

Figure 4.12). It can again be observed that there is significant difference in the predictions

from the two polynomial chaos-based techniques.
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TABLE 4.9 % c-

TIME

SMC (2000 runs) 197.49MEgPC 5.370.1

0.05gPC 1.000 1 2 3 4 5 6Time (sec)Fig. 4.12. Prediction of standard deviation of roll-over metricComputation times for SMC and MEgPC approaches with respect to the gPC method, while
predicting the roll-over coefficient R, can be seen in Table 4.9.

TABLE 4.9
COMPUTATION TIME FOR THE VARIOUS APPROACHES

RATIO OF

METHOD SIMULATION
TIME

SMC (2000 runs) 197.49
MEgPC 5.37

gPC 1.00

Simulation results show that the method represents a significant improvement over the Monte

Carlo technique in terms of computational cost, and over the gPC method in terms of

accuracy of long-term predictions.

To summarize, the polynomial chaos-based approaches have been found to perform

significantly better than conventional uncertainty analysis techniques for the mobility

prediction and vehicle dynamics scenarios considered.
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5. PATH PLANNING UNDER UNCERTAINTY

5.1. Overview

A fundamental requirement for autonomous ground vehicles moving on uneven, rugged

terrain is the capacity to quickly and efficiently generate a feasible trajectory online that

results in safe, rapid traversal while avoiding obstacles.

Substantial work in motion planning has been performed over the years, and the major

techniques that have evolved include the A* and D* methods [3], potential field approaches

[4], the probabilistic roadmap technique [5], and the rapidly-exploring random tree (RRT)

algorithm [6]. These methods are aimed at determining suitable control inputs to move a

robot from its initial position to its destination. Some methods attempt to accomplish this

while obeying physics-based dynamic models and avoiding obstacles in the environment.

Recently, randomized approaches to kinodynamic motion planning [39] have proven to be an

efficient tool for path generation, with RRTs proving to be a highly effective framework. In

this technique, exploration and search are combined in a single method without substantial

pre-computation that is often associated with a method such as the probabilistic roadmap.

Further, the approach scales well for problems with high degrees of freedom and complex

system dynamics, and its flexible framework simplifies the integration of uncertainty analysis

techniques discussed in Chapter 3. RRTs will thus be the focus of the present analysis.

Since the introduction of RRTs, many extensions have been developed to the basic algorithm

to improve its performance and better adapt to demands of specific systems [6]. However,

little research has explicitly addressed the challenge of autonomously assessing a robot's

mobility over a given terrain region while planning a path. Consideration of robot mobility is

important in field conditions, where terrain inclination, roughness, and/or mechanical

properties can significantly impede robot motion. Such scenarios include planetary surface

exploration, some search and rescue tasks, and many defense/security applications.



Previous research has employed heuristically-biased expansion to generate efficient paths

[40] while satisfying dynamic constraints. Another recent approach [41] explicitly models a

robot's closed-loop controller in the planning methodology, thereby resulting in feasible

paths. By construction, however, these works do not explicitly address mobility aspects

during the planning process.

Further, there has been little research that addresses the challenge of autonomously

generating a path while explicitly considering uncertainty in the vehicle and/or terrain

parameters. As explained briefly in Chapter 1, most path planning techniques (including

RRT-based approaches) rely on deterministic analysis that assumes precise knowledge of

vehicle and terrain parameters. In field conditions, however, vehicles generally have access

only to sparse and uncertain terrain parameter estimates, and vehicle parameters may be

uncertain and time-varying. Failure to consider parameter uncertainty may lead to generation

of unsafe trajectories and/or to the failure of the vehicle to track the generated paths,

especially during high speed navigation in unstructured environments.

Recent work in this area uses a particle filter-based approach within the RRT framework,

producing a distribution of vehicle states at each tree node [42] and uses a Monte Carlo-

based simulation at each extension step to compute particles which are then clustered to form

nodes in the tree [40]. Another study has focused on a modified RRT framework that

includes a closed-loop prediction framework to reduce the effects of uncertainty on the

generated paths [41]. However, for aggressive maneuvers or motion on highly deformable

terrain, the presence of uncertainty may induce significant variation between the

deterministic and stochastic performance prediction of the mobile robot. It is therefore

critical to consider this uncertainty in the planning loop. The present work attempts to

address these concerns through several extensions to the basic RRT algorithm to result in

safe path generation over uncertain terrain.

5.2. RRTs - An Introduction

The basic RRT planning algorithm can be briefly summarized as follows: Given a robot

in an initial configuration in an environment, sample a point in space either randomly or

i . __..._..



according to a priori known distribution (such that the tree expansion is biased towards the

goal). Using biased sampling enhances the algorithmic performance; however, too strong a

bias may adversely affect the random exploratory nature of the tree. Then, find the sampled

point's nearest node in the current search tree based on an appropriate distance metric. Next,

forward-simulate a system model from the nearest node towards the sampled point. If various

constraints are satisfied, a new location is reached and added to the tree.

A search tree is thus constructed which combines random exploration and (possibly) biased

motion towards the goal, while obeying various constraints. The algorithm terminates when a

node is selected that lies within some threshold distance to the goal. This process is depicted

in Figure 5.1 and the general steps (based on the standard RRT algorithm, described in

pseudo-code in Table 5.1) are briefly outlined below. For more details, refer to [6], [39].

Xtart

Fig. 5.1. Illustration of rapidly-exploring random tree expansion

5.2.1. Algorithmic Framework

a) Choose a target Xs (Xs = [Xsample, Ysample] T in Cartesian space) from the domain using the

function sample and determine the node in the tree Xnear (Xnear = [xnear, ynea,]T) nearest to X,

using the nearest_node function. This calculation is performed using a suitable distance

metric.



b) 'Grow' the nearest part of the tree towards the target X, using the extend function, to

reach the location Xnew. This node is added to the tree using the function add in case absence

of collisions and if dynamic constraints are found to be satisfied using the function

constraints.

c) Terminate the algorithm when a node is selected that lies within some threshold

distance Do to the goal.

TABLE 5.1
BASIC RRT-BASED PLANNING ALGORITHM

01. function create_tree(Xstan,,XgoaE);
[Get start location (X,,,), goal location (Xgoad & environment (E)J

02. T = initialize(Xtar,);
[Initialize tree (T) using X,,,,.]

03. while ~reached(Xg,, T);
[Repeat steps below until Xgoi is reached.]

04. X, = sample(E);
[Choose sample node (X) in E.]

05. Xnear = nearest_node(X,,T);
[Search tree for nearest node (Xnea,r) to X.]

06. Xn,,ew = extend(Xer,Xs);
[Move towards Xfrom Xnear to reach new location (X,e).]

07. if -constraints(Xn, T,E);
[Check ifconstraints are satisfied.]

08. T= add(Xew, T);

[Add Xn, to T ifthere is no collision.]
09. end
10. end
11. return T;

A primary advantage of this framework is that it can be usually implemented for real-time,

online planning, even for high degree-of-freedom dynamic models. Further, its flexibility

allows trajectory-based checking of complex constraints as well as inclusion of mobility-

based extensions that aid in the generation of safer paths for the vehicle to follow. Another

feature is the ease with which integration of the proposed stochastic modeling approach for

consideration of uncertainty can be performed within the RRT framework. These are

discussed in the subsequent sections.
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5.3. Mobility-based RRT Extensions

This section provides an overview of various extensions to the basic RRT framework that

aim to (implicitly or explicitly) consider robot mobility, and thereby result in motion plans

that are safe and efficient, even over unstructured terrain.

5.3.1. Distance Metric Calculation

Most approaches to RRT-based planning employ the Euclidean distance to calculate

the distance from a node to the sample. However, many vehicles employ Ackermann (or

Ackermann-like) steering, which restricts their path tracking capability to following smooth

paths. Here, a distance metric similar to the Dubins path length [43] is employed for such

vehicles. While Dubins curves are typically paths of the CCC/CSC sequence type (where C

represents a circular arc and S refers to a straight line segment) between prescribed initial and

terminal vehicle configurations, here paths of the CS/SC sequence type are considered, since

the vehicle orientation at the target point is not critical.

The proposed metric is more appropriate than a Euclidean distance-based metric since it

considers the initial vehicle heading and minimum turning radius, resulting in a more

accurate estimate of the minimum path length the vehicle must travel to reach a sample from

a given node (see Figure 5.2).

i S

I . y .

Fig. 5.2. Dubins-like paths CS (left) and SC (right) for nearest node calculations



To calculate this metric, the coordinates are first transformed such that the node of interest

(i.e. the potential nearest node) lies at the origin. Then, based on the location and orientation

of the vehicle at a node, the targeted sample point and the minimum turning radius of the

vehicle p, the Dubins-like distance calculations are performed [44]. It should be noted that

these calculations (based on the configuration in Figure 5.3) rely on a simple kinematic

vehicle model, and thus serve as an approximation for high speed, dynamic systems.

For paths of type CS, the relations are obtained as:

D= x 2 +(y -p) (5.1)

L= D2 -p 2  (5.2)

p= tan-' (L/ p) (5.3)

a = tan-' {(y-p) / x} (5.4)

0= z /2-( -a) (5.5)

Then, xA = psin and yA =p-pcos

For paths of type SC, the relations can be given as:

a= tan-' {(y -p) / x} (5.6)

S= sin-' {(D sin a) / p} (5.7)

y = - (( + a) (5.8)

L = (p / sin a) sin y = (D / sin p) sin r (5.9)

Then, xA =L, yA =0, and 0= (3/2)z -

(x!Y)

Fig 5 ci f" L A

Fig. 5.3. Path length calculations for 2-D Dubins-like curves: CS (left) and SC (right)
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5.3.2. Use of Multiple Nearest Nodes

To enhance planning algorithm performance, M (here taken as 3) nearest nodes are

calculated instead of just one during tree extension. These nodes are arranged in order of

increasing cost (see Section 5.3.3). The least cost node is then chosen for expansion,

provided the resulting trajectory towards the sample point has a reasonably high probability

of safe traversal. This condition is satisfied when the roll-over metric Ro (see Section 4.2.2),

averaged over the path segment (to give Ravg s), has an absolute value lower than a suitable

threshold value (i.e. Ravgs < Ro). Keeping track of M nearest nodes prevents re-searching the

entire tree in case the mobility-based criterion is not satisfied for the selected node. This

improves the planner's performance in rapidly finding a safe path.

5.3.3. Mobility-based Heuristic

Costs are assigned to nodes considering both temporal and mobility-based factors.

While the former takes into account the time taken to reach a particular node, the latter

considers the probability of successfully negotiating the terrain to do so. This may be defined

based on a metric related to the nearness of the vehicle to roll-over. Here a roll-over metric

(see Section 4.2.2) is used to assign cost by computing it along the path leading to a node

from the start location, thereby explicitly including mobility considerations in the planning

process. By using this heuristic cost function, it is expected that paths that are safely

traversable by the vehicle will be generated. This node cost function is calculated as follows:

3

Qk = (i,k / max(C,j)) j,k = 1..M (5.10)

where

CI,k = tk (5.11)

C2,k = (Ravgp,kRmaxp,k)h (5.12)

C3,k = dk (5.13)

Here tk refers to the time to reach the kth node from the vehicle's starting position, Ravgp,k and

Rmaxp,k are, respectively, the average and maximum values of R along the entire path leading

up to the node, dk is the value of the distance metric to the sample point from the node, and h



is a parameter to bias the search according to the relative importance of time and vehicle

mobility, and depends on the particular application.

5.3.4. Pure Pursuit Controller

Closed-loop (rather than open-loop) model simulation is integrated in the proposed

RRT framework, as in [41]. Here, a controller based on the pure pursuit algorithm [45] is

employed due to its ease of implementation and widespread use. The closed-loop system is

commanded to track a reference path input from the least cost node to the sample location.

The use of closed-loop control methodology (see Figure 5.4) has various advantages. First,

upon integration with the RRT, the technique allows the planning framework to be applied to

complex dynamic models by (potentially) transforming a high-dimensional search problem

through the vehicle's state space to a low-dimensional search through Cartesian space.

Second, it yields trajectories that, by construction, are likely to be dynamically feasible. The

technique thus enables generation of reasonably long and safe paths, as well as associated

sequences of vehicle steering inputs.

R Pure Pursuit ( Dynamic Vehicle
Controller Model

Fig. 5.4. Tracking of reference path input (R) by the controller after providing a suitable steering input (8) to
the vehicle, resulting in the traversed path (P)

The reference input to the closed-loop controller is the Dubins-like curve described in

Section 5.3.1. Note, however, that only a section of the reference path might be tracked

depending on the environment and the application scenario. An illustration of this approach

is depicted in Fig. 5.5.
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Fig. 5.5. Illustration of reference path tracking from two nearby nodes N1 and N2.

5.3.5. Intermediate Nodes

While long paths may be efficiently generated with the closed-loop control method,

additional nodes are placed along the trajectory at short intervals. These are added to the tree

if the mobility criterion (described in Section 5.3.2) is satisfied for the path segment

preceding the node under consideration.

This has been found to yield dense exploration and can save significant computational time

in cases where there are collisions with obstacles, or if the mobility cost is exceeded for

nodes at the end of long path segments (see Figure 5.6).

I

X,

X,

OBSTACLE

Fig 5.6. Placing of intermediate nodes along the traced path
Fig 5.6. Placing of intermediate nodes along the traced path
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The modified RRT algorithm with the above extensions is outlined in Table 5.2.

TABLE 5.2
MOBILITY-BASED RRT PLANNING ALGORITHM

01. function create_tree(Xsta,Xgoa,bE);
[Get start location (Xstar, goal location (Xgoat) & environment (E).]

02 T= initialize(Xst,,r);
[Initialize tree (T) using Xstart.]

03. while -reached(XgoaT);
[Repeat steps below until Xgoa, is reached.]

04. X, = sample_uniform(E);
[Choose sample node (X) in E.

05. [XeaJ = nearest_nodes(X,,T);
[Search tree for N nearest nodes [X,,ear] to Xj

06. X,er= nearest_node([Xnea);
[Choose nearest node (Xear) based on node costs]

07. [path] = create_path(X ar,Xs);
[Create Dubins-like path to Xsfrom X,,ear

08. X,]ne = extend pure_pursuit([path]);
[Move towards Xfrom X,,a to get nodes [X,e] along the path.]

09. if -constraints([X.,e], T,E);
[Check if constraints are satisfied.]

10. T= add ([Xl, T);
[Add [Xn,,] to T if there is no collision]

11. end
12. end
13. return T;

5.4. Integration of SRSM with the RRT Framework

Parameter uncertainty, if not explicitly considered in the planning framework, can lead to

uncertainty in vehicle mobility, stability, and path following characteristics. As depicted in

Figure 5.7, for identical initial condition, various paths could be tracked by a closed-loop

system depending on the values of uncertain vehicle and/or terrain parameters. Further, while

traversing certain paths, the vehicle could collide with an obstacle, or may have a heightened

possibility of roll-over (as measured with the averaged roll-over metric Ravgs).
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Fig. 5.7. Path and roll-over unpredictability under uncertainty

To explicitly consider uncertainty during planning, SRSM is integrated in the RRT

framework. The general procedure is as follows:

Let m uncertain vehicle and/or terrain parameters, considered here to be normally distributed

about their mean values, be represented using standard normal random variables k as:

Pk = 'p,k + rPk , k = 1...m (5.14)

S state variables of interest, here including the vehicle's path coordinates, are then

represented using Hermite polynomials of these standard normal random variables, as:

P

x,(t, )= xij(t)Hj() , i=l...S (5.15)
j=0

where = [, 2 ... rm].

Spectral stochastic analysis [38] is then performed using the above expansions, resulting in

the time evolution of the mean and variance values of the state variables during expansion of

a given node. As a result, a description of the vehicle's likely path of travel is obtained. By

calculating confidence ellipses along the mean trajectory, paths that have a high probability

of avoiding colliding with obstacles are chosen.

In addition to obtaining a more realistic approximation to the expected path traversed, the

roll-over tendency of the vehicle along the trajectory is obtained. This can then be used in the

mobility-based heuristic expansion in the RRT framework. These extensions are discussed in

the following sections.
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5.4.1. Confidence Ellipse Construction

The SRSM provides reduced order expansions for calculation of the vehicle's path

coordinates, which are then utilized to obtain relevant statistics such as the mean and

variance [11]. Based on these values, the mean path can be augmented with ellipses [46] that

indicate confidence levels for the predicted position of the vehicle in the presence of

uncertainty. These ellipses are then used to perform collision checks to avoid paths that are

likely to collide with obstacles (see Figure 5.8). This is performed by placing the vehicle at

suitable intervals along an ellipse and checking for collision with obstacles present in the

environment. This approach represents an improvement over Monte Carlo methods by

reducing the number of paths that must be generated to estimate the variation in path

coordinates, thus reducing computational cost.

OBSTACLE OBS TACL

I 

WA

SX W @ X

X OBSTACL EX 6 XOBSeA
near near

Fig. 5.8. Illustration of collision checking using confidence ellipses

Confidence ellipses centered at the mean path coordinates (see Figure 5.9) can be generated

based on the following equation:

1-2 (x - x)2 2r + ( - 2 = C2  (5.16)1 2  2 2Sx SxSy S

N -1 2 N_ / N N
where C2  (1-P)2-N _1 x =LX iPy1 N=-

N N N=1

/x and u, are the mean path coordinates, sx and s, are the sample standard deviations, r is the

sample correlation index, N is the number of samples generated from the reduced model and

P is the confidence level of the predicted position, which may be chosen based on the

criticality of the operation.
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The principal semi-axes of the ellipse are given as:

ax =cs, a =csy (5.17)

where s =[s +s (s )4r s ]/2

The ellipse orientation is denoted by the inclination angle fl, given as:

= 1 tan- 1 2rsXsy (5.18)
2 -s2

x y

Confidence ellipse

Fig. 5.9. Confidence ellipse construction

Information obtained from this analysis, such as the average variation in the vehicle position

along the path, or the probability of collision with an obstacle, can also be used to alter the

node costs in the RRT expansion heuristic. This has, however, not been considered in the

present work.

5.4.2. Expansion Heuristic

As described in Section 5.3.3, a roll-over metric value R can be employed as a cost

during tree expansion. This results in explicit consideration of vehicle mobility, albeit in a

deterministic manner. To consider vehicle mobility in a stochastic manner, SRSM can be

employed to yield an expected roll-over metric E[R]. This result can also be used during tree

expansion described in Section 5.3.2. Once the expected value for the roll-over metric (E[R])



and its variance crR along a trajectory is obtained, Ra,,g can be replaced by R 'avg,s, where the

latter is the path-averaged value of Rs, given as:

R = E[R]+ fc R , f >0 (5.19)

Thus, while extending towards a sample point from the least-cost node, R 'ag, is compared

with the threshold Ro. Further, these stochastic values are utilized while assigning the node

costs during the heuristically biased tree expansion.

5.4.3. Algorithmic Framework - Selective Implementation

The application of stochastic analysis along each path segment during tree growth can

lead to increased computation times during planning. However, it may not be necessary to

apply stochastic analysis for scenarios where the path segments are relatively smooth and

flat. SRSM should be invoked only for tree expansions that may have a high likelihood of

vehicle roll-over. Here, the technique is employed when the following criterion is met:

SRavg, s> R,, where RI < RO (5.20)

Hence, if a path segment is likely to have an Ravgs value close to the threshold Ro, SRSM is

used to obtain a refined estimate of roll-over risk.

Using the above extensions, an RRT algorithm that considers parameter uncertainty can be

obtained that yields smooth and safe paths. The modified algorithm is outlined as a pseudo

code in Table 5.3.

5.5. Simulation Studies

In this section simulation studies of the proposed method for path planning under

uncertainty for the vehicle model seen in Section 4.2.1 are discussed. The scenarios chosen

correspond to an obstacle laden field. First, the terrain environment is considered to be flat,

and subsequently an uneven surface (represented using trigonometric functions) is

considered. The use of SRSM within the framework allows incorporation of uncertainty

effects (see Section 5.5.1) both while predicting mobility along the tree extensions, as well as

while performing collision checks, as seen in Section 5.4. Suitable trajectory quality metrics

have been defined (see Section 5.5.2) in order to compare the effectiveness of the modified
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framework for the scenarios considered. The results shown in Section 5.6 indicate that the

use of SRSM results in safer trajectories for the vehicle to follow.

TABLE 5.3
MODIFIED RRT-BASED PLANNING ALGORITHM

01. function create_tree(Xsta,.,Xgoa,E);
[Get start location (Xst,,r, goal location (Xgod & environment (E).]

02 T = initialize(Xt,rd;
[Initialize tree (T) using Xsta.]

03. while -reached(Xgo,bT);
[Repeat steps below until Xgoat is reached.]

04. X, = sampleuniform(E);
[Choose sample node (Xi) in E.]

05. [Xnea, = nearest_nodes(X,T);
[Search tree for N nearest nodes [Xne,,,,] to Xs]

06. X,,ea= nearest_node([XnearJ);
[Choose nearest node (Xnea,) based on node costs.]

07. [path] = create_path(X,.,X);
[Create Dubins-like path to Xfrom X,,,ea

08. [X,,,] = extend pure_pursuit([path]);
[Move towards Xfrom Xea, to get nodes [X,,,] along the path]

09. If Ravg>R,, [X,, ,R'a j =SRSM([path]);
[Call SRSM function if required, do collision-check using

confidence ellipses.]
10. if -constraints([X,, ]T,E);

[Check if constraints are satisfied.]
11. T = add([X,,], T);

[Add [X,,] to T if there is no collision.]
12. end
13. end
14. return T;

5.5.1. Inclusion of Uncertainty

In the present analysis, the vehicle's front and rear axle roll stiffness values are

considered to be normally distributed about their mean values, and are represented as:

(5.21)

(5.22)

kf =1kf + c50kf

kr = /Ukr +2 kr

In the SRSM implementation, the output state variable Xi is represented as:

P

X (t) = X, (t)(I()
j=O

where = [ , ].

(5.23)



The roll stiffness parameter values employed in the study are shown in Table 5.4.

TABLE 5.4
UNCERTAIN VEHICLE PARAMETERS

PARAMETER MEAN (Nm/rad) STD. DEV. (Nm/rad)

kf 60x10 15x10 3

k, 60x10 15x10

5.5.2. Description of Scenarios

Deterministic as well as stochastic analyses were performed for the environmental

scenarios shown in Figures 5.10-5.11 to separately evaluate the improvements in the

feasibility of path traversal due to consideration of mobility-based features and stochastic

analysis in the RRT framework. For the deterministic analysis, parameter uncertainty was

neglected and the performance of a standard RRT algorithm was compared to a modified

method that includes the mobility-based features described in Section 5.3. Comparison

metrics were calculated in terms of the travel time To and likelihood of safe traversal. To

evaluate the latter, a trajectory quality metric (QTa) is defined as:

Qra = max (Ravgs,i) (5.24)

where Ravgs, i is the roll-over metric averaged along the path segment connecting the ith node

and its predecessor. Thus, QrT refers to its maximum value among the nodes of the final path.

The average roll-over coefficient along the final trajectory (Ravgfp) from the two approaches

is also computed.

Uncertainty was then considered and the performance of a modified algorithm that included

SRSM for each tree extension was compared to the non-SRSM case, in terms of the

trajectory quality metric (QTb), defined as:

QTb = JRavgsl (5.25)

where Ravs is the path-average of the expected value of the roll-over metric along the

trajectory under uncertainty. For the deterministic case, this metric was obtained by using a

Monte Carlo (MC) analysis. Once the final path and associated steering inputs are obtained

using the deterministic RRT algorithm, multiple simulations are performed corresponding to

the sample parameter values from the respective uncertain distributions, while applying the

steering inputs determined from the original analysis. Thus, the expected value of the roll-
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over metric along the path is obtained which can then be utilized to get the required quality

metric.

The improvement in computational efficiency of SRSM over a Monte Carlo approach within

the framework was also studied. Here, selective implementation was employed, where

multiple simulations along a path segment were run only when the roll-over stability

threshold R, (from 5.20) is crossed. To compare the two methods, the ratio of the

corresponding simulation time (7) to the computation time for the deterministic run (To) was

computed.

0 0

00

Fig. 5.10. Terrain environments considered in the analysis
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Fig. 5.11. Placement of obstacles for the scenarios (top view)

5.6. Path Planning Results

5.6.1. Deterministic Analysis

Plans were generated for the terrains of Figure 5.10. Various values for h and Ro were

considered and the typical values obtained for To, QTa and Ravg_p for the two scenarios are

shown in Table 5.5 and Table 5.6 respectively.

TRAJECTORY

TABLE 5.5
QUALITY AND TRAVEL TIME

SCENARIO I

TRAVEL
TECHNIQUE h Ro Qra TIME, To Ravgp

(s)
RRT (Basic) - - 0.457 18.26 0.372

1 0.4 0.380 17.31 0.285
1 0.6 0.572 16.90 0.344

Modified
1 0.8 0.769 16.51 0.470

RRT (Non 4 0.4 0.391 17.88 0.268
SRSM) 4 0.6 0.584 17.14 0.323

4 0.8 0.743 16.70 0.419

TABLE 5.6
TRAJECTORY QUALITY AND TRAVEL TIME

SCENARIO II

TRAVEL
TECHNIQUE h Ro QTra TIME, To Ravg,

(s)

RRT (Basic) - - 0.692 19.02 0.485
1 0.4 0.397 18.01 0.331
1 0.6 0.591 17.67 0.415

Modified 1 0.8 0.776 17.38 0.531
RRT (Non- 4 0.4 0.397 18.43 0.318
SRSM) 4 0.6 0.588 17.98 0.403

4 0.8 0.767 17.57 0.507
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Paths generated by the proposed approach generally resulted in lower roll-over coefficient

values. This is because the threshold value Ro limits the selection of tree extensions to those

with absolute value of roll-over metric, averaged over the path segment, lower than Ro.

Reducing Ro, therefore, results in paths with lower QTa and Ravgp values. Similarly,

increasing the value of the parameter h causes the expansion heuristic to select nodes on

easily traversable paths, also leading to trajectories with marginally lower QT and Ravgp

values.

While the Ravg- value may be lower for the basic RRT algorithm for certain scenarios, there

is no control over the value of QT, in the modified approach. Therefore, for the path obtained

using basic RRT, the tendency for the vehicle to overturn while negotiating the terrain is

expected to be greater, especially at high speeds. Similarly, while To values may be lower,

this comes at a cost to vehicle safety while negotiating the terrain. Further, reducing Ro may

affect To depending on the nature of the terrain; however, increasing h is expected to cause a

marginal increase in the travel time, when a larger sample of paths may be considered due to

the additional emphasis on roll-over stability than on travel time.

The tree obtained from a typical simulation of the modified planning algorithm, is shown in

Figure 5.12.

Fig. 5.12. Resulting tree and final path using the modified RRT algorithm (non-SRSM,h= 1,R,=0.6)

5.6.2. Stochastic Analysis

Further studies were conducted to consider uncertainty in vehicle parameters for

varying values of Ro. As discussed in Section 5.5.2, the first case involved performing a



Monte Carlo analysis on the final path obtained through the deterministic RRT algorithm to

get the expected mean value of the roll-over metric along the trajectory. The SRSM-based

RRT approach was also used, while employing the response surface technique along each

path segment (i.e. RI = 0) to get the expected roll-over coefficient values along the tree

segments, and subsequently the final path. Typical values obtained for the trajectory quality

metric QTb defined in (5.25) corresponding to the two scenarios are shown in Table 5.7.

TABLE 5.7
TRAJECTORY QUALITY FOR GENERATED PATHS

SCENARIO I SCENARIO II
TECHNIQUE Ro

Modified RRT 0.5 0.312 0.378
(Non-SRSM, 0.7 0.389 0.454

MC on final path) 0.9 0.497 0.584
0.5 0.301 0.363Modified RRT

RdM: R, 0) 0.7 0.355 0.437
0.9 0.456 0.560

For the first case, larger values of QTb were observed, indicating that treatment of uncertainty

is important to obtain accurate values for the expected roll-over metric along a path segment

during tree expansion. Since the path is calculated through a deterministic analysis, certain

segments that may be unsafe in actual, uncertain conditions can also be selected, resulting in

a final path that may be infeasible for the vehicle to follow. In other words, while the

deterministic planning algorithm might assume that a path segment is safe for traversal using

the threshold Ro, this assumption might be poor due to uncertainty that is present. In certain

cases, the averaged roll-over coefficient value may be significantly greater than Ro (or even

1, indicating failure). Consequently, a Monte Carlo analysis on the predicted trajectory

results in a higher value for the quality metric QTb. However, in the stochastic planning

framework, paths segments that are likely to cause vehicle roll-over under uncertainty are

disallowed, leading to trajectories that are safer for the vehicle to track.

The computational efficiency of SRSM was also compared to that of the Monte Carlo

method in the planning framework. Typical results obtained for T/TD are shown in Table 5.8.

The computational efficiency for SRSM is significantly better than the Monte Carlo
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approach, particularly for low values of Ro, when the stochastic analysis is frequently

invoked. The metric Qrb was found to be similar for the two techniques, as expected.

TABLE 5.8
TRAJECTORY QUALITY AND RELATIVE SIMULATION TIME

SCENARIO I SCENARIO II
METHOD Ro

T/TD Q , T/TD QT,

0.5 280.2 0.309 288.6 0.369
Monte Carlo (400 runs) 0.7 238.1 0.381 246.5 0.447

(R1 = Ro - 0.1) 0.9 120.4 0.465 127.1 0.575
0.5 4.12 0.321 4.25 0.373

SRSM (2 d order) 0.7 4.01 0.395 4.17 0.449

(R o 0.9 3.82 0.480 4.02 0.571

In summary, the framework for stochastic vehicle trajectory generation presented here

explicitly considers vehicle mobility and parametric uncertainty. Simulation results for

planning on uneven terrain show that the proposed method can generate safer paths

compared to a basic RRT algorithm, and can be used to robustly and efficiently predicting

safe, feasible trajectories for autonomous vehicles in unstructured, uncertain environments.



6. MOTION CONTROL UNDER UNCERTAINTY

6.1. Overview

Motion control on non-flat terrain is an important capability of mobile robots operating in

outdoor environments and constitutes an important feature that must be considered for

successful operation of autonomous navigation systems. However, most control schemes rely

on a deterministic analysis, and do not explicitly consider parametric uncertainty while

calculating the control inputs. In practical scenarios, however, the uncertainty in vehicle

and/or terrain parameters can cause significant deviation from the predictions made

according to a deterministic analysis. Consequently, most control algorithms can fail in

controlling the motion of vehicles operating in such unstructured terrain. While stochastic

control techniques have been developed recently to be applied to control of vehicle motion

and dynamics, most of them either do not explicitly consider the uncertainty in the

parameters or they tend to be computationally expensive and infeasible for application to

online control of UGVs performing aggressive maneuvers on rugged terrain.

In the present work, model predictive control (MPC) has been used to achieve good path

tracking performance due to its ability to systematically handle constraints and multi-variable

systems. The technique uses a system model in a constrained optimization framework to

determine control inputs that minimize a performance objective and satisfy constraints,

including both dynamic equality constraints and physical inequality constraints.

A feature of model predictive control is that, due to its basis in optimal control, it operates

close to the constraint boundaries. However, the presence of uncertainty can lead to violation

of these boundaries, if the uncertainty is not explicitly considered in the control framework.

Hence, inclusion of uncertainty is critical while computing the control inputs using MPC,

especially when the state variables have values close to the constraint limits.

Extensive past research has been done in the area of predictive control and robustness to

uncertainty (both parametric and exogenous), as well as in the domain of stochastic control.

A traditional approach to considering uncertainty during model identification or
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measurement is in the form of noise. Uncertainty-induced effects can be incorporated by

defining the discrete-time systems as:

Xk+l = ak(Xk,Uk) Wk (6.1)

where xk and uk denote the random vectors corresponding to the system state and applied

control input, respectively, ak(.) is a linear or non-linear function, and wk denotes additive

white noise. While for linear systems, calculation of the probability density of the system

state xk at each time step can be performed using a Kalman filter, for non-linear systems it

involves calculation of computationally demanding numerical integration. Recently, in [47],

such systems have been approximated using a stochastic state prediction method wherein the

transition density approximation is performed using hybrid Dirac and Gaussian densities.

Another formulation adopted in [48] solves closed-loop stochastic dynamic optimization

problems, while explicitly considering stochastic properties of both exogenous and

endogenous uncertainties. The non-linear predictive controller deals with model uncertainty

and disturbances by replacing deterministic constraints in its formulation (represented as

yin<y<yax), with chance constraints (i.e. constraints that hold true with a probability value

greater than a given threshold) of the form:

Pr{ymin<y<Ymax} > a (6.2)

where a is a constant, 0 < a < 1. The main challenge here lies in the computation of the

probability and its gradients. An inverse mapping approach that requires computationally

expensive multivariate numerical integration is employed in [48].

Other approaches attempt to include uncertainty by performing optimization with respect to a

single statistic, such as the expected value or the variance, thereby converting the stochastic

problem to an optimal control deterministic optimization, by effectively removing the

stochastic element of the problem. In [49], for example, optimal control of a linear, discrete

time system subject to input constraints and stochastic disturbances is performed by

employing a closed-loop optimization procedure. Although computationally demanding, the

framework minimizes the expected value of the cost function (comprising of a performance

measure and the expected value of the constraint violation cost, both expressed in terms of

convex functions) and also takes disturbances into account.



In [50], explicit stochastic non-linear predictive control is introduced based on Gaussian

process models. Non-parametric probabilistic black-box models directly provide uncertainty

predictions, and once the probability distribution of the predicted states is obtained, the mean

and variance can be incorporated within the constraint definitions. Other general stochastic

techniques introduce a probabilistic formulation of the cost that includes probabilistic bounds

of the predicted variable [51 ].

While there have been attempts to develop robust stochastic frameworks, most methods have

not focused on the issue of computational efficiency. Also, most methods for ground vehicle

control have not explicitly addressed uncertainty in vehicle and/or terrain parameters. The

present work extends the response surface approach presented in Chapter 3 to a predictive

control framework, in order to enhance the robustness of predictions while ensuring that

computational costs are not excessive. An approach similar to the one adopted in [50] has

been used to incorporate uncertainty effects in the control framework, while employing the

response surface method to predict the state and to calculate moments to be utilized in

modified constraint definitions. This is discussed in Section 6.3.

6.2. Linear Model Predictive Control (MPC) - An Introduction

Model Predictive Control has recently drawn attention from a variety of fields because of

its ability to rigorously and systematically handle constraints [52]. Control inputs are

obtained by repeatedly solving user defined minimization problems online as the system

evolves over time. A key advantage is that these optimization-based controllers can operate

close to constraint boundaries to obtain improved performance compared to most traditional

approaches. As a result, however, disturbances can potentially drive systems into an

infeasible region, and therefore it is important to carefully consider the effects of external

disturbances, or mismatch between the model and actual process. A family of approaches,

called robust MPC, exist that explicitly address this issue [53]. Stochastic MPC has also been

the subject of research study for quite a few years [51].

Figure 6.1 illustrates the basic concept behind linear model predictive control. The goal of

the controller is to make the actual output, z, as close to the reference, r, as possible. This is
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done by calculating the optimal input, u, for each time-step. Feedback is often used to control

the dynamic behavior of the system, and involves providing the system with the measured

output, y, as feedback. Thus, information about the effect of the disturbance and/or

uncertainty on the output is, in essence, provided back to the controller. This increases the

robustness of the system by ensuring that the measured output is approximately similar to the

reference value, r. When feed-forward is used, the controller analyzes potential future

disturbances, d, and this allows the system to respond to these disturbances more quickly and

robustly. Both feedback and feed-forward can be used simultaneously to improve the

controller's robustness and reaction speed.

d

r I 1u
* MPC Process (x)

Fig. 6.1. Illustration of MPC framework

A brief formulation of the MPC framework is summarized in Section 6.2.1. More details can

be found in [54], [55].

6.2.1. Algorithmic Framework

A system with linear time-invariant dynamics and discrete sampling time T, is

described by:

Xk+ = Ax k +Bu k +Edk (6.3)

Zk= CX k  
(6.4)

where u, d, x and z represent the inputs, disturbances, states and outputs of the system

respectively.

Closed-loop system:

Performance objectives are specified through an objective function that is to be minimized,

and inequality constraints on the inputs and outputs. For flexibility in specifying the objective

function and constraints, the input Uk is defined as a cumulative sum of changes in input as:



Uk U_ +AUk (6.5)
n

Uk+n =Uk-1 + AUk+j (6.6)
j=0

A prediction horizon is taken as N sampling intervals. The basic MPC problem is then

defined that includes disturbance as well as constraints imposed on the input quantity, the

input rate of change and on the output. In the deterministic analysis, it is assumed that for

every time step, k, the constraint limits are the same. A quadratic objective function is then

defined as:

1 2 1II u-1 2 (6.7)
min J, = - zk k (672k=0 2

k=O

s.t.

Xk+ 1= Ax k +Bu k +Edk, k = 0,1,..., N-1

Zk= Cx k ,  k = 0,1,..., N

Umin - Uk - Umax, k = 0,1,..., N-1

Aumin Auk - Aumax, k = 0,1,..., N-1

Zmi n - Zk - Zmax, k = 12,..., N

The first term in the objective function refers to the difference between the output, Zk, and the

reference, rk, while the second term (a regularization term) aims to reduce the difference

between two consecutive steps in u, which gives a smoother input. Q, and S referred to in

(6.7) represent the weighting matrices.

The objective function is then formulated as a QP problem. The vectors z, u, Au, d and r

over the prediction horizon N are augmented into vectors Z, U, AU, D and R as:

Zk+ Uk Auk dk rk+

Zk+ Zk+2 Uk+1 AU k  Dk kk+ ,D k  dk+ Rk+1 k+2 (6.8)

Sk+N Lk+N-1 k+N-1 L k+N-1 k+N

The remaining matrices that relate to the QP formulation are also determined as in [54]. Once

the MPC problem is expressed as a quadratic program, it can be solved with conventional

optimization routines.
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However, the control problem can potentially be infeasible due to the presence of constraints.

A common solution to this problem is to "soften" the constraints so that the boundaries may

be violated when needed. This can be achieved by introducing a slack variable [54]. The soft

output constraints aid in avoiding infeasibility, but can violate the physical limitations for the

output. For further details of the MPC problem setup including soft constraints, refer to [54],

[55].

The model predictive control framework therefore represents an effective control design

methodology for handling both constraints and performance requirements. Moreover, the

flexibility of the framework makes it convenient to integrate the proposed stochastic response

surface approach in order to explicitly incorporate parametric uncertainty and generate robust

predictions. This is discussed in Section 6.3.

6.3. Integration of SRSM with the MPC Framework

In MPC, a predictive control law is obtained by minimizing a receding horizon

performance index that explicitly takes into account input and/or state constraints. However,

it is well known that the action of a bounded disturbance can destabilize a predictive

controller. Various algorithmic approaches have been developed to address this issue and

yield more robust controllers. Similarly, uncertainty in the model and/or environment

parameters can cause substantial deviations from the deterministic predictions and must to be

considered in the analysis.

Parameter uncertainty, if not explicitly considered, can therefore lead to significant variation

in vehicle mobility and stability, as well as path tracking characteristics. For example, while

deterministic predictions may generate control inputs such that constraint limits are not

violated (or marginally violated, due to the inclusion of soft constraints), the presence of

uncertainty might cause constraint limits to be violated during actual system operation.

Therefore, uncertainty should be considered in the MPC framework prior to determining the

control inputs.



A simple approach to employing SRSM is to explicitly consider uncertainty pertaining to

vehicle model and/or terrain parameters, and determining the stochastic mean and variance

values for the state variables. In the presence of uncertainty, these serve as an appropriate

means to quantify the variation in the state variables' values and can be utilized within the

MPC framework to generate more robust predictions, while ensuring that computational

burden on the controller during online implementation is not heavy. The general procedure is

as follows:

Let m uncertain parameters, considered here to be normally distributed about their mean

values, be represented using standard normal random variables 4 q, as:

Pq = pq +q opq q = 1...m (6.9)

S state variables of interest (including the vehicle's path coordinates) are then represented

using Hermite polynomials of these standard normal random variables, as:
P

xi (t,4)= xi,j(t)H(() , i=1...S (6.10)
j=0

where =[= [, 2 ... m].

Using these expansions, a spectral stochastic analysis is performed at each time step k, based

on the control input determined by the controller in the previous step, to obtain the moment

values of the state variables computed over the prediction horizon. The mean and variance

values for a specific state variable can then be used to check whether any major constraint

violation would occur in the presence of uncertainty. This condition may be formalized as:

Zmin - PZk  lZk or pZk +  lZk Zmax (6.11)

where X, is a user defined scalar, non-negative parameter.

In case this criterion is satisfied, the controller tightens the constraint based on the

corresponding value of the standard deviation, by modifying them to accommodate the

uncertainty induced variations in state variable values (e.g. zmin can be increased to

Zmin + ok while zmax can be reduced to zmax - Ok, ), and then recalculates the control input that

would prevent a similar violation of the constraint. This in essence takes into account the

i I_



deviations that can arise due to uncertainty and leads to more robust predictions. Another

feature of this approach is that a more accurate approximation to the expected state variable

values of the vehicle, including those of the path coordinates, is obtained over the prediction

horizon. The procedure is discussed in more detail in Section 6.3.1 and the modified

algorithm is outlined as a flow chart in Figure 6.2.

E[Xf-1

Optimization using
standard constraints

(zM < ZL! zMa)

Simulate vehicle model
and perform stochastic
analysis using SRSM

No

Check for constraint violati:
Is:

ZMin ! P'I- )ii or w. +I r (

Yes

Optimization using
tightened constraints

z .5< +iP - 20z,

Z, MU,=

Fig. 6.2. Flow diagram showing structure of SRSM-MPC algorithm
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6.3.1. Algorithmic Framework

The predictive controller uses an optimization algorithm to determine the control

input at time step k while minimizing the objective function and satisfying the various

constraints (as far as possible). However, it is possible that due to the presence of uncertainty,

the resulting variance in the value of the output in the subsequent steps may lead to a

violation of the constraint limits. Therefore, in order to incorporate these effects arising due

to uncertainty, the control input obtained for time step k from a deterministic approach is

used in the dynamic simulations and the variance values are obtained from a stochastic

analysis. These are then used to evaluate the extent of the uncertainty induced effects on the

values of the state variables. More specifically, uncertainty effects need to be considered if

the condition in (6.11) is satisfied.

Hence, if a constraint is likely to be substantially violated, the control input needs to be

determined again, while incorporating the variation in the predicted value for the

corresponding state variable. This can be achieved by performing the optimization again, but

modifying the constraints to include the variance, thereby obtaining a new control input

value. The MPC problem can be rewritten as:

1 N 2 + 1 N-1112
min Jk=2 IiZ-rk k (6.12)

k=0 z k=0

s.t.

xk+ =Ax k +Bu k +Edk, k = 0,1,...,N-1
zk =CXk, k = 0,1,..., N

Umin - Uk <Umax, k = 0,1,...,N-1

Aumin Auk < Aumax, k = 0,1,..., N -1

Zmin I pIZk - Zk k = 1,2,..., N

tZk+ 2y Zk < Zmax ,  k = 1,2,...,N

where the constraints are 'tightened' by an amount 2o- . Here, X2 is a scalar, non-negative

parameter chosen based on the criticality of the operation and of constraint violation, and o~

is the variance computed from the spectral stochastic analysis performed using the response

surface expansions in (6.10). Using this approach therefore results in enhancing the
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robustness of the predictions and more efficiently controlling vehicle motion along a

trajectory. Further, note that the mean expected value Zu, obtained from the response

surface-based stochastic analysis is used in the objective function (which may be done so for

each time step, even if(6.11) is not satisfied).

6.4. Path Tracking Scenarios: SRSM-MPC

In this section, the problem of vehicle path tracking through an uncertain environment

with sloped terrain is considered, for the model specified in Section 4.2.1. Details are

provided about the incorporation of vehicle and/or terrain parameter uncertainty, and path

tracking control is performed for a sinusoidal maneuver.

6. 4.1. Inclusion of Uncertainty

In the present analysis, the front and rear axle roll stiffness values are considered to

be normally distributed about their mean values, and are represented as:

kJ =k + , okf (6.13)

k =r Pk + 20kr (6.14)

In the SRSM implementation, the output state variable Xi is represented as:

P

X,(t, ) = Xi, ( t ) (4) (6.15)
j=0

where = [,,1].

The roll stiffness parameter values employed in the study are shown in Table 6.1.

TABLE 6.1
UNCERTAIN VEHICLE PARAMETERS

STD. DEV.
PARAMETER MEAN (Nm/rad) (Nm/rad)

kf 60x10O 15x103

k, 60x10 15x10



6.4.2. Description of Scenarios

Path tracking control is performed using the SRSM-MPC framework described in

Section 6.3, for a sinusoidal reference path. It is assumed that the magnitude and rate of

steering inputs is constrained as:

<<in !5k - 1ax (6.16)

inT ' As5 _ maxT, (6.17)

where 6min and Smax are the minimum and maximum values for the steering angle

respectively, while S~, and 4max are correspondingly the minimum and maximum steering

rate values.

Further, in order to ensure vehicle roll-over stability, constraints are also imposed on the

body roll angle as:

mi n  q k '0 max (6.18)

where gmin and pnmax are the minimum and maximum acceptable roll angles, respectively.

Other performance specifications (e.g. limits on sideslip angle) can easily be included in the

framework, but have not been considered here. The values used in the present study are

shown in Table 6.2.

TABLE 6.2
CONSTRAINT LIMITS

PARAMETER VALUE (DEGREES)

smin -20

max 20
A min -3.75

6ma,, 3.75

Omin -6

Sm ax 6

Path tracking is performed for a sinusoidal maneuver, the reference path being tracked using

the modified MPC framework (with soft constraints), while considering variation in the roll

angle for the 'constraint tightening' approach. The results obtained are discussed in Section

6.5.

_



6.5. Path Tracking Results

Path tracking for a sinusoidal reference path is first studied, for a deterministic case.

Figure 6.3 shows the path tracking performance of the closed-loop system, and the steering

inputs are depicted in Figure 6.4. The time evolution of the slip angle and the roll angle are

shown in Figures 6.5-6.6. It is observed that though there is a close resemblance between the

reference and the tracked paths, the roll angle crosses the constraint boundaries at certain

instants of time due to the presence of the soft constraints.

6 -o- Reference Path
_ -Actual Path

02

Fig. 6.3.
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Fig. 6.4. Steering inputs for sinusoidal reference path tracking
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Fig. 6.5. Slip angle variation with time for sinusoidal reference path tracking
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Fig. 6.6. Roll angle variation with time for sinusoidal reference path tracking

Uncertainty is now incorporated in the analysis and the evolution of the mean and variance

values for the roll angle with time is analyzed, while employing the steering inputs calculated

using the deterministic predictive control approach. For this, uncertainty in roll stiffness

parameters is considered and Monte Carlo simulations are performed at each instant to

observe the expected mean and variance values for the roll angle. The results shown in

Figures 6.7-6.8 highlight the effects of inclusion of uncertainty within the MPC framework.
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Fig. 6.7. Mean roll angle variation with time for sinusoidal reference path tracking
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Fig. 6.8. Time evolution of roll angle variance for sinusoidal reference path tracking

It is observed that when variance in roll angle is also included in the results (as depicted by

unit standard deviation error bars), the constraint boundaries may be significantly violated in

realistic, uncertain situations thereby indicating the importance of including uncertainty in

the analysis. It should also be noted that using Monte Carlo runs at each instant of time is

inappropriate due to the heavy computational burden involved. Therefore, the SRSM-based

MPC is considered for the path tracking problem. As mentioned in Section 6.3, the



constraints are reset at each step in case the condition in (6.9) is satisfied. This 'constraint

tightening' approach for the scenario considered is shown in Figure 6.9 and the time

evolution for the mean roll angle is depicted in Figure 6.10.
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Fig. 6.9. Constraint tightening with time for the roll angle for sinusoidal reference path tracking
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Fig. 6.10. Mean roll angle variation with time for sinusoidal reference path tracking

Results show that the controller tries to accommodate the uncertainty related effects by

tightening the constraints, though at certain instants, it is becomes impossible to stay within

the boundaries, and due to the presence of soft constraints, the roll angle violates the limits.

This influences the path tracking behavior (see Figure 6.11) as well; however, the variance in

the vehicle path coordinates is expected to be within the prescribed limits. This crossing of
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the constraint boundaries due to the presence of soft constraints, which was also observed for

the deterministic case in Figure 6.6, may be avoided by tightening the constraints further or

by employing a higher penalty on the soft constraint violation. Further, while the focus here

has been on vehicle stability and roll-over under uncertain circumstances, the path tracking

aspect might as well be improved further by including a similar constraint tightening criteria

for the path coordinates, and/or by choosing appropriate weighting matrices.
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Fig. 6.11. Sinusoidal reference path tracking using SRSM-MPC framework

To summarize, the framework for stochastic vehicle motion control presented here explicitly

considers parametric uncertainty, and simulation results for path tracking on uneven terrain

show that the proposed method can follow through paths in unstructured, uncertain

environments, while ensuring vehicle safety and avoiding roll-over, and can be used for

robustly and efficiently controlling vehicle motion for autonomous vehicles on rugged

terrain.
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7. CONCLUSIONS

7.1. Conclusions

For unmanned ground vehicles to operate successfully in unstructured environments, the

critical requirements include the ability to assess terrain traversability, compute feasible

trajectories online and control vehicle motion. However, most algorithms employed to

perform these functions do not explicitly consider vehicle and/or terrain parameter

uncertainty during analysis. In practical scenarios, significant uncertainty is associated with

these parameters and this must be included in order to obtain realistic and more robust

predictions.

In this thesis, some of the prominent uncertainty analysis techniques have been applied to the

areas of vehicle dynamic analysis and navigation and a comparison has been performed

between the various approaches with regard to computational efficiency and accuracy. In

Chapter 2, the conventional uncertainty analysis techniques, particularly the Monte Carlo

methods were discussed. Although used frequently in various applications, these methods

(typically) involve a large number of simulation runs and are generally associated with high

computational costs. More recent approaches to stochastic simulation based on the

polynomial chaos framework, described in Chapter 3, have been found to be relatively more

computationally efficient. Since the framework involves representing the outputs of the

system under consideration via series approximations, it requires less number of model

simulations as compared to some of the conventional approaches, thereby resulting in a less

computationally expensive means for uncertainty propagation through complex models.

The polynomial chaos-based techniques were applied to the area of mobility prediction, path

planning and motion control in Chapters 4, 5 and 6 respectively, while explicitly considering

uncertainty in vehicle and/or terrain parameters. Simulation results show that while the

accuracy of results obtained is similar to the standard Monte Carlo methods, the

computational costs are significantly less. The framework therefore can be effectively
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applied to the areas of mobility analysis, path planning and motion control, enabling in the

successful deployment of unmanned ground vehicles in unstructured, uneven terrain regions.
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APPENDIX Al

Singular Value Decomposition (SVD)

Any real m x n matrix A can be decomposed uniquely as:

A=RDST (A.1)

where

R is m x n and orthogonal (its columns are eigenvectors of AAT)

S is n x n and orthogonal (its columns are eigenvectors of ATA)

D is n x n diagonal (non-negative real values called singular values)

D = diag(o, o 2,..., o,) ordered so that o 1 >or2 >... _n

Now consider the over-determined system of linear equations:

Ax = b, (where A is mx n with m > n ) (A.2)

The least squares solution x with the smallest norm IlxjI is unique and it is given by:

ATx = Ab or x = (ATA)-IATb = Ab (A.3)

If ATA is ill-conditioned or singular, SVD can be used to obtain a least squares solution as

follows:

x = A+b SDoR T b (A.4)

where

D-1 ={/oi if or > t

0 otherwise

where t is a small threshold value.
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