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ABSTRACT

A quantitative model capturing pattern dependent effects and time evolution of the etch rate in Deep

Reactive Ion Etching (DRIE) is presented. DRIE is a key process for pattern formation in

semiconductor fabrication. Non-uniformities are caused due to microloading and aspect ratio

dependencies. The etch rate varies over time and lateral etch consumes some of the etching species.

This thesis contributes a physical analysis for capturing and modeling microloading, aspect ratio

dependencies, effects of lateral etch and time evolution of the etch rate. This methodology is applied

to the study of etching variation on silicon wafers; the integrated model is able to predict pattern

density and feature size dependent non-uniformities in trench depth and time evolution of the etch

rate. Previous studies of variation in plasma etching have characterized microloading and aspect ratio

dependent etching (ARDE) as distinct constant causes for etch non-uniformity. In contrast to these

previous works, we present here a time-based methodology for vertical and lateral etch.

Thesis Supervisor: Duane S. Boning

Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction and Motivation for Research

Deep Reactive Ion Etch (DRIE) is one of the current technologies in semiconductor

fabrication. This thesis focuses on studying variations and time evolution of DRIE. Previous

work has shown a strong relationship between etching non-uniformities and pattern density [1].

Intuitively, the etch rate is lower in the regions on the silicon wafer that have more open areas

that will be exposed to etching. This is simply due to the fact that there is more competition for

reactant species in the regions with large open areas. If the percentage of open area is described

as the pattern density, it is concluded that etch rate is a decreasing function of pattern density.

This relation is also called the micro-loading effect.

Besides micro-loading there is also another effect referred to as macro-loading. According to

Sun et al. [2] the global etch rate map is dependent on the overall pattern density of the wafer.

Macro-loading and its effect on non-uniformity is described in the next chapter; however, it is

not the main focus of this thesis.

Macro-loading and micro-loading describe the dependency of the etch rate on the pattern

density. However, it has been shown [1] that the dominant cause of etching non-uniformities at

the feature scale is the variation of etch rate based on the aspect ratio (Aspect Ratio Dependent

Etch, or ARDE for short). This effect which essentially is a feature-level phenomenon, is based

on the transport of the etchant reactant through the micro-structure features on the silicon wafer.



Previous studies [1] have proposed a semi-empirical model to predict the effects of micro-

loading and ARDE on the etch rate. In that model the etch rate is assumed to be a constant over

the etch time, hence the etch depth is a linear function of time.

On the other hand, as will be shown in this thesis, ARDE is not limited to vertical etch but

rather is also an important factor that determines the lateral etch rate. Since the overall

consumption of the reactant species is divided between the vertical etch and the lateral etch, the

vertical etch rate is lower than what it is predicted in the previous semi-empirical model (which

only considers the vertical etch).

Chapter 2 will describe the semi-empirical model in more detail. In Chapter 3, I will

introduce the improvements to the semi-empirical model. These improvements are the

foundation for the experiment and metrology of this thesis. Chapter 4 will describe the mask

design that is used for the DRIE experiment. In Chapter 5, the DRIE experiment itself will be

explained. The last two chapters will explain the characterization and modeling of the etch rate

(vertical and lateral) based on the improved model and the measurements from the DRIE

experiment. Finally, conclusions and suggestions for future work will be presented in Chapter

10.



Chapter 2

A Semi-Empirical Model for Etching Non-uniformities

This chapter explains the semi-empirical model that K. Abrokwah [1] introduced in his work,

including the physical intuition behind this model. The two main causes of the etching non-

uniformities are identified as pattern density (micro-loading) and aspect ratio dependency

(ARDE). Each of these effects are physically modeled and described with an equation and the

overall etch rate is described in a multiplicative integrated model. We first consider pattern

dependencies involving pattern density and micro-loading.

2.1 Micro-loading

As stated earlier, the micro-loading effect describes the fact that the etch rate is a decreasing

function of pattern density. This is because there is a higher competition for the etchant reactants

in the areas of the wafer that are higher in pattern density (i.e. having more open area). It is

important to notice that the micro-loading effect at each point on the wafer is not only a function

of the pattern density of that specific point but also is a function of the pattern density of the

neighboring areas. In other words, the competition for etchant reactants is localized within a

radius. This radius, also known as the characteristic distance for effective pattern density,

determines in how big of an area the competition for etchant reactants is localized.

Effective pattern density is calculated by convolving the actual or local layout pattern density

with an averaging filter. The width of the filter is representative of the distance over which the

average of the pattern density is calculated. The larger the width of the filter is, the smoother the

effective pattern density is. An example of calculating effective pattern density is shown in

Figure 2.1.
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Figure 2.1 - The 3-D map for effective pattern density is calculated by convolving the

layout pattern density and the averaging filter [1].

In Figure 2.1, the left colored graph shows the actual or local pattern density for a die. The

graph in the middle represents the averaging filter that is used for calculating the effective

pattern density. In this figure, the filter has the following form:

a
f (r) = 2  (2-1)

(r + c)2

The filter function is azimuthally symmetric. The constant c is the characteristic distance of

the filter and its value will be fit to match the data from the experiment. The constant a is used to

keep the function f(r) normalized. It is worthwhile to notice that other forms of filter function can

be used as long as it is decreasing with distance (Figure 2.2). It can be shown that only the

characteristic distance plays a critical role in the effective pattern density model for etching and

not the actual function of the filter itself [1].

;;~- - - - -- - - - - - - - - - -.. .. ... ...- -



Figure 2.2 - The 3-D profiles for various averaging filters [1].

2.2 ARDE

As mentioned before, ARDE is based on the transport of the reactant species through the

micro-structure features. The reactants that enter a feature and transport all the way to the bottom

will have the chance for etching the wafer if they get attached to the silicon. In the model

developed by K. Abrokwah [1], this situation is described using the Knudson transport model.

According to the Knudson model, the ratio between the fluxes of the reactants at the top and at

the bottom of the feature can be calculated by knowing two physical parameters; k, which is

known as the Knudson coefficient and equals the probability of transporting from the top to the

bottom, and s, which is the probability that a reactant at the bottom will actually etch the feature.

Figure 2.3 shows this model.

V, A
K(I - Sy v I

d/

Figure 2.3 - Schematic of etchant flux in narrow trench feature [1].

Equation 2-2 shows the relationship between the etch rates at the top and the bottom:

Rboottom _ flUXbottom k

R,,t fluxtop k +(1-k)s (2-2)



where flub,,,,,ttom and fluxto,, denote the flux of etching species through the bottom and top surface

areas (in units of cm-2s -1 ), respectively.

2.3 Integrated model for etch rate

Equations 2-1 and 2-2 describe the two main factors that cause the etching non-uniformities,

pattern density and feature size. The integrated model for etch rate combines these two equations

in the following form:

z(x,y,t) = t Roe-apef(x,Y ) ( k (2-3)
k+(1-k)s

where t is the etching time, Ro is the effective blanket etching rate, and Peff (x, y) is the effective

pattern density as a function of position on the die.

Two assumptions are important in writing Equation 2-3. First, the effective pattern density

shows itself in an exponential form with two fitting parameters, a and P. The fitting parameters

are optimized by matching Equation 2-3 with experimental data. Secondly, we see that Equation

2-3 describes the etch depth, z, as a linear function in time. This is based on the assumption that

the etch rate remains constant over the course of etching. As will be described in the next

chapter, this assumption can be improved.

Two improvements to Equation 2-3 will be introduced in the next chapter. The first change

will be made by considering a more accurate Knudson transport model that takes into account

the lateral etch as well as the vertical etch. A new parameter, sticking factor to the side wall, will

be introduced to characterize the lateral etch. The second change will consider that the etch rate

is not constant over time and therefore the etch depth is not a linear function of time.



Chapter 3

Improved Model for Etch Rate: Vertical and Lateral

The first part of this chapter will develop a model that formulates the etch rate when both

vertical and lateral etch are present. In the second part of the chapter, the lateral etch rate will be

formulated. These derivations follow the approach by Abrokwah et al. in [1], with extensions to

handle the sidewall.

3.1 Etchants flux

Figure 3.1 shows a schematic of an idealized cylindrical feature and the transport of the

reactant species. Circles 1 and 2 are two imaginary rings around the perimeter of the feature with

separation distance z. Each ring also defines a corresponding surface through which reactant

species may pass.

Figure 3.1 - Schematic of an idealized cylindrical feature.

To formulate the conductance of reactant species through the feature, four probabilities are

introduced:

I I II I



Prr (Z) = Probability that a particle leaves ring 1 and directly strikes ring 2

Prs (Z) = Probability that a particle leaves ring 1 and directly passes surface 2

Psr, (Z) = Probability that a particle leaves surface 1 and directly strikes ring 2

s,, (Z) = Probability that a particle leaves surface 1 and directly passes surface 2

When a particle (etchant) strikes a ring, it collides with the side wall and may etch the

sidewall with probability s, or may bounce off the sidewall with probability 1-s. The next step is

to write down the relationships between these probabilities. Since the ring is the differential of

each surface, two additional equations can be written as:

, (Z) =  dprs (3-1)
dz

Psr (Z) dp (3-2)
dz

Now let's assume just for a minute that the side wall etch is negligible, meaning that there is no

sticking to the side wall and all the reactants that hit the side wall will bounce off the wall. In that

case, according to the second law of thermodynamics, the sidewall must be in thermal

equilibrium with the plasma gas. This means that there are as many reactants that go from a ring

(side wall) to a cross section as there are reactants that go from the cross section to the ring.

Therefore an equilibrium equation can be written as:

2zr -prs(z)dz = ir 2 Psr (z)dz (3-3)

Or in a simpler form:



r, (z) = - ps, (Z) (3-4)
2

However, in the more realistic case the side wall etching is small but not negligible. If s is the

sticking factor to the sidewall, then only 1-s fraction of the reactants that go from a cross section

to a ring will come back from the ring to some cross section. Therefore Equation 3-3 can be

modified into:

2rr- p,r (z)dz = (1 - s) -r 2 . Psr (z)dz (3-4)

Finally the equation that relates the Knudson coefficient k to the introduced probabilities is:

k= pss (L)+ Psr (z')q(z')dz' (3-5)

where L is the depth of the feature, and

q(z)= p, (L- z) + Prr (z'- z)q(z')dz' (3-6)

The system consisting of Equations 3-1 to 3-6 needs to be solved to find the Knudson transport

coefficient k in terms of the physical parameters of the model. A solution to these equations is

suggested by Clausing [4]:

k(z) = (3-7)

CDI 1 - sside

Here z is the feature depth, CD is the critical dimension (width) of the feature, and y is a

dimensionless factor that depends on the shape of the feature's cross section (for a circular cross

section y is 0.75). As emphasized in Equation 3-7, the Knudson coefficient is a function of z and

therefore varies as the feature gets deeper during the etching process.



Equation 3-7 suggests that k decreases as the aspect ratio of the feature z/CD increases. This

is expected to be true, since k represents the probability of transport for the reactants, and it is

less likely for the reactants to go all the way through a feature with higher aspect ratio.

Equation 3-7 also suggests that k decreases as s, the sticking factor to the sidewall, increases.

Again this result is expected to be true, since a stickier side wall decreases the chance of

transport for the etchant reactants.

In the next step the newly calculated Knudson transport relationship is substituted for the old

k in Equation 2-2:

(3-8)Rop
Rbottom (t) =

(1+ Sside Sbottom ) + ( Sbottom

1- side CD

Equation 3-8 gives an etch rate as a function of time and feature depth. The assumption that the

etch rate is constant over time is no longer required.

3.2 Improved integrated model for etch rate

Now that the new ARDE model is formulated, the two effects (ARDE and micro-loading) are

incorporated in a multiplicative equation to complete the whole picture of the etch rate. Referring

to Equation 2-3; we replace Rtopwith the pattern density dependence to get

Roe - op,, w cB  z(
Rbotto (X, y, z(tX ) - (3-9)

Ss(1 + ide * Sbottom ) + 
S b ttom

( 1- side CD

Equation 3-9 represents the improved model for the etch rate. By integrating both sides, the

relation between the etch depth and time is revealed:



2
t Z sottom + Sside * Sbottom e er (x,1) (3-10)

S 2Ro .CD om 1 - Sside

This equation will be used in the future chapters to explain the DRIE experimental data.

There are a number of fitting parameters present in Equation 3-10, including a, 13, y, sticking

factors Ssideand Sbotton for sidewall and bottom, and Ro (the effective blanket etch rate). The

equation suggests that the etch depth is a quadratic function of time, meaning that the vertical

etch rate eventually decreases as the feature gets etched deeper.

3.3 Lateral etch rate

Figure 3.2 shows a scanning electron microscope image of the profile of an etched feature.

As expected for this non-isotropic etch chemistry, the sidewall is not even close to the vertical

direction, and this simply shows that there is a comparably large lateral etch rate. To model the

lateral etch rate one can notice that at the depth z, the sidewall is exposed to the etchant reactants

for a time that depends on the depth:

tetch (z) = totl - t(z) (3-11)

where T7 tat is the total etching time for the silicon wafer and t(z) is given by Equation 3-10.

Therefore the lateral etching distance at some depth z is:

X = Rside-wall *tetch (z) = Rside-wall (Ttotal - t(Z)) (3-12)



Figure 3.2 - A scanning electron microscope image of the profile of an etched feature. x(z) describes
the shape of the sidewall (also highlighted by the orange line). The image showes the existence of a

significant lateral etch rate.

If the feature has a low aspect ratio (the depth of the feature is much less than the width of the

feature), the sidewall etch rate can be estimated if the etch rate at the top of the feature is known.

In this case

Rside-wall S side (3-13)
bottom

and

x(Z) =  side Ro(Total -t(Z)) (3-14)
Sbottom

Thus, we see that the profile of the feature is the same function of depth as the time is. The

orange line on Figure 3.2 shows that a quadratic function can be used to describe the profile of

the feature, similar to that given by Equation 3-10.

Equations 3-10 and 3-14 are the final formulation for vertical and lateral etch in the DRIE

experiment. In Chapter 6 these equations form the basis for matching to the experimental data of

Chapter 5. There are six physical parameters that will be fit by applying Equations 3-10 and 3-14

~1111111111111111111Illllliiiiiiiiii ;;;;;;;;



to the experimental data, using an optimization procedure to minimize the sum of squared error

between the model and experimental data. These parameters are a, f, c, Sbottom, Sside and y, where

a and f are pattern density rate parameters, c is the characteristic length of the averaging filter

used for calculating the effective pattern density, Sbottom,, and Side are the bottom and sidewall

sticking coefficient, and y is the geometric factor (Equation 3-7) that depends on the shape of the

cross-section of the feature.



Chapter 4

Mask Description

The mask that is used for the DRIE experiment is 4 inches by 4 inches square, and originally

is designed as a micro-fluidic MEMS test structure (courtesy of H. Taylor). It contains different

structures including channels, squares, triangles, and reservoirs. The critical dimension of the

features varies from one micron to one hundred microns. The mask design is shown in Figure

4.1.
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Figure 4.1 - Test mask layout.
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There are eight dies on the wafer, four of which are used for taking the measurements (Figure

4.2). Measurements are taken from all of the channel structures on the four dies. Figure 4.3

shows an expanded view of one die where the blue arrows indicate the locations for

measurements (optical interferometry and SEM). Chapter 5 describes the DRIE experiment and

the measurement plans in more detail.

o 10 o1 0
0 OI O

Ol II 10

Eh I 1III I i Ii Il l 1 I i. r I ii i l ll

S~ iiili Ijiii 11111 l iill 11111 iiiiil 1111111111111

II I l l i ll I.ill

0 0 0 0 UULI
I IO .. .. .. O I
I I O I

Figure 4.2 - Die locations. The test mask includes eight dies and the measurements are taken from
dies 1, 2, 3 and 4.
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Figure 4.3 - Close up view of a die. The measurements are taken from the channel structures,
indicated by the blue arrows.

4.1 Nominal pattern density

Based on the nominal values of the channel width (line width) and line space, the nominal

layout pattern densities of the channel structures are calculated (Figure 4.4). The sixteen

measurement locations at different line width and line space result in three different local pattern

densities. Since the ratio of the line space and line width is either 0.1, one or 10, the nominal

pattern density of the channels is 9%, 50%, or 91%. On the other hand, the effective pattern

density of the channels is calculated by convolving the nominal pattern density map (above) with

the spatial averaging filter. The next section shows an example of this calculation.

I I
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Figure 4.4 - The design space of line width and line space and the corresponding nominal pattern

densities.

4.2 Effective pattern density

The averaging filter that is used in this example has the form of Equation 2-1. The value of c,

the characteristic length, is arbitrarily chosen in this example to be 200 microns. The actual value

of the characteristic distance is later determined by fitting c to match the experimental data.

Figure 4.5 shows the 3-D map of the effective pattern density, using this filter. We see the

general "smoothing" of the local features into the averaged of regional effective pattern density.

...........
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Figure 4.5 - An example of calculating the effective pattern density, for our test mask.
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Chapter 5

Experiment in Non-uniformity and Time Evolution in DRIE

The improved model of etch rate developed in Chapter 3 explains the time evolution of the

etch rate, as a function of both feature size and pattern density. To identify the accuracy of this

model an extensive DRIE experiment is designed. Fifteen wafers are etched, each with a

different exposure time. Table 5.1 shows the wafer numbers and the corresponding exposure

time.

wafer #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

etch time
(sec)
40
80
120
160
200
240
280
320
360
400
440
480
520
560
600

> pattern density
dependency

> lateral etch
profile

> time evolution:
vertical etch

Table 5.1 - The total etch time for each wafer.

The annotation to the right of the table shows which wafers are compared with which part of

the etch rate model. All the wafers are etched using a similar recipe: continuous process (no time

multiplexing) with SF6 and C4F8 under 60 mTorr pressures. Powers are set at 60 W (platen) and

~ ~___ ~



800 W (Coil). Figure 5.1 shows a schematic of the plasma chamber and the actual picture of the

STS Deep Reactive Ion Etching (DRIE) machine that is used for etching these fifteen wafers.

Gas Iajti 1 121

o C
Coil

174

Figure 5.1- The STS DRIE machine (left) and schematic of a plasma chamber (right) [1].

5.1 Optical interferometer

All the depth measurements are taken using a vertical scanning optical interferometer

(Veeco, model Wyko-NT). The sample is translated vertically, such that each point on the

surface passes through focus. Maximum fringe contrast of the white light source, which occurs at

the point of best focus, is determined for each point on the surface. A few of the 3-D plots

generated by the interferometer are shown in Figures 5.2 to 5.5.
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3D Plot
I~ f i i

:ktw 4 VRa 47Q73r

***C I 4NotcPOIN04 Opda

Kr -X2i

7 as

I>Z

Figure 5.3 - 3-D image from optical interferometry of "circle" structures.
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3D Plot

" 93

Pt. 1 11/20

0.04

-0.20

-OAO

-0.60-0.00

-0.80

-1.00

-1.20

-1.54

3D Plot
r- 10 3 12

0.10

-0.20

-0.40

-. 60

~93

-1.00

- -120

- -1.40

-1.70

iiiiiiiiiiiiiiiiiii~



5.2 Scanning electron microscope

All the critical dimension measurements are taken using a scanning electron microscope. The

electron microscope images the sample surface by scanning it with a high-energy beam

of electrons in a raster scan pattern. The electrons interact with the atoms that make up the

sample, producing signals that contain information about the sample's surface topography. A few

of the images taken by SEM are shown in Figures 5.6 to 5.11.

Figure 5.6 - An SEM image of the "channel" structures with line width-= 30 pm.



Figure 5.7 - An SEM image of "channel" structures with line width = 10 pm; the long etch time
resulted in over-etching the sidewalls.

Figure 5.8 - An SEM image of a "channel" structure with line width = 100 pm; the small aspect

ratio resulted in straight, non-vertical sidewalls.



Figure 5.9 - An SEM image of a "channel" structure with line width = 30 pm; the large aspect ratio

resulted in quadratic-shaped sidewalls. The blue lines show multiple width measurements on the
sidewall.

Figure 5.10 - A top-view SEM image of "channel" structures with line width = 30 jpm.



Figure 5.11 - An SEM image of a "channel" structure with line width = 10 lpm.

The summary of data from optical interferometry and SEM measurements is presented in

Appendix A.



Chapter 6

Etch Rate Model: Data and Fitting

This chapter applies the etch rate model developed in Chapter 3 to the data taken from the

DRIE experiment. The goal of the chapter is evaluating the level of accuracy of the etch rate

model and fitting the physical parameters in Equation 3-10 to match the measurements. In the

first section, the optimized effective pattern density of the mask is calculated. In the second

section, time evolution of etch rate is described using the experimental data, and in the third

section lateral etch is used to extract the complete set of values for physical parameters.

6.1 Pattern dependency of etch rate

The improved model for the etch rate from Chapter 3 has the form:

Z z S S abotto cp (x,)

S=ttom - (1 + side bottom Pe (6-1)
2Ro .CD boom Ro 1- sside

Since it is computationally costly to optimize all six parameters at once, a faster approach is

adopted. In this approach, first only a, ,8 and c are optimized, together with Ro . To achieve this

goal Equation 6-1 needs to be reduced to an equation that only includes these four parameters.

Considering the derivation of Equation 6-1 in Chapter 3, we see that if features with very low

aspect ratios are concerned then Equation 6-1 reduces to:

Z = t Roe - apf (6-2)

Equation 6-2 is simply stating that for very small aspect ratios (i.e. in the beginning of the etch

process) the etch rate is constant over that time and varies over the die based on pattern density

dependency. By isolating the four desired parameters (c being implicit in Peff ), Equation 6-2

enables us to simplify the MATLAB optimization.



Figure 6.1 shows the experimental data from the shallow etched wafer (t = 40 sec) and the

optimized simulation. The simulation reaches a root mean square (rms) error down to 2.8%.

Table 6.1 shows the values for the optimized parameters.

Table 6.1 - Fitting the model parameters to match the data gives numeric value for four of
the parameters.

X Simulation

O Data

i 2.05 1

1.95

1.85

1.75
70% 80% 90%

Figure 6.1 - Etch depth data for wafer #1 and the optimized simulation.
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6.2 Time evolution of etch rate

The improved equation for the etch rate for longer etch times (where ARDE effects are also

important) can be written in the short form:

2

t = A + Bz (7-1)
CD

where A and B will be optimized to match the experimental data. The physical parameters

including the sticking factors to the side wall and the bottom, will be calculated from A and B. To

take full advantage of the time dependent etch rate model, Equation 7-1 is applied to the time

evolution of three distinct features. Figures 6.2 to 6.4 show this result; for 50% pattern density

features with CD of 3 jim, 30 jlm, and 10 [lm.

Figure 6.2 - Etch depth for a "channel" feature with CD=3 pmun, data (black x) are from four dies
within each wafer and the blue line shows the optimized simulation.
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The depth of each feature is measured for four dies within 15 wafers to span the whole timeline

from 40 seconds to 600 seconds of etching exposure time. The blue line in each graph shows the

best simulation with a minimum rms error of 3.6 % overall.

CD=30um, LS=LW

e time (sec)

0 100 200 300 400 500 600 700

Figure 6.3 - Etch depth for a "channel" feature with CD= 30 pm, data (black x) are from four dies
within each wafer and the blue line shows the optimized simulation.

Figure 6.4 - Etch depth for a "channel" feature with CD= 10 pm, data (black x) are from four dies
within each wafer and the blue line shows the optimized simulation.
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Figure 6.5 shows the simulation results for all the three features together. As expected, the

deviation of the etch depth from a linear equation is higher for features with higher aspect ratios.

In particular, the narrowest CD of 3 [pm shows a substantial quadratic roll-off in depth versus

time due to ARDE effects.
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0CD=30um
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40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
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Figure 6.5 - The optimized simulation of etch depth as a function of time for three different line

width; the narrowest line width (3 pm) has the largest quadratic roll-off.
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6.3 Lateral etch rate

In Chapter 3 the lateral etch rate was formulated and introduced as a major improvement to

the previous etch models. The following equations describe the lateral etch profile for shallow

features (small aspect ratios)

X(Z)= side Ro(Total -t(Z) )  (8-1)
Sbottom

Z apef (8-2)
t(z) = -e

Ro
Equations 8-1 and 8-2 suggest that the lateral etch rate is constant over time for the shallow

features, and therefore the profile of this feature will have a linear shaped side wall. This

prediction is confirmed in the images taken from the shallow features, as shown in Figure 6.6.

Figure 6.6 - The sidewall profile for a feature with very small aspect ratio; the sidewall is straight.

Equations 8-1 and 8-2 predict that the ratio of the sticking factors to the side wall and to the

bottom is determined by the slope of the side wall edge (the orange line in Figure 6.6). The

profile measurements are taken for the feature shown in Figure 8.1 from all of the four dies. The

... .. .. .. ... .. .. .. . ... .. .. .... ... .. .. ..



results are shown in Figure 6.7. The blue line represents the best fit (with rms error of 6.1%) for

the profile measurement. The slope of the blue line determines the ratio of the sticking factors to

the side wall and to the bottom. In our data, this ratio is determined to be 0.262 + 0.016

(where 0.016 is the standard error in the fit to the data of Figure 6.7).

3

2.5 - *

CD=100 umn, LS=10x LW

2

X(um) 1.5 X

1 "

0.5 -

0 2 4 6 8 10 12

Z(um), t = 280 sec

Figure 6.7 - The lateral etch x for the sidewall as a function of depth z, blue line shows the best
linear fit.



Chapter 7

Integrated Model for Time Dependent Etching

The results from the partial fits in the previous two sections are combined with a full

MATLAB optimization to match the experimental data to the remaining parameters, to extract

values for Sbottom , Sside, and y. The following values for the physical parameters result:

R0 = 49.8 nmsec Sbottom = 0.141

a = 0.19 side =0.037

f = 2.9 y= 0.58

c = 186um

These parameters complete the improved model for the time dependent etch rate:

t = 2 + botto+m Z Sside ' Sbottom e (xY), (7-1)
2Ro -CD Ro 1- sside

Based on this model, the etch rate varies with both pattern density and aspect ratio. Also the

time evolution of the etch depth is characterized by the quadratic equation that is based on the

physics behind the sticking factors. The sticking factor for the bottom is higher than the sticking

factor for the side wall; as expected the side wall etch is a perturbation to the vertical etch model.

Intuitively the lateral etch is substantially slower than the vertical etch due to the fact that the

flux of the neutral reactants is not unidirectional; it is essentially directed downward. In addition,

these coefficients may also encompass some effects of ion directionality. Equation 7-1 can also

be solved simple to give the etch depth as a function of time giving:

Z= CD 2y botton Ro -t-e- (x, sside Sbotton 2 Sside Shotto (7-2)

2 CD1 - ssid e 1 - side



Chapter 8

Conclusions and Future Work

Pattern density dependency and aspect ratio dependent etching are two main causes for non-

uniformities in plasma etching. This thesis contributes a physical analysis to describe an

integrated model for these two effects that also considers the time evolution of the etch rate and

the effect of lateral etch on non-uniformities.

The experimental data from the Deep Reactive Ion Etching experiments were described

through the eyes of the improved integrated model for etc rate. Further improvements may

include exploring the wafer-level variations in the etch rate, and conducting lateral etch-only

processes to identify the characteristics for the lateral etch rate and its effect on the overall

uniformity.

Wafer-level non-uniformities could dominate the local variations in eth rate. The global map

of etch rate is dependent on various wafer-level parameters such as pressure, ICP asymmetries

and also average pattern density of the wafer. Understanding these effects is crucial for

developing a complete picture for plasma etching non-uniformities.

This thesis emphasizes the negative effect of lateral etch on vertical etch uniformity. It is

fruitful to implement a time-based model for lateral etch rate. Wafers with etch-stop layers can

be used to decouple time evolution of lateral etch from that of vertical etch. It is worthwhile to

notice that lateral etch could alter not only ARDE effect but also pattern density (micro-loading)

effect by increasing the overall etch surface.



Appendix A

etch depth ([tm)

etch time (sec) CD = 3 [tm CD = 10 Rm CD = 30 [tm

diel die 2 die3 die4 diel die 2 die3 die4 diel die 2 die3 die4

40 1.85 1.90 2.01 2.03 1.93 2.06 2.04 2.01 2.07 1.98 1.99 1.98

80 3.94 3.81 3.92 3.76 3.77 3.97 3.95 3.90 4.04 3.93 3.80 3.97

120 5.77 5.80 5.45 5.75 6.09 5.62 5.80 5.92 5.73 5.86 5.73 6.05

160 7.07 7.07 7.60 7.57 7.90 8.11 7.74 7.39 8.20 7.99 7.68 7.57

200 8.76 9.20 9.13 8.51 9.83 9.13 10.02 9.70 9.98 10.00 9.39 9.63

240 10.80 10.57 10.32 10.24 11.27 11.90 11.89 10.85 11.34 11.28 11.70 11.95

280 11.40 11.56 12.37 12.44 13.88 13.04 13.67 13.85 13.48 14.21 14.24 13.17

320 13.03 13.26 12.96 14.12 15.05 14.44 15.44 15.23 15.78 16.27 15.66 15.49

360 15.16 14.80 15.14 14.93 17.49 16.44 17.41 16.36 17.49 16.72 17.90 17.89

400 16.34 15.75 16.55 15.66 19.13 18.18 18.56 18.52 18.58 19.52 19.47 19.87

440 16.86 18.37 17.82 18.46 19.82 20.93 20.29 20.95 20.60 20.24 22.16 22.33

480 19.36 18.87 19.64 18.66 21.73 22.70 20.94 21.61 22.76 22.49 23.93 23.51

520 20.39 20.43 20.23 21.25 22.68 23.65 23.26 24.19 24.73 25.83 26.16 25.07

560 20.91 21.80 22.47 22.32 26.52 25.07 26.39 24.57 27.78 26.90 27.30 26.62

600 22.21 22.68 22.02 22.95 28.23 28.25 26.13 26.41 28.12 29.08 27.88 27.80

Table A.1 - Summary of the optical interferometry measurements.



lateral etch ([tm), CD = 100 [tm

depth (tim)
die l die2 die3 die4

2.0 0.66 0.63 0.70 0.52

3.0 1.01 0.87 0.86 0.89

4.0 1.11 0.91 0.82 1.16

5.0 1.39 1.24 1.29 1.34

6.0 1.67 1.78 1.45 1.40

7.0 1.80 1.95 1.74 1.90

8.0 2.30 2.23 2.11 2.28

9.0 2.58 2.18 2.42 2.49

10.0 2.82 2.66 2.50 2.71

Table A.2 - Summary of the SEM measurements.



References

[1] K. Abrokwah, "Plasma-etch pattern dependencies in integrated circuits," MIT Master of
Engineering thesis, Feb. 2006.

[2] H. Sun, T. Hill, M. Schmidt, and D. Boning, "Characterization and Modeling of Wafer and Die
Level Uniformity in Deep Reactive Ion Etching (DRIE)," 2003 MRS Fall Meeting, Boston,
MA, Dec. 2003.

[3] P. Clausing, "The Flow of Highly Rarefied Gases through Tubes of Arbitrary Length," J. Vac.
Sci. Technology, vol. 8, no. 5, pp. 636-646, 1931.

[4] R. A. Gottscho and C. W. Jurgensen, "Microscopic Uniformity in Plasma Etching," J. Vac.
Sci. Technology B, vol. 10, no. 5, pp. 2133-2147, Sept./Oct. 1992.

[5] T. Hill, H. Sun, H. Taylor, M. Schmidt, and D. Boning, "Pattern Density Based Prediction for
Deep Reactive Ion Etch (DRIE)," Tech. Digest of 2004 Hilton Head Solid-State Sensors and
Actuators Workshop, Hilton Head Island, SC, 2004.

[6] J. W. Coburn and H. F. Winters, "Conductance considerations in the reactive ion etching of
high aspect ratio features," Appl. Phys. Lett., vol. 55, no. 26, pp. 2730-2732, Dec. 1989.

[7] I. W. Rangelow, "Critical tasks in high aspect ratio silicon dry etching for
microelectromechanical systems," J. Vac. Sci. Technol., A, vol.21, no.4, pp. 1550-1562,
2003.

[8] W. N. G. Hitchon, Plasma Processes for Semiconductor Fabrication, Cambridge: Cambridge
University Press, pp. 62-65, 1999.

[9] J. Lee, W. Lim, I. Baek, and G. Cho, "Advance high density plasma processing in inductively
coupled plasma systems for plasma-enhanced chemical vapor deposition and dry etching
of electronic materials," J. Ceramic Processing Research., vol. 4, no. 4, pp. 185-190,
2003.

[10] N. Fujiwara, H. Sawai, M. Yoneda, K. Nishioka, and H. Abe, "ECR Plasma Etching with
Heavy Halogen Ions," Jpn. J. Appl. Phys., vol. 29, part 1, no. 10, pp. 2223-2228, 1990.


