
J
H
E
P
0
8
(
2
0
0
8
)
0
8
8

Published by Institute of Physics Publishing for SISSA

Received: June 20, 2008

Revised: July 28, 2008

Accepted: August 6, 2008

Published: August 27, 2008

Worldsheet theories for non-geometric string

backgrounds

Gianguido Dall’Agata

Dipartimento di Fisica “Galileo Galilei” & INFN, Sezione di Padova,

Università di Padova,

Via Marzolo 8, 35131 Padova, Italy

E-mail: dallagat@pd.infn.it

Nikolaos Prezas

Physics Department, Theory Unit, CERN,

CH-1211, Geneva 23, Switzerland

E-mail: nikolaos.prezas@cern.ch

Abstract: We show that twisted doubled tori can be used to construct a general class of

worldsheet models describing non-geometric string backgrounds. By employing a first order

formulation of interacting chiral bosons, we first refine the analysis on the general conditions

of worldsheet Lorentz invariance and then prove that twisted doubled tori provide good

duality symmetric backgrounds. Subsequently we apply our general analysis to several

examples which enable us to gain new insight on the difference between geometric, locally

geometric and genuine non-geometric backgrounds.

Keywords: String Duality, Flux compactifications.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44197835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dallagat@pd.infn.it
mailto:nikolaos.prezas@cern.ch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
8
(
2
0
0
8
)
0
8
8

Contents

1. Duality symmetric worldsheet theories 4

2. General solutions 6

2.1 Simple vacuum backgrounds 6

2.2 Twisted doubled tori 8

3. Examples 11

3.1 The flat group 12

3.2 The H, τ , Q, R flux chain 15

3.2.1 H-flux 16

3.2.2 Geometric flux 17

3.2.3 Q-flux 17

3.2.4 R-flux 20

3.3 Chiral WZW models 20

The study of string theory compactifications in the presence of fluxes has dramatically

enlarged the number of possible consistent string backgrounds. A special role in this con-

text is played by duality symmetries. These relations on the one hand increase further

the number of distinct vacua emerging from the effective theories coming from flux com-

pactifications and on the other hand create equivalence classes between different vacua in

different models.

One of the most interesting developments in this vein has been the appearance of a

new class of backgrounds, dubbed “non-geometric”, where non-geometricity implies that

at best only a local description in terms of a metric and a rank 2 tensor field is available

and that the transition functions between different patches of the compact space contain

stringy duality transformations (see [1] for a review). For this reason, the existence of such

backgrounds and their relation to ordinary flux compactifications were first established

in the context of their effective 4-dimensional supergravity theories, where the action of

duality transformations is best understood. However, their 10-dimensional origin or, even

worse, their full string theory description is problematic, although there is a growing body

of evidence that such a description must exist [2 – 21].

An interesting approach to the construction of a consistent worldsheet action for non-

geometric backgrounds is that of doubling the number of worldsheet fields corresponding

to target space coordinates [2]. In this approach the coordinates dual to string winding and

momentum modes are treated on equal footing and only a choice of polarization selects the

appropriate geometric objects. Despite the fact that this “doubled geometry” approach
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has led to some important progress on several aspects of non-geometric backgrounds, like a

better understanding of T-fold backgrounds and its quantum equivalence to the standard

string formulation [8, 11 – 13, 15, 17], it could be effectively used only for constant back-

ground fields or when a specific dependence on the coordinates is assumed (the so-called

T-duality twists).

An alternative action exhibiting an explicit symmetry under T-duality transformations

and with doubled target space coordinates had been proposed a while ago in [22, 23]. As

we will show, this approach allows us to give a generalized geometric description of a

quite general class of backgrounds, including a non-trivial dependence on all coordinates

(ordinary and dual ones). The price one has to pay is the lack of explicit world-volume

Lorentz invariance, which, however, can be easily recovered in the class of backgrounds we

are going to propose in the ensuing: twisted doubled tori.

Twisted doubled tori (TDT) as underlying backgrounds of a duality symmetric formu-

lation of string theory have been first proposed in [16], although group manifolds arising

from a duality twist with respect to a single coordinate were already introduced in [15].

TDT are local group manifolds with twice as many dimensions as the usual target space

and with a clear action of the duality group O(d, d), related to the embedding of the adjoint

representation of their algebra inside o(d, d). The special interest in these manifolds was

originally motivated by the fact that they provided a unified geometric description of all

gauged supergravities, with combinations of ordinary and dual fluxes constrained only by

the standard consistency conditions due to the gauging procedure. TDT are therefore a

clear candidate for providing a stringy origin to arbitrary supergravity models, related to

both geometric and non-geometric compactifications.

As already explained in [16] and as we will explicitly see in the following, the geometric

properties of the target space background are related to the choice of actual spacetime

coordinates among those of the TDT. In the first order formalism used in this paper, this

amounts to deciding which half of the equations of motion for the scalar fields represent

constraints for the target space coordinates and which are real equations of motion. In

the same way one can make contact between this duality symmetric formalism and the

ordinary formulation of string theory: one plugs the solutions to the constraint equations

in the duality symmetric action, thus recovering an ordinary string σ-model in terms of

a metric and a B-field. The difference between the geometric and non-geometric case is

reflected in the locality of the corresponding σ-model.

Since in this formalism Lorentz invariance is not granted, it is crucial to prove that

backgrounds given by TDT provide good Lorentz invariant σ-models. We show that for

generic TDT this is indeed the case if one introduces a generalized flux on the group

manifold proportional to the group manifold structure constants. This resembles the Wess-

Zumino-Witten construction for strings on group manifolds, although we find that for TDT

derived from non-semisimple groups the flux may be trivial. Specific TDT may also satisfy

the Lorentz invariance constraints with several choices of generalized flux.

An interesting bonus of this formalism is that we can obtain consistent worldsheet

theories also in the case of a TDT whose duality matrix η which is not constant. This

overcomes some obstacles encountered in [16] for the flat group example and further en-

– 2 –



J
H
E
P
0
8
(
2
0
0
8
)
0
8
8

larges the possibilities considered in [2].

We would like to emphasize that the analysis presented here is only a first step towards

constructing the conformal invariant worldsheet theories underlying these backgrounds.

Therefore, we will be only discussing the invariance of the action under the basic worldsheet

symmetries (diffeomorphism invariance, Weyl invariance and local Lorentz rotations) at the

classical level. We furthermore stress that the requirement of local Lorentz invariance is

fundamental in order to have a correspondence with the standard formulation of critical

string theory and, as shown in this paper, this already imposes rather non-trivial conditions

on the potential doubled geometries.

Good string vacua then correspond to worldsheet actions defining both Weyl and

local Lorentz invariant 2-dimensional quantum field theories. The analysis presented in

this paper shows that TDT fulfill the necessary requirement of (on-shell) local Lorentz

invariance. Furthermore, classical Weyl invariance can be easily proved using the vielbein

formalism. Instead, full quantum consistency, i.e. quantum conformal invariance, needs

to be checked by computing the beta function equations for our TDT backgrounds. This

highly non-trivial task is relegated to future work [26] and its importance stems from the

fact that it will also yield the spacetime equations of motion and consequently the effective

action on the TDT.

It is natural to expect that this computation will lead to the equations of motion

of gauged supergravity with gauging parameters given by the structure constants of the

local group manifold described by the TDT. Clearly, many of these gauged supergravities

will not admit consistent Minkowski or (anti) de Sitter vacua but will only yield runaway

potentials. For this reason one should be aware that the corresponding TDT cannot be

in general considered as consistent string theory backgrounds. This well-known issue can

be addressed by turning on an appropriate dilaton background and several components of

the fluxes at the same time, therefore promoting the TDT to a full solution. Interestingly

enough, in certain cases these solutions admit an interpretation in terms of a configuration

of smeared and intersecting NS5-branes [10].

In this paper we prefer to focus on simpler TDT which, although they might not

all be solutions, provide us with very tractable toy-models for understanding some of the

intricacies of non-geometric backgrounds. In particular, our ultimate goal would be to

demonstrate how a generic gauged supergravity theory can arise from strings moving on

specific background configurations. This objective is of the same spirit as compactifications

of 10-dimensional supergravity theories on manifolds that are not consistent backgrounds

(i.e. solutions) but which lead to well-defined effective theories with run-away potentials

admitting interesting domain-wall or cosmological solutions.

In section 1 we revisit the duality symmetric action proposed in [22, 23], discussing

the general equations of motion and Lorentz invariance constraint. We also review the

action of duality transformations. In section 2 we subsequently discuss various solutions

to the Lorentz invariance constraint. We first review some known backgrounds, where,

for instance, the generalized metric is constant or depends only on half of the doubled

coordinates. Then we introduce the twisted doubled tori and explicitly show how they

realize Lorentz invariance. Finally, in section 3, we discuss some examples: the flat group,
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the backgrounds dual to a 3-torus with NS-NS flux and chiral Wess-Zumino-Witten models.

The analysis of these examples clarifies the role of duality transformations and also their

interpretation as geometric, locally geometric or non-geometric.

Note added. While this paper was in the final stages of preparation we received the

preprint [27], where D-branes on doubled tori are studied and a forthcoming paper with a

σ-model description for strings on doubled tori is announced.

1. Duality symmetric worldsheet theories

A natural starting point of a duality symmetric formalism is the doubling of the worldsheet

fields corresponding to target space coordinates, including from the very beginning those

of the “ordinary space” yi as well as the dual ones ỹi:

Y
I = {yi, ỹi}. (1.1)

Once the coordinates have been doubled, it is also quite natural to propose a world-sheet

action where the metric and B-field are described by a unique generalized metric H, which

is also an element of O(d,d)/O(d)× O(d)

H =

(
gij − Bikg

klBlj Bikg
kj

−gikBkj gij

)
, (1.2)

so that the string σ-model is described by an action of the form

S =

∫
dY

I ∧ ⋆dY
JHIJ + · · · (1.3)

Although this approach is quite natural and both duality symmetry and 2-dimensional

Lorentz invariance are manifest, the extra coordinates have to be eliminated through addi-

tional constraints to be imposed on the equations of motion and this renders quantization

rather complicated. Alternatively one could use auxiliary fields, like in [13], which however

have to be fixed before proceeding further. Also, this formalism has been effectively used so

far only for constant H, or for a special dependence on the doubled coordinates, as in [15].

The alternative approach we follow in this paper is to temporarily give up 2-dimensional

Lorentz invariance and use a manifestly duality symmetric action of interacting chiral

bosons [22, 23]. This also allows for a clear procedure of getting rid of the dual auxil-

iary fields through their equations of motion. Despite the superficial differences, this ap-

proach has been proven to be equivalent to Hull’s doubled action for constant background

fields [13].

The starting action now, not only contains a generalised background metric HIJ = HJI

(although we do not require (1.2) yet), but also another metric ηIJ = ηJI with (d, d)

signature and an antisymmetric 2-tensor CIJ = −CJI . Moreover, all these background

fields in general can depend on all Y
I coordinates. The peculiarity of this action is that it
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is of first order in worldsheet time derivatives. If we generically assume to have worldsheet

coordinates ξ = {τ, σ}, with signature {−,+}, the σ-model action reads [23]

S =
1

2

∫
d2ξ

[
− (CIJ(Y) + ηIJ(Y)) ∂0Y

I∂1Y
J + HIJ(Y)∂1Y

I∂1Y
J
]
. (1.4)

We would like this action to be Weyl and local Lorentz invariant. Invariance under diffeo-

morphisms can be easily achieved by introducing 2-dimensional vielbeins and worldsheet

covariant derivatives everywhere. The requirement of on-shell local Lorentz invariance is

fundamental in order to have correspondence with the standard formulation of string σ-

models. Weyl invariance and local Lorentz invariance are equivalent to the requirement

that the trace and the ǫab contraction of the expectation value of the energy-momentum

tensor should vanish on-shell. The action (1.4) is not manifestly Lorentz invariant, as

time and space worldsheet coordinates are treated on a different footing. Only the term

depending on C is manifestly invariant, so that demanding local Lorentz invariance yields

the following condition

ηIJ

(
∂0Y

I∂0Y
J + ∂1Y

I∂1Y
J
)
− 2HIJ∂0Y

I∂1Y
J = 0. (1.5)

An extremely useful rewriting of this constraint is the following

0 =
(
ηIJ∂0Y

J −HIJ∂1Y
J
)
ηIK

(
ηKL∂0Y

L −HKL∂1Y
L
)

+
(
η −Hη−1H

)
IJ

∂1Y
I∂1Y

J ,
(1.6)

so that Lorentz invariance becomes equivalent to two conditions: H has to fulfill

η = Hη−1H, (1.7)

and the η-norm of

VI = ηIJ∂0Y
J −HIJ∂1Y

J (1.8)

has to be vanishing, namely

VIη
IJVJ = 0. (1.9)

The condition (1.7) is easy to fulfill by appropriately constructing the H matrix, while the

norm of V has to vanish on the equations of motion and therefore has to be checked case

by case or for classes of backgrounds.

The string equations of motion for a general dependence of the various generalized

background fields on the doubled coordinates read

2∂1

[
ηIJ∂0Y

J −HIJ∂1Y
J
]

−3∂[ICJK]∂0Y
J∂1Y

K + ∂IHJK∂1Y
J∂1Y

K − 2ηJLΓL
IK(η)∂0Y

J∂1Y
K = 0.

(1.10)

In this equation Γ(η) are the Christoffel symbols constructed from the η metric and, inter-

estingly, the antisymmetric tensor C appears only through its field strength, so that the

equations of motion are invariant under gauge transformations C → C + dΣ. Besides the

various invariances already discussed, the action (1.4) is also manifestly invariant under

the constant duality transformations

Y → Λ−1
Y, H → ΛTHΛ, C → ΛT CΛ, ΛT ηΛ = η, (1.11)
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which reduce to constant O(d, d) transformations when η = Ω. We will see later how to

make contact between these transformations, T -duality and Buscher’s rules.

We stress once more that the action (1.4) becomes manifestly invariant under diffeo-

morphisms and classical Weyl transformations if the vielbein formalism is used [23]:

S =
1

2

∫
d2ξ e

[
− (CIJ(Y) + ηIJ(Y))∇0Y

I∇1Y
J + HIJ(Y)∇1Y

I∇1Y
J
]
. (1.12)

Full quantum consistency requires the computation of the beta function for generic CIJ(Y),

ηIJ(Y and HIJ(Y) functions. Only those for which the beta function is vanishing can be

taken as consistent string vacua.

2. General solutions

Now that we have established the action, its equation of motion and the Lorentz invariance

constraint, we present various backgrounds for which the equations of motion (1.10) imply

the Lorentz constraint. We start with some simple examples (some already worked out

in [23]), which allow us to make contact with the usual σ-model formulation and Buscher’s

rules, and then introduce the TDT as new general backgrounds satisfying the Lorentz

invariance constraint.

2.1 Simple vacuum backgrounds

The first easy case we can analyze is that of having constant background fields. In this case

the general equation of motion (1.10) reduces to

∂1

[
ηIJ∂0Y

J −HIJ∂1Y
J
]

= 0, (2.1)

because ∂IηJK = ∂IHJK = ∂ICJK = 0. For closed strings, this condition implies that

VI = ηIJ∂0Y
J −HIJ∂1Y

J = 0 (2.2)

and therefore (1.8) is identically satisfied. For constant backgrounds, we can always put the

η metric in the canonical form by rescaling the Y fields, namely equal to the constant matrix

Ω = Ω−1 =

(
0 1d

1d 0

)
. (2.3)

In this basis it is now obvious that the generalized metric H can be written in terms of a

metric g and a B-field as in (1.2) and also that the duality transformations (1.11) have the

usual action in terms of the same fields. In particular, for the choice Λ = Ω one exchanges

yi ↔ ỹi and g + B ↔ (g + B)−1. It is also straightforward to show that in this case the

equations of motion for the dual coordinates correspond to an explicit form of the Buscher’s

rules for constant metric and B-field, so that replacing them in the action by their solution

to these equations of motion one gets the standard σ-model

S =

∫
d2ξ

(
1

2
gijy

i′yj′ −
1

2
gij ẏiẏj + Bij ẏiyj′

)
, (2.4)
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where ′ ≡ ∂σ and ˙≡ ∂τ . When the background fields are constant one can also prove eas-

ily [13] the equivalence of this action to the one proposed in [2]. For constant background

fields, we are effectively working on a torus and therefore all the Y
I coordinates parametrize

isometries of the background. Hence one can safely think of this duality transformations

as proper T-dualities.

A simple generalisation of this analysis goes through when H depends only on half of

the coordinates, for instance the yi (we still assume η = Ω). In this case the equations of

motion of the dual coordinate fields still read

∂1

[
∂0y

i −Hi
J∂1Y

J
]

= 0 (2.5)

and the Lorentz constraint is still identically satisfied, since it is proportional to the ỹi

equations of motion. The resulting σ-model is a standard σ-model with y-dependent cou-

plings g and B. Due to the special dependence on the various coordinates of the doubled

space one can still think of these duality transformations as T-dualities along the coor-

dinates parametrizing isometries of the compact space, these same coordinates appearing

always only under differentials.

If one introduces a general dependence on all the Y
I coordinates, though, Lorentz

invariance does not necessarily follows. Moreover the duality transformations (1.11) are

not directly related to the standard formulation of T-duality transformations as they may

mix coordinates that are not related to isometries of the background space. An interesting

instance where Lorentz invariance can be successfully and easily implemented is the case

of non-trivial H and η, but such that

H(Y) = η(Y). (2.6)

In this case the general equation of motion (1.10) reduces to

∂1VI − ΓL
IJ(η)VL∂1Y

J +
3

2
∂[ICJK]η

KLVL∂1Y
J = 0, (2.7)

which can also be rewritten using the covariant derivative ∇(η):

∂1Y
J

(
∇(η)JVI −

3

2
∂[JCIK]η

KLVL

)
= 0. (2.8)

Contracting this equation with V I = VMηMI the last term disappears and the equation of

motion then implies

∂1Y
JV I∇JVI = ∂1Y

J∂J

(
V 2
)

=
1

2
∂1

(
V 2
)

= 0 (2.9)

and, for a closed string, this results in a null norm for the vector V with respect to the η

metric. This, together with H = η, which obviously satisfies (1.7), proves the invariance of

the action under local Lorentz transformations.
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2.2 Twisted doubled tori

Besides the simple examples shown above, it would be desirable to find a general solution

to the Lorentz invariance constraint (1.6). As already explained, this is very difficult

to achieve for generic backgrounds with arbitrary coordinate dependence. The strategy

attempted in [23] was a perturbative one, around a point where the background fields

could be taken constant. This, however, did not lead very far.

In this note, instead, we focus on a specific class of backgrounds. As mentioned above,

Twisted doubled tori constitute an interesting class of candidate string backgrounds for

generating arbitrary gauged supergravities as effective theories for the light modes. For

this reason we give here a constructive proof that the duality symmetric σ-model for these

doubled manifolds is Lorentz invariant on-shell.

TDT can be constructed as (local) group manifolds in the following way. One starts

by selecting a group representative g(Y) = exp(YI
XI) ∈ G, where XI are the generators of

the corresponding gauge algebra g ⊂ o(d, d):

[XA, XB] = TAB
C

XC . (2.10)

Separating XI =
{
Zi,X

i
}
, according to their embedding in O(d, d), we can rewrite g also as

[Zi, Zj ] = τk
ijZk + HijkX

k,[
Zi,X

j
]

= τ j
kiX

k + Qjk
i Zk,[

Xi,Xj
]

= Qij
k Xk + RijkZk.

(2.11)

Then one extracts the vielbeins E
A by inspection of the left-invariant Maurer-Cartan form

Ω = g−1dg = E
A

XA. Finally, in order for the theory to be consistently defined on a com-

pact space, one considers only groups such that a left quotient Γ\G with respect to the

compact subgroup Γ = G(Z) is possible. When doing so, the doubled vielbeins

E
A = UA

IdY
I (2.12)

satisfy

dE
A = −

1

2
TBC

A
E

B ∧ E
C . (2.13)

Using these vielbeins we can define two different metrics

HIJ = (UT )I
AδABUB

J , (2.14)

which is O(d)× O(d) invariant, and

ηIJ = (UT )I
AΩABUB

J , (2.15)

where ΩAB = ΩAB =

(
0 1

1 0

)
, which is O(d, d) invariant. It should be noted that this

metric can be put in a constant form only for flat group manifolds [16]. At this point

the first constraint necessary to have Lorentz invariance of the σ-model, namely (1.7), is

satisfied by construction. To prove that the other is implied by the equations of motion we
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first rewrite (1.10) using the compatibility constraint between the Levi-Civita connection

constructed from the metric η and the spin connection

∂IU
A

J − ΓK
IJUA

K + ωIB
AUB

J = 0, (2.16)

recalling that the spin connection is determined by the group manifold structure (2.13). It

is also useful to define the structure constants with “curved indices”

fIJ
K = TAB

CUA
IU

B
J(U−1)KC (2.17)

and recall that

TAB
DΩDC = −TAC

DΩDB, (2.18)

because the structure constants are in the adjoint of O(d, d) by construction. The latter

condition is equivalent to invariance of the metric η

fIJ
LηLK = −fIK

LηLJ . (2.19)

At this point we can simplify the equations of motion by rewriting

∂IHJK∂1Y
J∂1Y

K − ∂IηJK∂0Y
J∂1Y

K =

2∂1Y
JΓL

IJ(η)HLK∂1Y
K − 2∂1Y

JΓL
IJ(η)ηLK∂0Y

K − ∂1Y
JfIJ

L(η)HLK∂1Y
K .

(2.20)

This implies that covariant derivatives are reconstructed in the equations of motion:

2∂1Y
L∇L(η)

[
ηIJ∂0Y

J−HIJ∂1Y
J
]
−3∂[ICJK]∂0Y

J∂1Y
K−∂1Y

JfIJ
KHKL∂1Y

L =0. (2.21)

While the terms in brackets reconstruct the same structure we had in previous examples,

and this can be easily recast in the form of the null vector condition (1.9), the rest of the

equation can be interpreted as a torsion piece only if

3∂[ICJK] = fIJ
LηLK . (2.22)

In this case the equation of motion reduces to

2∂1Y
L∇L(η)

[
ηIJ∂0Y

J −HIJ∂1Y
J
]
+ ∂1Y

JfIJ
K
[
ηKL∂0Y

L −HKL∂1Y
L
]

= 0, (2.23)

or, in terms of the vector VI defined in (1.8)

2∂1Y
L∇L(η)VI + ∂1Y

JfIJ
KVK = 0. (2.24)

Although VI = 0 is a solution to the equations of motion (and also of the Lorentz invari-

ance constraint), equation (2.24) may allow for more general solutions. However, it is now

straightforward to show that, after contracting (2.24) with VJηJI and using (2.18), one

obtains

∂1Y
L∇L(η)(VIη

IJVJ) = ∂1(VIη
IJVJ) = 0, (2.25)

which implies the zero norm condition (1.9) upon using appropriate boundary conditions

for a generic TDT background.
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This derivation requires that (2.22) admits a well defined solution. This can be proved

in the case of the TDT by using (2.13)

dC =
1

2
dY

I ∧ dY
J ∧ dY

K∂ICJK =
1

6
dY

I ∧ dY
J ∧ dY

KfIJ
KηLK

=
1

6
E

A ∧ E
B ∧ E

CTAB
DΩDC = −

1

3
dE

A ∧ E
BΩAB,

(2.26)

and proving the integrability condition d2C = 0. Although not obvious, this follows by

using (2.13) and (2.18):

d2C =
1

12
E

A ∧ E
B ∧ E

C ∧ E
D(TAB

ETCD
F ΩEF ) = 0 (2.27)

where the last equality follows from (2.18) and the Jacobi identity

T[AB
ETCD]

F ΩEF = TF [A
ETCD

F ΩB]E = 0. (2.28)

Having a non-trivial C, as we will see, implies that the backgrounds obtained by this

procedure do not have exactly the same number of units of flux as expected by the TDT

geometry alone, but they receive a further contribution from dC, which is also proportional

to the same structure constants (2.22).

The general construction discussed above can be modified and simplified if the TDT

is a compact group manifold

G1 × G2 ⊂ O(d) × O(d) ⊂ O(d, d). (2.29)

Whenever this is the case the structure constants are not only in the adjoint of O(d, d),

but also of O(d)× O(d). Hence, not only (2.18) is true, but also

TAB
DδDC = −TAC

DδDB , (2.30)

or, in curved indices,

fIJ
LHLK = −fIK

LHLJ . (2.31)

Going through the derivation of the equations of motion once more we see that in this case

they are equivalent to

∂1VI − ∂1Y
LΓK

IL(η)VK +
3

2
∂1Y

L∂[ICLJ ]∂0Y
J = 0, (2.32)

because the remaining term with H disappears due to (2.31). We can now explicitly

compute ∂1VI as

∂1VI = (∂1U
A

I)VA + UA
I∂1VA, (2.33)

where VA ≡ ΩABUB
J(∂0Y

J − ηJKHKL∂1Y
L), and, using (2.16) and (2.31), we obtain

UA
I∂1VA −

1

2
∂1Y

JfJI
KηKL∂0Y

L −
3

2
∂1Y

J∂[JCIK]∂0Y
K = 0. (2.34)

For this special class of TDT’s we can therefore parallelize the connection by choosing

3∂[ICJK] = −fIJ
LηLK , (2.35)
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which has the opposite sign of (2.22). By doing so the equations of motion reduce to

∂1VA = 0, (2.36)

which lead, upon using appropriate boundary conditions, to the first order equations

VI = ηIJ∂0Y
J −HIJ∂1Y

J = 0, (2.37)

satisfying identically the Lorentz invariance constraint (1.9).

3. Examples

We now discuss some classic examples of non-trivial geometric and non-geometric back-

grounds: the flat group, the T-duality chain of T
3 with NS-NS flux and the chiral Wess-

Zumino-Witten (WZW) models.

The flat group manifold is interesting because, as noticed in [16], its TDT realization

gives a non-trivial manifold with a vielbein that cannot be put in the standard triangular

form explicitly described by a metric and a B-field, unless one introduces a pointwise

redefinition of the tangent space basis. With the approach proposed in this letter, however,

we can show that this TDT correctly reproduces the expected string σ-model for this

compactification. We can also see explicitly that the problematic aspects noticed in [16]

are related to and solved by the non-constant η metric. As we will see in the following, this

model is locally equivalent to flat space and therefore it is trivially satisfying the conformal

invariance requirement also at the quantum level, therefore providing a good string vacuum.

The second example is the by now classic chain of T-dual backgrounds obtained from

a flat 3-torus with 3-form flux on it. Several aspects of this chain of dualities have been

considered, leading to the interesting remark that the geometry probed on the double

dual background is non-commutative and that probed in the fully dual background is non-

associative [3 – 5, 9, 10, 14]. This example allows us to reconstruct in detail the chain of

duality transformations as well as understand better the origin of some aspects of the non-

geometric fluxes. It is interesting to point out that in this case the doubled group manifold

is flat, but the spacetime backgrounds may have a non-flat metric instead. Although it

is known that such a model cannot provide a consistent string background (at least in a

trivial product with Minkowski space), it is an extremely useful toy model from which one

can understand our formalism and methodology in comparison with the previous literature

on the subject [3 – 5, 9, 10, 14].

As last example we discuss a theory consisting of two copies of (anti-)chiral WZW

models based on the SU(2) group. This model gives an effective theory with a compact

gauge group SU(2) × SU(2) ⊂ O(3,3) and hence can be described in terms of a TDT with

first order equations of motion, following the prescription at the end of section 2.2. From

the TDT point of view the gauge algebra involves either τ and R fluxes or Q and H. This

is an instance of a perfectly consistent geometric background, the SU(2) WZW model,

that in terms of the TDT description appears to involve the so-called non-geometric fluxes.

In particular, the conformal invariance of the WZW model automatically guarantees full
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quantum consistency of the associated worldsheet theory. Although aspects of this model

have already been considered in [23] and [6], it is extremely useful to revisit it at the level

of the worldsheet theory, also to appreciate the role of the non-constant η metric needed

to describe general backgrounds.

3.1 The flat group

The flat group is the first example of twisted tori manifolds, namely group manifolds giving

rise to non-abelian gauge algebras through a Scherk-Schwarz compactification [24]. The

peculiarity of this group manifold is that it is flat and therefore there is a coordinate system

where the metric is the identity and the B-field is vanishing, even though global conditions

imply a non-trivial gauge structure of the effective theory as well as a truncation of the

massless spectrum [25].

Although the flat group is flat as an ordinary group manifold, its TDT realisation

is not flat, because it includes the generators dual to the gauge vectors related to the

10-dimensional B-field [16]. The doubled algebra reads

[XI , XJ ] = TIJ
K

XK , (3.1)

where Xi = Zi correspond to the standard Kaluza-Klein generators, X
i = Xi correspond

to the B-field gauge transformations and the non-trivial structure constants are

T13
2 = −N, T12

3 = N, T1
3
2 = −N, (3.2)

T1
2
3 = N, T3

2
1 = −N, T2

3
1 = N. (3.3)

Using the procedure outlined in previous sections, we can obtain the doubled viel-

beins for this space by constructing the corresponding group manifold using the doubled

coordinates

Y
I =

{
yi, ỹi

}
= {x, y, z, x̃, ỹ, z̃} . (3.4)

The vielbein matrix is

UA
I =




1

cos(Nx) sin(Nx)

− sin(Nx) cos(Nx)

1 Nz −Ny

cos(Nx) sin(Nx)

− sin(Nx) cos(Nx)




(3.5)

and it is obvious that it is not in a standard triangular form and that it cannot be put in

that form by a pure gauge transformation. This is also clear from the doubled space metric

H =




1

1

1

1 Nz −Ny

Nz 1 + N2z2 −N2yz

−Ny −N2yz 1 + N2y2




, (3.6)

– 12 –



J
H
E
P
0
8
(
2
0
0
8
)
0
8
8

which is not in the standard form (1.2). This model is made compact by the identifications:





x ∼ x + 1

y ∼ y cos N + z sin N

z ∼ −y sin N + z cos N

ỹ ∼ ỹ cos N + z̃ sin N

z̃ ∼ −ỹ sin N + z̃ cos N

{
y ∼ y + 1

x̃ ∼ x̃ + Nz̃

x̃ ∼ x̃ + 1

{
z ∼ z + 1

x̃ ∼ x̃ − Nỹ

ỹ ∼ ỹ + 1

z̃ ∼ z̃ + 1

(3.7)

The crucial difference between this model and those which can be put trivially in the

standard form is the non-trivial dependence of the η metric on the doubled coordinates Y
I

η =




1 Nz −Ny

1

1

1

Nz 1

−Ny 1




, (3.8)

which also gives rise to a non-trivial curvature [16]. As explained in the previous section,

the same algebra constrains the form of the antisymmetric 2-form C, which in this case we

can explicitly solve as

C = E1 ∧ Ẽ1 = dx ∧ (dx̃ − Nydz̃ + Nzdỹ) . (3.9)

It can be noted that C is globally defined and that therefore the corresponding “flux” dC

is trivial on the doubled manifold. However, after removing the doubled coordinates and

obtained the proper string background, the resulting flux is not trivial on the projected

space. The topological triviality of the generalized flux C is due to the non-semi-simple

nature of the TDT Lie algebra.

Plugging all these ingredients in (1.4), we can explicitly construct the worldsheet σ-

model for this TDT and obtain its equations of motion. These read

−x
′′

+ ˙̃x
′

+ N
(

˙̃y
′

z + ỹ′ż − ẏz̃′ − y ˙̃z′
)

= 0, (3.10)

−y
′′

+ ˙̃y
′

+ Nz̃′ẋ − Nz̃′x̃′ − N2z̃′ỹ′z + N2y(z̃′)2 = 0, (3.11)

−z
′′

+ ˙̃z
′

− Nỹ′ẋ + Nỹ′x̃′ − N2z̃′ỹ′y + N2z(ỹ′)2 = 0, (3.12)
(
ẋ − x̃′ − Nzỹ′ + Nyz̃′

)′
= 0, (3.13)

(
ẏ − ỹ′(1 + N2z2) + Nẋz − Nx̃′z + N2yzz̃′

)′
= 0, (3.14)

(
ż − z̃′(1 + N2y2) − Nyẋ + Nyx̃′ + N2yzỹ′

)′
= 0. (3.15)

We can now make contact with the expected Lagrangian for the σ-model on an ordinary

flat group by interpreting the equations of motion of the dual coordinates ỹi as constraints

and plugging their solution back in the original action. A crucial point to be noted is

that the equations of motion for the dual coordinates result in total space derivatives

and therefore, upon choosing appropriate boundary conditions, yield relations between the
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space derivative of the dual coordinate and the space and time derivatives of the original

coordinates. This allows us to get rid of the dual coordinates and obtain a geometric

description of the resulting σ-model in terms of an ordinary metric and B-field. First one

can solve the x̃ equation of motion by

x̃′ = ẋ − Nzỹ′ + Nyz̃′. (3.16)

Using this constraint in the ỹ and z̃ equations of motion one finds an easy expression for

the derivatives of the dual coordinates:

ỹ′ = ẏ, z̃′ = ż. (3.17)

This also tells us that the constraint (3.16) can be solved completely in terms of the ordinary

coordinates as

x̃′ = ẋ − Nzẏ + Nyż. (3.18)

Using altogether these solutions in the original duality symmetric model one gets an effec-

tive Lagrangian that reads

2L = −ẋ2 + yÿ + zz̈ + x′2 + y′
2
+ z′

2
, (3.19)

which is equivalent (up to total derivatives) to the Lagrangian for a free string. This is

indeed the expected local background, with a flat metric and a zero B-field, which is further

constrained by the global conditions one imposes to get the proper compact space.

Integration of a different set of coordinates leads to T-dual backgrounds, where the role

of the geometric fluxes changes. Since the geometry probed in this background is locally

that of flat space one would expect that these dual backgrounds are also simply a flat T
3. As

it is clear from the global identifications needed to make the space compact, however, not all

coordinates are related to directions on the T
3 that are also good isometries. This implies

that global obstructions to ordinary T-duality transformations may arise and that non-

local aspects may interfere with the simple interpretation of our duality transformations.

This is especially evident in the case we would keep as coordinates y, z and x̃, trying to

integrate out x. The ỹ and z̃ equations of motion are easily solved leading to a constraint

equation for x, which reads:

x′′ =

[
N2ẋ(y2 + z2) + Nzẏ − yż + x̃′

1 + N2y2 + N2z2

]•
. (3.20)

Clearly this has no direct solution for x′ in terms of a single function depending on y, z

and x̃. There is, however, a field redefinition mixing x and x̃ which solves it identically

x′ = ẇ, x̃′ − ẋN2
(
y2 + z2

)
= yż − zẏ +

(
1 + N2y2 + N2z2

)
w′. (3.21)

Once these substitutions are used throughout, the equations of motion reduce to

−ẅ + w′′ = 0, (3.22)

−ÿ + y′′ + N2yI2 + Nzİ + 2NżI = 0, (3.23)

−z̈ + z′′ + N2zI2 − Nyİ − 2NẏI = 0, (3.24)
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for

I =

∫
dσ(w′′ − ẅ). (3.25)

Although we explicitly get flat space once more, it is clear that the field redefinitions (3.21)

imply a non-local dependence of the new background coordinate on the dual one.

3.2 The H, τ , Q, R flux chain

The algebra dual to a compactification on a flat 3-torus with non-trivial H-flux is summa-

rized by the structure constants

T123 = −N, T231 = −N, T312 = −N. (3.26)

Using the procedure outlined above we can construct the TDT with vielbein

UA
I =




1

1

1

−Nz Ny 1

Nz −Nx 1

−Ny Nx 1




(3.27)

and generalized metric

H =




1 + N2y2 + N2z2 −N2xy −N2xz Nz −Ny

−N2xy 1 + N2
(
y2 + z2

)
−N2yz −Nz Nx

−N2xz −N2yz 1 + N2
(
x2 + y2

)
Ny −Nx

−Nz Ny 1

Nz −Nx 1

−Ny Nx 1




. (3.28)

For this class of examples the η metric is completely trivial [16]

η =




1

1

1

1

1

1




, (3.29)

which allows the rewriting of H in terms of a g and a B field as in (1.2). The standard

construction of a TDT duality symmetric worldsheet model foreseen in the previous sections

however includes a non-trivial 2-form C, which, for the algebra at hand reads

C =
1

3

(
E1 ∧ Ẽ1 + E2 ∧ Ẽ2 + E3 ∧ Ẽ3

)
. (3.30)

Again, this non-trivial C implies that the actual B-field appearing in the string σ-model

after integrating out the dual coordinates is shifted with respect to the one that could be

read directly from H using (1.2).
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Once we have constructed the world-sheet Lagrangian (1.4) from the ingredients de-

scribed above, the equations of motion read

−x
′′

(1+N2y2+N2z2)+ ˙̃x
′

−2N2x′y′y+2N2x(y′)2+N2xyy′′−Nỹ′′z−Ny′ż

+Nẏz′ − 2Nỹ′z′ − 2N2zx′z′ + 2N2x(z′)2 + N2xzz′′ + N2y′z̃′ + Nyz̃′′ = 0, (3.31)

−y
′′

(1+N2x2+N2z2)+ ˙̃y
′

−2N2y′z′z+2N2y(z′)2+N2yzz′′−Nz̃′′x−Nz′ẋ

+Nżx′ − 2Nz̃′x′ − 2N2xy′x′ + 2N2y(x′)2 + N2yxx′′ + 2Nz′x̃′ + Nzx̃′′ = 0, (3.32)

−z
′′

(1+N2y2+N2x2)+ ˙̃z
′

−2N2z′x′x+2N2z(x′)2+N2zxx′′−Nx̃′′y−Nx′ẏ

+Nży′ − 2Nx̃′y′ − 2N2yz′x′ + 2N2z(x′)2 + N2zyy′′ + 2Nx′ỹ′ + Nxỹ′′ = 0, (3.33)
(
ẋ − x̃′ + Nzy′ − Nyz′

)′
= 0, (3.34)

(
ẏ − ỹ′ + Nxz′ − Nzx′

)′
= 0, (3.35)

(
ż − z̃′ + Nyx′ − Nxy′

)′
= 0. (3.36)

Just like in the previous example we have three equations that are total space derivatives

and three equations that cannot be put in this form.

3.2.1 H-flux

The first thing is to make contact with the original geometric model, with H-flux and flat

metric. This can be achieved by integrating out the ỹi coordinates and it is fairly easy to

do because their equations of motion are total space derivatives. The solutions express the

dual coordinates completely in terms of the geometric ones:

x̃′ = ẋ + Nzy′ − Nyz′, (3.37)

ỹ′ = ẏ + Nxz′ − Nzx′, (3.38)

z̃′ = ż + Nyx′ − Nxy′. (3.39)

Plugging this solution into the original Lagrangian gives the expected effective σ-model

2Leff = (x′)2 + (y′)2 + (z′)2 − (ẋ)2 − (ẏ)2 − (ż)2

+
4

3
N y

(
ẋz′ − żx′

)
+

4

3
N x

(
ży′ − ẏz′

)
+

4

3
N z

(
ẏx′ − ẋy′

)
,

(3.40)

up to boundary terms

−
2

3
(xẋ + yẏ + zż)˙+

2

3

(
x ˙̃x + y ˙̃y + z ˙̃z

)′
. (3.41)

The σ-model described by (3.40) can be interpreted as that of a string moving in an

ordinary background given by a flat metric and a non-trivial B-field

ds2 = dx2 + dy2 + dz2, B =
2

3
N (xdy ∧ dz + ydz ∧ dx + zdx ∧ dy) (3.42)

leading to

H = dB = 2N dx ∧ dy ∧ dz. (3.43)
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3.2.2 Geometric flux

A different choice of constraint equations, equivalent to a different choice of coordinates

to be considered the dual ones, gives rise to dual backgrounds. For instance, one could

consider one T -duality exchanging the role of the z and z̃ coordinates, so that the final

geometry should be described in terms of x, y and z̃. This means that now we can still

replace ỹ′ and x̃′ using (3.37) and (3.38), but now (3.36) should be interpreted as a real

equation of motion, while the constraint equation to solve is the equation of motion for

z (3.33). The latter, however, also becomes a total space derivative, once the constraint

equations for ỹ and z̃ have been used:
(
z′ + Nẋy − Nxẏ − ˙̃z

)′
= 0. (3.44)

We can therefore proceed again to solve it by appropriately choosing the boundary condi-

tions as

z′ = ˙̃z − Nẋy + Nxẏ. (3.45)

The effective Lagrangian finally reads (up to boundary terms)

Leff = (x′)2 + (y′)2 + (z̃′ + Nxy′ − Nyx′)2 − (ẋ)2 − (ẏ)2 − ( ˙̃z + Nxẏ − Nyẋ)2 (3.46)

and again it is the appropriate Lagrangian for a string moving in a background with zero

B-field and a non-trivial metric

ds2 = dx2 + dy2 + (dz̃ + Nxdy − Nydx)2 , B = 0. (3.47)

This corresponds to a background with a purely geometric flux τ which is the appropriate

T-dual of (3.42):

de3 = d (dz̃ + Nxdy − Nydx) = 2Ndx ∧ dy. (3.48)

3.2.3 Q-flux

A series of two T-dualities is equivalent to integrating out two of the three original co-

ordinates. In the following we use as coordinates x and ỹ, z̃ (or their combinations) and

use as constraints the equations of motion for x̃, y and z: (3.34), (3.32) and (3.33). The

constraint equation for x̃ is solved exactly like in the previous cases by (3.37). This time,

however, after plugging this solution in the equations of motion for y and z we don’t get

simple total space derivatives equations. The constraint equations now read
(
ỹ′+Nzx′−Nxz′

)
˙−2Nx′

(
z̃′+Nxy′−Nyx′

)
−Nx

(
z̃′+Nxy′−Nyx′−ż

)′

−y′′ + 2Nẋz′ = 0, (3.49)
(
z̃′+Nxy′−Nyx′

)
˙+2Nx′

(
ỹ′+Nzx′−Nxz′

)
+Nx

(
ỹ′+Nzx′−Nxz′−ẏ

)′

−z′′ − 2Nẋy′ = 0. (3.50)

Because of this structure it is clear that it is not possible to give a simple local expression of

the y and z fields in terms of the dual ones. We can also notice that part of the constraint

equations (3.49) and (3.50) are proportional to the ỹ and z̃ equations of motion
(
ỹ′ + Nzx′ − Nxz′

)′
− ẏ′ = 0,

(
z̃′ + Nxy′ − Nyx′

)′
− ż′ = 0. (3.51)
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We can therefore try to solve these constraint equations modulo the resulting equations of

motion, so that we do not affect the final result. If we do so, the constraint equations become

(
ỹ′ + Nzx′ − Nxz′

)
˙− 2Nx′

(
z̃′ + Nxy′ − Nyx′

)
− y′′ + 2Nẋz′ =

= Nαx
(
z̃′ + Nxy′ − Nyx′ − ż

)′
, (3.52)

(
z̃′ + Nxy′ − Nyx′

)
˙+ 2Nx′

(
ỹ′ + Nzx′ − Nxz′

)
− z′′ − 2Nẋy′ =

= −Nαx
(
ỹ′ + Nzx′ − Nxz′ − ẏ

)′
. (3.53)

We now try to satisfy these constraints, by starting from (3.52). We can collect three types

of terms, proportional to x, ẋ and x′, if we perform the following redefinitions

ỹ′+Nzx′−Nxz′ = w′+NxA, y′ = ẇ+NxB, z̃′+Nxy′−Nyx′ = C, z′ = D. (3.54)

These positions are also justified by the fact that ỹ and z̃ have to be proportional to the

“geometric coordinate” and that y′ and z′, being the dual ones, should be proportional to

the time derivative of the gometric ones. After these replacements (3.52) becomes

ẋA + xȦ − 2x′C − x′B − xB′ + 2ẋD = αxC ′ − αxḊ, (3.55)

where the terms depending on w disappear. This has a simple solution for

α = 2, A = −2D, B = −2C. (3.56)

We can use the same trick for the other constraint defining

ỹ′ +Nzx′−Nxz′ = E, y′ = F, z̃′ +Nxy′−Nyx′ = u′ +NxG, z′ = u̇+NxH, (3.57)

so that (3.53) becomes

ẋG + xĠ + 2x′E − x′H − xH ′ − 2ẋF = −αxE′ + αxḞ . (3.58)

The solution in this case is

α = 2, G = 2F, H = 2E. (3.59)

Putting together the information coming from (3.56) and (3.59) we finally obtain the re-

definitions of the various coordinates:

y′ =
ẇ − 2Nxu′

1 + 4N2x2
, z′ =

u̇ + 2Nxw′

1 + 4N2x2
, (3.60)

and

ỹ′ + Nzx′ − Nxz′ =
w′ − 2Nxu̇

1 + 4N2x2
, z̃′ − Nyx′ + Nxy′ =

u′ + 2Nxẇ

1 + 4N2x2
, (3.61)

or

ẇ = (1 + 2N2x2)y′ + 2Nxz̃′ − 2N2xyx′,

u̇ = (1 + 2N2x2)z′ − 2Nxỹ′ − 2N2xzx′,

w′ = (ỹ + Nxz)′, (3.62)

u′ = (z̃ − Nxy)′.
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Note that (u̇)′ = (u′)̇ by using the constraint equation, modulo the z̃ equation of motion

(and a similar argument holds for w). From this rewriting we explicitly see that the w

and u coordinates are nothing but ỹ and z̃, shifted by a coordinate dependence on the

dual ones. We can also use (3.63) to understand the behaviour of these coordinates under

x → x + 1 monodromies (they remain fixed under z → z + 1 and y → y + 1, while they

obviously shift in the same way as ỹ and z̃). Whenever we shift x by one period, we can

explicitly see that the u and w coordinates have to obey non-local trasformations, namely:

w′ → w′ + 2
u̇ + 2Nxw′

1 + 4N2x2
,

ẇ → ẇ + 2
u′ + 2Nxẇ

1 + 4N2x2
,

u′ → u′ − 2
ẇ − 2Nxu′

1 + 4N2x2
, (3.63)

u̇ → u̇ − 2
w′ − 2Nxu̇

1 + 4N2x2
.

We will come back to these later on.

Using the (3.63) redefinitions we now get that the equations of motion for ỹ and z̃, or

better, for w and u read

(
w′ − 2Nxu̇

1 + 4N2x2

)′

=

(
ẇ − 2Nxu′

1 + 4N2x2

)•

(3.64)

and (
u′ + 2Nxẇ

1 + 4N2x2

)′

=

(
u̇ + 2Nxw′

1 + 4N2x2

)•

, (3.65)

which are the appropriate equations of motion for a Q-flux background as we will see in a

moment. Using the same trick in the equation of motion for x (in detail adding to the x

equation of motion y times the z̃ equation of motion and subtracting z times the ỹ equation

of motion) one gets

0 = ẍ − x′′ +
1

2

∂

∂x

[
u̇2 + ẇ2 − u′2 − w′2 + 4xN (u̇w′ − u′ẇ)

1 + 4N2x2

]
. (3.66)

Altogether these equations of motion are derived from a standard σ-model with a metric

ds2 = dx2 +
1

1 + 4N2x2

(
du2 + dw2

)
, (3.67)

and B-field

B =
2Nx

1 + 4N2x2
du ∧ dw. (3.68)

The problematic geometric interpretation of this background is not simply a conse-

quence of the twisted boundary conditions but also of the field redefinition (3.63). One

can see this by inspecting a simple string motion in the TDT and the resulting projection

to this background. A very easy solution of the classical string equations is

x = ατ, x̃ = ασ, z̃ = βσ, y = z = ỹ = 0. (3.69)
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This represents a string wrapped on the x̃ and z̃ coordinates and moving along x. All

boundary conditions are trivially respected. After integrating out x̃, y and z, the resulting

configuration is given by a string wrapped around u = βσ, and not only moving in the

x direction, but also in w. This is forced by the field redefinition (3.63) and by the new

twisted boundary conditions (3.64). These new conditions imply that when the string has

moved by 1 in the x direction, it must have moved also in the w direction, since it is

wrapped along u and thus u′ 6= 0. Actually the identification along w for this motion is

{
x ∼ x + 1

w ∼ w + 2β/αx
(3.70)

and the motion in w goes like w = αβτ2.

3.2.4 R-flux

The last possible choice of coordinates leading to a non-geometric background is given by

integrating out x, y and z and keeping only the coordinates dual to the original H-flux

background, leading to the so-called R-flux configuration. Inspection of the doubled metric

H reveals that one can indeed introduce a metric and a B-field for such a model, but that

these fields depend explicitly on the dual coordinates [16], which in this frame are x, y

and z. The solution of the corresponding constraints will provide these coordinates as

functions of the background coordinates x = x(x̃, ỹ, z̃), y = y(x̃, ỹ, z̃) and z = z(x̃, ỹ, z̃).

Unfortunately these constraints are not easy to solve for x, y and z, since they are not first

order constraints as the ones leading to the h and τ flux. In particular we expect that their

solution leads to a non local expression for the x, y and z coordinates in terms of the dual

ones, similarly to what happens for the flat group, when integrating out x. This would

explain the fact that this metric is not “geometric” even locally.

3.3 Chiral WZW models

In this section we discuss the 6-dimensional TDT arising from the compact group SU(2)×

SU(2). There are two obvious embeddings in O(3,3), which, in the language of the previous

section, can be described either by τ and R fluxes, or by Q and H. Note however, that

these two choices are related by three T-dualities. We choose to start from the τ , R algebra

with structure constants

T12
3 = −1, T32

1 = −1, T23
1 = −1,

T 12 3 = −1, T 32 1 = −1, T 23 1 = −1, (3.71)

T1
2
3 = −1, T3

2
1 = −1, T2

3
1 = −1.

The TDT can be constructed in the usual way. A convenient choice for the group element

is the following:

g = e(Z1+X1)(x+x̃)e(Z2+X2)(y+ỹ)e(Z3+X3)(z+z̃)e(Z1−X1)(x−x̃)e(Z2−X2)(y−ỹ)e(Z3−X3)(z−z̃).

(3.72)
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This leads to the following background data:

H =




1 − cos ỹ sin y − cos y sin ỹ

1

− cos ỹ sin y 1 − cos y sin ỹ

− cos y sin ỹ 1 − cos ỹ sin y

1

− cos y sin ỹ − cos ỹ sin y 1




(3.73)

and

η =




− cos y sin ỹ 1 − cos ỹ sin y

1

− cos y sin ỹ − cos ỹ sin y 1

1 − cos ỹ sin y − cos y sin ỹ

1

− cos ỹ sin y 1 − cos y sin ỹ




. (3.74)

Note that η cannot be put in a constant form because the TDT is the S3 × S3 group

manifold. It should be noted that the structure of the matrices has a common pattern

H =

(
A B

B A

)
, η =

(
B A

A B

)
. (3.75)

We will come back on the explanation of this form later on.

The standard TDT construction defines also the 2-form C in a specific way from (2.22),

but we have seen that for a compact group the opposite sign choice leads to first order

equations. Following this route, we get that

C = − sin ỹ cos y(dx ∧ dz + dx̃ ∧ dz̃) − sin y cos ỹ(dx ∧ dz̃ + dx̃ ∧ dz). (3.76)

Such a choice reduces the Lagrangian to a very simple form. Using the chiral basis yi =
1
2 (yi

L + yi
R), ỹi = 1

2(yi
L − yi

R) this reads (here ∂± = ∂0 ± ∂1)

L =
1

2
∂+yi

R ∂1y
j
R C

R
ij −

1

2
∂−yi

L ∂1y
j
R C

L
ij, (3.77)

where

C
L =




1 −2 sin yL

1

1


 (3.78)

and

C
R =




1 −2 sin yR

1

1


 . (3.79)

This Lagrangian has the interpretation of the sum a chiral and an antichiral WZW model

on the SU(2) group manifold [23] with C
L,R = gL,R + BL,R, for the SU(2) metric

ds2 = (dy1 − sin y2dy3)
2 + dy2

2 + cos2 y2dy2
3 (3.80)
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and the corresponding B-field

B = − sin y2dy1 ∧ dy3, (3.81)

chosen so that dB is the volume form. It is therefore clear that the first order equations

of motion for this model, VI = 0, are equivalent to the equations of motion of the (anti)

chiral fields.

From this analysis it is also now visible that the general structure of the H and η

matrices for a TDT that is the product of two compact gauge groups G1 × G2 ⊂ O(d) ×

O(d) ⊂ O(d, d) has to follow the pattern outlined above, because

H =

(
gR + gL gR − gL

gR − gL gR + gL

)
, η =

(
gR − gL gR + gL

gR + gL gR − gL

)
. (3.82)

Also the structure of the antisymmetric form C is related to BL and BR following the same

pattern. In general if G1 6= G2 this model is not equivalent to a standard WZW theory and

it is tempting to think of it as a non-geometric generalization of the WZW model.

From this example we can also learn that there is no clear universal recipe to extract

from the TDT data the information regarding the metric and B field of the string σ-

model obtained by integrating out half of the coordinates. For instance, these data can

be completely contained in H in a non-linear way as in (1.2), but the same matrix may

contain only the information on the metric, as in the last example (3.82).
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