
A Gradient Optimization Approach to Adaptive

Multi-Robot Control

by

Mac Schwager

B.S., Stanford University (2000)
M.S., Massachusetts Institute of Technology (2005)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

MASSACHUSETTS INSTIUTE
OF TECHNOLOGY

DEC 2 8 2009

LIBRARIES

ARCHIVES

Author
Department of'M"echanical Engineering

August 26, 2009

Certified by

Daniela Rus
Professor of Electrical Engineering and Computer Science

4
Thesis Supervisor

1-0-

Accepted by
David Hardt

Chairman, Department Committee on Graduate Theses

A Gradient Optimization Approach to Adaptive

Multi-Robot Control

by

Mac Schwager

Submitted to the Department of Mechanical Engineering
on August 26, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis proposes a unified approach for controlling a group of robots to reach
a goal configuration in a decentralized fashion. As a motivating example, robots
are controlled to spread out over an environment to provide sensor coverage. This
example gives rise to a cost function that is shown to be of a surprisingly general
nature. By changing a single free parameter, the cost function captures a variety
of different multi-robot objectives which were previously seen as unrelated. Stable,
distributed controllers are generated by taking the gradient of this cost function. Two

fundamental classes of multi-robot behaviors are delineated based on the convexity of

the underlying cost function. Convex cost functions lead to consensus (all robots move

to the same position), while any other behavior requires a nonconvex cost function.
The multi-robot controllers are then augmented with a stable on-line learning

mechanism to adapt to unknown features in the environment. In a sensor cover-

age application, this allows robots to learn where in the environment they are most
needed, and to aggregate in those areas. The learning mechanism uses communica-
tion between neighboring robots to enable distributed learning over the multi-robot
system in a provably convergent way.

Three multi-robot controllers are then implemented on three different robot plat-

forms. Firstly, a controller for deploying robots in an environment to provide sensor
coverage is implemented on a group of 16 mobile robots. They learn to aggregate
around a light source while covering the environment. Secondly, a controller is imple-
mented for deploying a group of three flying robots with downward facing cameras
to monitor an environment on the ground. Thirdly, the multi-robot model is used
as a basis for modeling the behavior of a herd of cows using a system identification
approach. The controllers in this thesis are distributed, theoretically proven, and
implemented on multi-robot platforms.

Thesis Supervisor: Daniela Rus
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

This thesis owes its existence to the support, encouragement, and feedback of a num-

ber of people. I thank my advisor, Professor Daniela Rus, whose vision and guidance

have been invaluable. She taught me the intangibles: how to sense a good problem,

how to know when it is solved, and how to persuade people that your solution is the

right one. She has been a tireless advocate for my work from its conception; and

although her faith was sometimes undeserved, it was never unappreciated. I am also

grateful to Professor Jean-Jacques Slotine, for his perceptive advice, mathematical

insight, and practical approach to difficult mathematical analyses. The mathematics

in this thesis certainly bears his mark. I also thank Professor Harry Asada for giv-

ing gentle yet objective criticism. His encouragement to unite my different research

interests has made this a more coherent thesis than it otherwise might have been.

I am also deeply indebted to my co-authors and collaborators. I thank Professor

James McLurkin whose technical mastery made the SwarmBot experiments success-

ful, and whose good humor made them enjoyable. I thank Brian Julian, a magician

who can turn incoherent Matlab code into extraordinary flying machines. The quad-

rotor experiments would have been impossible without him. My thanks also go to

Dr. Dean Anderson. His keen knowledge of cow behavior played no small part in the

formulation of a mathematical model of the motion of animal groups. I also thank

Professor Vijay Kumar, Professor Francesco Bullo, Professor David Skelly, Professor

Nikolaus Correll, and Dr. Luciano Pimenta for lively and thought provoking discus-

sions about multi-agent systems and the mathematics that underpins their control.

Furthermore, I thank my friends and colleagues in the Distributed Robotics Lab who

have filled my days with colorful camaraderie.

For financial support, I am very grateful to the MURI SWARMS project (grant

number W911NF-05-1-0219), the NSF (grant numbers IIS-0513755, IIS-0426838, CNS-

0520305, CNS-0707601, EFRI-0735953), the MAST project, and The Boeing Com-

pany.

Finally, I thank my family and friends whose love, encouragement, and realism

kept me on the right trajectory, just as a good feedback controller ought to do. Above

all, I owe a special debt of gratitude to my mother, in whose memory I dedicate this

thesis. She left me a most valuable inheritance: her love for research has become my

love for research.

--.-P-i.^-^---C.-LiL-II-i~.--~~~ i; ~_l;~~_l;_r I;;__~~____;i~__;_ ; ___il~i;___i_:i^L/__i;_r~__;ii__ji_;;/

Contents

1 Introduction

1.1 Approach

1.2 Applications

1.3 State of the Art

1.4 Contributions

1.5 Organization

2 Background

2.1 Introduction

2.2 Previous Work

2.3 Mathematical Preliminaries

2.3.1 Convex Optimization

2.3.2 Graph Laplacians

2.4 Multi-Robot System Model

2.4.1 The Induced Graph

2.4.2 Properties of Gradient Systems

2.5 Voronoi Coverage Control

2.5.1 Voronoi Cost Function

2.5.2 Computations with Voronoi Tessellations

2.5.3 Voronoi Controller

. 47

15

.. 17

.. 21

.. 23

.. . . . 24

.. 25

29

29

29

33

34

35

S 36

37

38

40

40

42

45

2.6 Synopsis

3 Generalized Coverage Control

3.1 Introduction

3.1.1 Related Work

3.1.2 Contributions

3.2 Generalized Coverage

3.2.1 Coverage Cost Function . . .

3.2.2 Mixing Function

3.2.3 Gradient Control

3.3 Deriving Special Cases

3.3.1 Voronoi Coverage

3.3.2 Minimum Variance Coverage .

3.3.3 Potential Field Coverage . . .

3.3.4 Computational Complexity .

3.4 Convexity and Consensus

3.5 Simulation Results

3.6 Synopsis

4 Incorporating Learning

4.1 Introduction

4.1.1 Related Work

4.1.2 Contributions

4.2 Problem Formulation

4.2.1 Assumptions and Definitions

4.3 Decentralized Adaptive Control Law

4.4 Parameter Consensus

4.4.1 Consensus Learning Law .

4.5 Adaptive Gradient Controller . .

4.6 Parameter Convergence Analysis

4.7 Alternative Learning Laws

4.7.1 Gradient Laws

49

. . . . 49

. . . . 50

. . . . 51

. . . . 52

. . . . 52

. . . . 53

. . . . 55

. . . . 58

. . . . 58

. . . . 60

. . . . 62

. . . . 63

. . . . 64

. . . . 68

-(;-' i -':-Li ';"-"'1'"- ::"""""-i:--~:i;:-:~~:~~--lli-:~r -,- ;~-_;i :iy;.~~'-l:- i*- '";--i_~-1z;_i;;_;?-il;

4.7.2 Recursive Least Squares Laws

4.7.3 Data Weighting Functions

4.8 Numerical Simulations

4.8.1 Simulation Results

4.9 Synopsis

5 From Theory to Practice: Coverage with SwarmBots

5.1 Introduction

5.1.1 Related Work

5.1.2 Contributions

5.2 Coverage Control Algorithm

5.3 Results and Experimental Snapshots

5.3.1 Simulated Sensory Function

5.3.2 Measured Sensory Function

5.4 Synopsis

6 Coverage with Quad-Rotors

6.1 Introduction

6.1.1 Related Work

6.1.2 Contributions

6.2 Optimal Camera Placement . . .

6.2.1 Single Camera

6.2.2 Multiple Cameras

6.3 Distributed Control

6.3.1 Rectangular Field of View

6.4 Experiments

6.5 Simulations

6.6 Synopsis

115

. 1 15

. 117

. 117

. 118

. 1 19

. 121

. 123

. 129

.. 133

. 136

. 137

7 Modeling Animal Herds

7.1 Introduction

.. . . . 94

.. 96

.. 97

.. . . . 98

.. 101

103

.. 103

.. 103

.. 104

.. 104

.. 107

.. 108

.. 109

..... . 111

139

139

7.1.1 Related Work

7.1.2 Contributions

7.2 Model Description

7.2.1 Individual Agent Dynamics

7.2.2 Agent-to-Agent Interaction Force

7.2.3 Environment-to-Agent Interaction Force

7.3 System Identification with Least-Squares Fitting .

7.3.1 Method Overview

7.3.2 Manipulating the Linear Model

7.3.3 Batch Method

7.3.4 Recursive Method

7.4 Data Collection Experiments

7.4.1 Animal Monitoring Hardware

7.4.2 Experimental Methodology

7.5 Modeling a Group of Cows

7.5.1 Three Cows

7.5.2 Ten Cows

7.5.3 Model Validation

7.6 Synthetic Control

7.7 Synopsis

8 Conclusions, Lessons Learned, and Future Work

A Proofs of Lemmas

142

143

144

145

146

149

149

150

152

153

155

155

158

159

159

161

162

167

170

173

177

_ _i ; i~ l / _ l / / /~l~Cj-- ;lii ii~.- ------ :ii~iili~

141

List of Figures

1-1 Experimental Platforms 17

1-2 Organization Chart 26

2-1 Multi-Robot Optimization 37

2-2 Voronoi Boundary Schematics 43

3-1 Mixing Function Schematic 54

3-2 Mixing Function Surfaces and Supermodularity 55

3-3 Contour Plots of Gradient Magnitude 56

3-4 Convex Optimization Schematic 65

3-5 Convexity and Consensus Schematic 66

3-6 Simulation Results 70

4-1 Learning and Control Schematic 72

4-2 Sensory Function Approximation Schematic 76

4-3 Overview Schematic 78

4-4 Simulation Results 99

4-5 Simulation Position Error Plots 100

4-6 Simulation Learning Error Plots 101

4-7 Simulation Lyapunov Function and Parameter Error Plots 102

5-1 Experimental Results, Simulated Sensory Function 110

5-2 Experimental Error Plots, Simulated Sensory Function111

5-3 Experimental Results, Light Sensory Function 112

5-4 Experimental Error Plots, Light Sensory Function 113

5-5 SwarmBot and Experimental Function Approximation Plot .

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-11

7-12

Experiment Snapshot

Camera Schematic

Field of View Schematic

Rectangular Field of View Schematic

Experimental Setup

Experimental Results

Experimental Cost Function

Simulation Results

System Identification Schematic

Examples of the Agent-to-Agent Force and E

Photographs of the Sensor Box

Photographs of the Cow Head Mounting . .

Maps of the Paddock and Cow Trajectories .

Agent-to-Agent Force, Three Cows

Environment-to-Agent Force, Three Cows .

Agent-to-Agent Force, Ten Cows

Environment-to-Agent Force, Ten Cows . . .

Model Validation Plots

Trajectories of Model vs. Cow Data

Statistics of Model vs Cow Data

113

116

120

121

131

134

135

136

137

... 144

ironment Force 145

. 155

. 156

. 157

. 160

. 161

. 163

. 164

. 166

. 170

. 171

)nv

List of Tables

5.1 From Continuous Controller to Discrete Algorithm 108

7.1 Model Validation Statistics, Three Cows 167

7.2 Model Validation Statistics, Ten Cows 168

Chapter 1

Introduction

The robots of the future will be numerous and talkative. This is an inevitable result of

the decreasing cost of electronics, combined with the increasing ubiquity of networking

technology. Large networks of robots have far reaching technological potential. They

will change the way we grow food, manufacture products, and wage wars; they will

help us to look after the environment, to collect scientific data, and will allow us

to explore unfamiliar places. More generally, multi-robot systems will enable direct

human influence over large scale natural phenomena. However, before we can see the

benefits of multi-robot technology, we must first answer a basic question: how do we

control all of these gregarious robots? What should we make them say to one another,

and how should they act upon the information they get from their neighbors?

In this thesis we define, analyze, and implement a multi-robot control approach

based on distributed optimization of a cost function to stably and adaptively control

the movement of a group of robots towards a goal. We define a cost function that can

lead to various different multi-robot behaviors by changing a single free parameter.

Using the cost function, we design gradient descent controllers so that each robot

moves to decrease the value of the cost function. Our controllers allow for simple,

general stability and convergence results, and lead to robust, practical control strate-

gies that can be implemented on robots with limited computational resources. Our

controllers are adaptive to failures. If one robot fails, the others will automatically

reconfigure to compensate for it. They also are adaptive to slowly changing environ-

ments. The robots will move to try to maintain an optimal configuration in response

to changing environmental conditions. The control approach in this thesis can be

used, for example, to deploy a group of hovering robots (i.e. autonomous helicopters)

with downward facing cameras to collectively monitor an area on the ground. With

knowledge of its own position and the positions of its neighbors, each robot moves to

maximize its own field of view, while not overlapping its field of view too much with

neighboring robots. The robots deploy themselves over the area, spreading outward

and upward until the whole area is covered by the group. In many applications, as in

this example, the use of a multi-robot system offers superior robustness, speed, and

sensor resolution over a single robot solution.

The design, analysis, and implementation of multi-robot controllers are accom-

panied by difficulties peculiar to the multi-robot setting. Firstly, in designing multi-

robot controllers, one must always consider the constraint that each robot has only

partial information, yet the whole group must converge to a desired configuration.

This demands a careful composition of communication, control, and sensing. Sec-

ondly, proving analytical properties of multi-robot systems is difficult because their

dynamics are often nonlinear, and they are coupled through a network which changes

over time. Thirdly, implementing multi-robot controllers requires maintaining mul-

tiple robot platforms simultaneously, and implementing algorithms over real ad hoc

wireless networks. We overcome each of these difficulties in this thesis. We design

controllers by focusing our attention to multi-robot tasks that can be quantified by a

cost function, and by using gradient descent controllers to minimize the cost function.

We analyze the performance of our controllers using a combination of analysis tools

from optimization, Lyapunov stability theory, and graph theory to prove theorems

concerning the asymptotic convergence of the robots to their final configurations, the

rate of their convergence, and the optimality of their final configurations. Finally,

we implement multi-robot algorithms on three different hardware platforms (shown

in Figure 1-1), a group of ground robots, a group of flying quad-rotor robots, and

sensor/actuator boxes mounted to the heads of cows in a herd.

(b) Quad-Rotors (c) Cows

Figure 1-1: The robot platforms used in the three case studies are shown.

1.1 Approach

As an archetypal problem, we consider the deployment of multiple robots over an

environment for distributed surveillance and sensing, a task we call coverage. The

example described above with hovering robots is a typical instance of coverage. We

show that coverage is closely related to a number of other multi-robot tasks, includ-

ing consensus (all the robots move to the same position), and herding (the robots

aggregate in group without collisions). The link between these tasks is elucidated by

showing that they all result from variations on the same optimization problem, and

controllers for each of these tasks are shown to be obtained by taking the negative

gradient of the cost function. We then consider the situation in which robots must

learn a function in the environment to carry out their control task. For example, in

a sensor coverage task, the robots learn the areas that require the most dense sensor

coverage and move to aggregate in those areas. Learning is incorporated in a dis-

tributed way with provable stability and performance guarantees. Building upon this

foundation, we pursue three detailed multi-robot case studies. The controllers for

these case studies are implemented on three different kinds of multi-robot platforms:

a swarm of ground robots (Figure 1-1(a)), a group of flying quad-rotor robots (Figure

1-1(b)), and a herd of cows outfitted with sensing and control boxes (Figure 1-1(c)).

..............................

(a) Ground Robots

Scope and Limitations

In general, the control of multi-robot systems is an intractably large problem space.

One must specify the kind of multi-robot systems and the class of multi-robot tasks

to make meaningful headway. This thesis focuses on multi-robot systems composed

of identical robots with simple dynamics. Furthermore the tasks we consider are

those that can be formulated as the optimization of a cost function that depends

upon the positions of the robots. In other words, our problem space is to drive the

robots to a final goal configuration (or to a set of possible goal configurations) and

remain fixed unless a robot fails or the environment changes, in which case the robots

adjust to find a new goal configuration. This precludes, for example, algorithmic

tasks involving temporal logic specifications, such as, "move in formation to area A,

explore area A for T hours, then return in formation, while avoiding areas B and

C." It also precludes tasks in which not only the final positions of the robots are

important, but also their trajectories, for example, moving the robots to cover an

environment using the shortest possible paths. These kinds of tasks might also be

phrased as optimizations, though not with cost functions that only depend on the

positions of the robots.

Notice that our problem space naturally divides into regimes based upon aggre-

gation. The goal configuration of the robots can either be spread apart over the envi-

ronment, in which case we say they are doing coverage. Otherwise they are grouped

together, in which case we say they are doing consensus (if they are all occupying the

same position), or herding (if they are not all occupying the same position). This

exhausts the possible species of goal configurations in our problem space. Despite

this simple characterization, we will see that rather complex controllers and tasks are

possible in this problem space.

Gradient Based Control

The main feature that defines our class of multi-robot problems is that they can be

cast in terms of the optimization of a cost function that depends on the positions

) ~_ ; ill__i~____l__j__~___~ii___;_i_;;; __~~Xi~~~

of the robots. We derive distributed controllers by taking the negative gradient of

the cost function so that the robots are always moving to decrease the cost of their

positions. Thus the closed-loop system is a gradient system, which is a dynamical

system whose dynamics are given by the negative gradient of a cost function.

Restricting our scope to gradient systems still allows for considerable complexity in

behavior, but has two pronounced benefits. Firstly, it ties the closed loop-system to an

optimization problem. Optimization problems have a powerful set of mathematical

tools that can be used to prove fundamental properties of the closed-loop system.

Secondly, gradient systems carry with them particularly strong and simple stability

guarantees which can be deduced from the properties of the underlying cost function

alone. This leads to goal directed behavior, because gradient controllers move the

robots to local minima of the cost function which represent goal states.

Incorporating Learning

This thesis puts a heavy emphasis on the role of learning and adaptation on multi-

robot control, which distinguishes it from other works in this area. In any group of

biological agents, learning and adaptation plays a key role in the group's behavior.

Agents learn to specialize their roles within the group, and they adapt their behav-

ior using knowledge they acquire about the environment. Taking inspiration from

biological agents, we integrate learning within multi-robot controllers with rigorous

stability guarantees, so as to enable more complex behaviors. Control and learning

are both represented under the umbrella of optimization and are analyzed with the

tools of Lyapunov stability theory. We use the term learning to specifically mean

tuning the parameters of a parametric model, as in system identification or adaptive

control. This is a more narrow notion of learning than that used in the statistical

learning and machine learning communities.

In our applications learning is important for the robots to integrate sensor infor-

mation into their behavior and thereby accommodate uncertainty about the desired

task. For example, in a coverage control application in which robots spread out over

an environment to do sensing, it is useful for the robots to concentrate in areas where

their sensors are most needed. Our controllers allow the robots to learn on-line where

they are most needed and to automatically concentrate in those areas. In this thesis

we also use learning in the form of parameter tuning to build models of cow herding.

GPS data from cows are used to tune the parameters of a model to fit the behavior

of the cows, including their affinity for one another and their preferred paths over the

environment.

Basic Assumptions

In this thesis, the robots are assumed to have simple integrator dynamics, unless

otherwise explicitly stated, so that the control input is the robot's velocity. This kind

of kinematic model is common in the multi-robot control literature, and we have found

in repeated experimental implementations that it is a good approximation provided

that the robots have a fast inner control loop to regulate the velocity. Indeed, from a

design point of view it is desirable to separate the control of the high-level multi-robot

behavior from the low-level dynamical behavior of the robots. Commercially available

robot platforms typically have fast low-level control loops to track a commanded

velocity or to drive to given way points.

Also, in this thesis the robots interact with one another over a network and are

assumed to be able to exchange state information, such as position, only with their

immediate neighbors in the network. We do not assume the presence of a point-to-

point routing protocol to move messages between two specific robots in the network.

In an implementation, this means that robots simply broadcast their states at each

time step, and any other robot within communication range uses the broadcasted

state as required by its controller. Also, we do not explicitly consider network delays,

bandwidth constraints, packet losses, and other real but difficult-to-model limita-

tions on network performance. However, in multiple hardware implementations our

controllers are shown to perform well despite the limitations of real networks.

1.2 Applications

The multi-robot control strategies in this thesis have two key qualities that make them

superior to single robots systems for many applications. Firstly, they are inherently

tolerant to the failure of any individual in the group, whereas in a single robot system,

if the robot fails the mission fails. Secondly, multi-robot systems can carry out tasks

over large geographical areas more quickly and with greater resolution than single

robots. The robots can move in parallel to cover an environment, while a single

robot must traverse the environment in a serial fashion. These qualities make our

multi-robot controllers useful in a broad range of applications, as described below.

Large Scale Scientific Data Collection

Scientists who study large scale environmental systems such as ecologists, geologists,

archaeologists, oceanographers, and meteorologists spend an inordinate amount of

time and effort to collect data over large geographical areas. This laborious activity

could be automated by the use of a multi-robot system. To that end, the controllers

considered in this thesis can be used to deploy underwater robots over a coral reef to

monitor coral health, or to deploy flying robots to take measurements over geological

formations, forests, or archaeological sites. Such controllers could also be used by

collaborating rovers to explore the surface of other planets or moons. The ability to

collect scientific data over large geographical areas will accelerate scientific progress

and facilitate the study of physical and biological processes that take place beyond

the scale of current measurement apparatus.

Distributed Surveillance and Servicing

The control strategies in this thesis are also useful for distributed surveillance or ser-

vicing. In many scenarios we want to automatically monitor an area for security,

to identify irregular activity, or to provide some service to users in the area. For

example, in a military context a group of robots (flying robots, ground robots, or a

mixed group) could use our controllers to position themselves over a battle field. They

could be used to monitor the movement and concentration of enemy combatants, or to

provide mapping information and navigation information about the battlefield. The

robots could also be used to provide network support to troops and vehicles on the

battlefield, acting as self-positioning network routers. This is useful in civilian appli-

cations as well. For example, they could be used in disaster relief to provide mapping

information or to act as an ad hoc communication network for rescue workers. Robots

can also be deployed using our controllers over an urban area to monitor human ac-

tivity, or to provide wireless connectivity for computers and mobile phones. They

could also be used to position flying robots with cameras over, for example, sporting

events or parades to provide media coverage. The same controllers can be used also

for multi-robot servicing tasks, for example, to position oil clean-up robots over an

oil spill so that they clean up the spill in minimum time, or to position de-mining

robots to service a mine field in minimum time.

Formations for Traveling in Groups

The controllers in this thesis are also relevant to formation flying applications. Main-

taining a formation is useful for groups of aerial and ground robots as a means of

traveling in a team. This is particularly useful in a semi-automated scenario in which

a human operator controls a group of vehicles. Directly controlling each vehicle in the

group is too complicated a task for a single operator, but if each vehicle is equipped

with a formation controller, the pilot can control the group abstracted as a single

entity.

Modeling Biological Group Behavior

The models and tools described in this work can be seen through engineer's eyes as

controllers for groups of robots, but they can also be seen through scientist's eyes as

mathematical models of the dynamics of groups of biological agents. They can be

used to predict and describe foraging, predation, herding, and other group behaviors

in nature. For example, one of the detailed case studies in this thesis deals with

modeling the herding behavior of cows. The modeling technique can also be used

_ /__~__~_^illl_________~Xlm_~ ____il*I_1L/_i;;;;i__;_~~j___ ____X_~_i_

to generate dynamical models of groups of other animals, crowds of people, or even

traffic flow. Dynamical models of biological group behavior can also be used to drive

groups of robots to mimic the behavior of natural groups. This may be useful in

reproducing collaborative behaviors exhibited in natural systems, or in producing

decoy robots to participate with natural or engineered groups, and even to influence

the behavior of natural groups [39]. Therefore, in this work the word robot should be

seen as including natural autonomous agents such as people, cells, or cows.

1.3 State of the Art

The study of controlling multiple robots with the ability to communicate over a

network has become a particularly important part of the controls and robotics research

communities. Most research has focused on prototypical tasks. These prototypical

tasks can be stated as follows.'

1. Coverage- the deployment of a group of agents over an environment, or, more

generally, the dispersion of agents' states over a state space.

2. Consensus- the convergence of a group of agents to a common point, or, more

generally, convergence of the states of a group of agents to a common final vec-

tor or manifold. Consensus can be seen as in opposition to coverage, since in

the former agents come together and in the later they spread apart. This phe-

nomenon is often called by other names including rendezvous, agreement, and

flocking, and is closely related to gossip algorithms in distributed computation,

and oscillator synchronization.

3. Herding- the aggregation of a group of agents in such a way that they do not get

too far from, nor too close to, one another. This can be seen as a composition

of coverage and consensus.

1These categories, including their names, are my convention and are necessarily somewhat arbi-
trary.

In the literature, these tasks have emerged separately from one another and are

usually treated as entirely different problems. This thesis shows that they all derive

from the same cost function and are in fact all different regimes in a continuum of

behaviors. The main difference between them is in the convexity of the underlying

cost function. We discuss the relevant previous work from these three areas in detail

in Chapter 2, Section 2.2.

The state of the art currently is to analyze a variation on one of these three tasks,

or to implement an instantiation of one of them on a multi-robot platform. There

are few works which combine these tasks to design or implement more complex robot

behaviors in a multi-robot setting, as is done in this thesis. We combine coverage

with learning, which requires consensus, thereby composing two of these behaviors in

a provably stable way to create a more complex behavior. We also combine herding

with learning to produce models of complex cow herd motion.

1.4 Contributions

The contributions of this thesis are as follows.

1. Unified Optimization Formulation- An optimization problem is presented which

is general enough to represent all of the three categories of multi-robot problems

described above. This illuminates the common nature behind these multi-robot

phenomena and allows for their treatment under a unified gradient optimization

setting.

2. Convexity and Consensus- We prove that if the cost function representing a

multi-robot problem is convex, then one of its global optima is consensus (i.e.

all robots occupying the same state). Conversely, if we wish to solve a problem

for which consensus is not optimal, for example coverage or herding, we know

that the underlying cost function must be nonconvex. This has important

ramifications for reaching global optima using gradient based controllers.

3. On-Line Learning- Learning in the form of on-line parameter adaptation is

I 1-111- __ - - - - __ - - . --- 1-11 - - - - - - ----------

incorporated into our multi-robot controller. We use consensus in a novel way

to enable learning in the distributed multi-robot setting, so that each robot in

the group learns asymptotically as well as if it had global information. Stability

and convergence properties are proved using a Lyapunov approach. Learning

allows for provably stable multi-robot behavior that can adapt to uncertain and

slowly changing environments.

4. Implementation of Learning Coverage Controller on Mobile Robots- A coverage

controller with on-line learning is implemented on a group of SwarmBots (Figure

1-1(a)). A group of 16 SwarmBots learns the distribution of sensor information

in the environment while spreading out to cover the environment.

5. Implementation of Camera Coverage Controller on Flying Quad-Rotor Robots-

Using the unified optimization formulation, a coverage controller is designed

for controlling a group of flying robots with downward facing cameras. The

controller is implemented and tested on a group of three flying quad-rotor robots

(Figure 1-1(b)).

6. Implementation of Model Learning for a Herd of Cows- The multi-robot model

is used for modeling the herding behavior of cows. System identification tech-

niques are used to tune the parameters of the model using GPS data collected

from 3-10 actual cows (Figure 1-1(c)).

1.5 Organization

This thesis begins by reviewing an existing multi-robot coverage controller that uses

the geometric notion of a Voronoi tessellation. After stating and proving the ba-

sic qualities of this existing controller, we propose an optimization problem which

is shown to incorporate the Voronoi controller as a special limiting case. This opti-

mization problem is shown to be of a surprisingly general nature, specializing to give

controller designs for a number of different multi-robot problems. After posing the

basic optimization problem, we consider an important extension to the case where

STheory Multi-Agent Gradient Control
(Coverage, Consensus, Herding)

On-Line Learning

Applications

Quadrotor Camera SwarmBot Coverage Modeling Cow Herd
Coverage with Learning Dynamics

Figure 1-2: This figure shows the relation of the main optimization problem to each
of our three case studies.

some information in the environment is lacking and must be learned through sensor

measurements. We proceed by specializing the general optimization problem to three

specific applications. Each application involves formulating the correct optimization

problem, deriving a gradient controller, verifying stability properties, building a nu-

merical simulation, and finally, implementing the controller on a multi-robot platform.

The relation among the main parts of the thesis is shown in Figure 1-2. Thus the

thesis begins from a theoretical point of view and proceeds towards more practical

matters. After a short introduction, each chapter has an itemized summary of contri-

butions and a previous work section, and concludes with a synopsis of the important

points in the chapter.

Chapter 2 gives the background necessary for the rest of the thesis. It starts by

reviewing the previous work relevant to the thesis and describing the contributions of

the thesis in the context of the existing literature. It then defines the mathematical

notation that is used throughout the thesis, and states two theorems relating to the

convergence and stability of gradient systems that will be used repeatedly in later

chapters. We then derive a well-known Voronoi based controller and prove its conver-

gence properties. The material in this chapter is not a novel research contribution.

Chapter 3 provides the main theoretical foundation of the thesis by posing a

general optimization problem. A cost function is formulated using the motivating

example of coverage control. Controllers are obtained by taking the gradient of the

cost function, resulting in nonlinear controllers which involve computing an integral

_ ~___.~iil.i~-l:i-. .

of some quantity over the environment. It is shown that the coverage cost function

can be seen in a more general light as being relevant to consensus, herding, and

other multi-robot control tasks. The chapter draws attention to the way in which

sensor measurements are combined from different robots, and in so doing poses the

idea of a mixing function. It is shown that the choice of mixing function roughly

dictates how tightly the robots aggregate. A parameterized class of mixing functions

is proposed which is shown to unify and extend several different multi-robot control

strategies, including ones with geometric interpretations, probabilistic interpretations,

and potential field interpretations. This chapter also shows that the Voronoi based

controller can be approximated arbitrarily well by a smooth controller that does

not require the computation of a Voronoi tessellation. The chapter concludes by

formally delineating two classes of multi-robot problems: consensus problems and

non-consensus problems. Coverage control is shown to be a non-consensus problem,

which therefore requires the optimization of a nonconvex cost function.

Chapter 4 completes the theoretical part of the thesis by considering how to

augment the multi-robot controllers from Chapter 3 to include learning. Learning

is first incorporated into the standard Voronoi based controller from Chapter 2. We

then apply the learning architecture to augment the more general class of gradient

controllers seen in Chapter 3. We frame the learning algorithm as a matter of adapting

parameters of a parametric model on-line as data is collected. Additionally, the

algorithm leverages communication among neighboring robots to facilitate distributed

learning. A consensus method propagates the learning parameters from any one robot

throughout the network so that every robot learns asymptotically as well as if it had

global information. The controller and learning algorithm are then analyzed in the

same mathematical context using Lyapunov stability theory. We address questions of

convergence of the learning algorithm and convergence of the robots positions to their

goal configuration. Rates of convergence and conditions for asymptotically perfect

learning performance are also investigated and a number of different stable learning

algorithms are proposed.

Chapter 5 uses the theory from both Chapters 3 and 4 to implement a Voronoi

based controller that incorporates learning. The controller drives a group of robots to

spread over an environment while aggregating in areas of high sensory interest. The

controller learns the areas of interest from sensor measurements while simultaneously

driving the robots to minimize a cost function representing the surveillance cost of the

group. The algorithm is implemented on a team of 16 mobile robots. In experiments,

the robots repeatably and effectively learned the distribution of sensory interest while

covering the environment.

Chapter 6 uses the theory presented in Chapter 3 to design a controller to de-

ploy hovering robots with downward facing cameras to collectively monitor an envi-

ronment. Information per pixel is proposed as a general optimization criterion for

multi-camera placement problems. This metric is used to derive a specific cost func-

tion for multiple downward facing cameras mounted on hovering robot platforms. A

controller is derived by taking the negative gradient of this cost function, and conver-

gence is proved with the theorems from Chapter 2. The controller is implemented on

three flying quad-rotor robots. Results of the robot experiments are presented and

compared with simulation results.

In Chapter 7 the multi-robot model is adapted to model the behavior of cows in

a herd. Least Squares system identification is applied to tune the parameters of the

model to fit the behavior of an actual herd of cows. The herd model describes the

interaction between agents using a parameterized nonlinear force law and captures

the animals' preference for certain paths over the environment as a parameterized

vector-field. To demonstrate the method, GPS data collected from three cows in one

instance, and ten cows in another are used to tune the model parameters. Conclusions,

lessons learned, and future work are given in Chapter 8.

'-'-'ili'il'-l-";i-i~'-l--i-~-:~"' ?:~ll~~" nxc---i --~i ;---r;:-.--_~- ; ~:;- -:~; -;1- i- -l--~---- l l~-t;---;--i --; i --i- -ri. ;~;. ;_i:_.._i__:_i_:,_i ;r.s?;i;i;;-~~l:r;:~;~:-:,;=i:'-~l-"VR-

Chapter 2

Background

2.1 Introduction

This chapter accomplishes four goals: 1) it situates our work in the research literature

of robotics and controls, 2) it formulates the main multi-robot system model that is

referred to repeatedly in the thesis, 3) it proves two theorems about the convergence

and stability of gradient systems that are used repeatedly in the thesis, and 4) it

develops in detail a previously existing multi-robot coverage controller that will serve

as a baseline for comparison and elaboration throughout the thesis. The material in

this chapter does not constitute novel research contributions.

2.2 Previous Work

As described in Chapter 1, most research in the control of multi-robot systems has

focused on the following prototypical problems.

1. Coverage the deployment of a group of agents over an environment, or, more

generally, the dispersion of agents' states over a state space.

2. Consensus- the convergence of a group of agents to a common point, or, more

generally, convergence of the states of a group of agents to a common final vec-

tor or manifold. Consensus can be seen as in opposition to coverage, since in

the former agents come together and in the later they spread apart. This phe-

nomenon is often called by other names including rendezvous, agreement, and

flocking, and is closely related to gossip algorithms in distributed computation,

and oscillator synchronization.

3. Herding- the aggregation of a group of agents in such a way that they do not

get too far from, or too close to one another. This can be seen as a composition

of coverage and consensus.

In this thesis we show that these three problem arise from the same basic optimization

problem with different parameters or weightings on different terms. These three areas

have emerged in the research literature as separate problems, however. We will look

at the relevant literature foe each of tehse area and situate this thesis with respect to

it.

The kind of coverage control considered in this thesis owes its beginning to the

optimization formulation introduced in [26] which uses the geometrical notion of a

Voronoi partition to divide up the environment among the robots. This work itself

adapted concepts from locational optimization [30, 114], which is the study of opti-

mally placing industrial facilities. This, in turn, derives from a classical problem of

finding geometric median points, which has been attributed to Fermat. The coverage

controller in [26] drives the robots to reach a centroidal Voronoi configuration [70].

There are a number of other notions of coverage including the notion of painting a

sensor footprint over an environment as in [17, 20, 56], or of introducing sensors se-

quentially in a centralized way to optimize a probabilistic quantity, as in [52,53]. This

thesis adopts the locational optimization approach for its interesting possibilities for

analysis, its connection to distributed optimization, and the resulting potential for in-

tegrating it with graph theory (to model communication networks) and learning. The

basic idea introduced in [26] has been extended and elaborated upon considerably.

For example, [87] used a deterministic annealing technique to improve final robot

configurations, [25] extended the controller to robots with finite sensor footprints and

other realistic complications, [77] extended the controller to heterogeneous groups of

_ _ _I__l~_t__^_rXi/_l liltli-ll(.;. _ itiiiili;i i -iii~i-)ii---- i-i-r-i~---;-r ~-ij---r-1~~-1-__1_^_1 ~_~l~-~l-i-ii-ii_ _itiiiiiii~;:--~~-l-i;i--~FLII-lii- ii~_ Il.__-ll_ _l--L1_..j___ il-L .i i -_-_L_ Y~i

robots and nonconvex environments, [75] generalized the Voronoi partition by intro-

ducing the Power Diagram to achieve equitable mass partitions, and [78] treated the

problem of coverage in time varying environments. Probablistic scenarios that use the

same kind of controller have also been considered in, for example [57], [4], and [76].

The article [63] and the book [14] provide an excellent consolidation of much of this

research.

One common thread in all of these coverage control works is that the distribution

of sensory information in the environment is required to be known a priori by all

robots. This a priori requirement was first relaxed in [95] by introducing a controller

with a simple memoryless approximation from sensor measurements. The controller

was demonstrated in hardware experiments, though a stability proof was not found.

One of the contributions in this thesis is to incorporate learning to enable optimal

coverage of an unfamiliar environment. We formulate the problem of learning about

an unknown environment as an adaptive control problem. Adaptive control is usually

applied to the control of dynamical systems that are unknown, or only partially

known. Some of the standard text books on adaptive control are [67, 89,103] and a

well-known paper that deals with an adaptive control architecture that accommodates

more general function approximation techniques is [88]. This thesis leverages the

proof techniques used in this body of work to obtain Lyapunov stability results for

coverage controllers that incorporate learning, not of dynamics, but of some aspect

of the environment itself.

The second multi-robot control problem relevant to the work in this thesis is con-

sensus. Consensus phenomena have been studied in many fields, and appear ubiqui-

tously in biological systems of all scales. However, they have only recently yielded

to rigorous mathematical treatment; first in the distributed and parallel computing

community [9,10,107,108] in discrete time, and more recently in the controls commu-

nity in continuous time. One of the foundational works on consensus in the controls

community is [46], which analyzes the well-known flocking model presented in [109],

and presents general consensus conditions for multi-agent systems with switching

sets of neighbors. Another foundational work of this genre is [71] which deals with

directed communication networks, switching sets of neighbors, and communication

time-delays. Other works in this area include [111,112] which uses contraction theory

to analyze synchronization of oscillators (which can be seen as consensus on the phase

of multiple periodic systems), [13] which looked at asynchronous communication and

unbounded communication delays, [27] investigated a model in which the influence of

one agent over another decays as a function of the distance between them, drawing

parallels with the emergence of language in isolated human populations, and [66] con-

sidered agents that communicate only limited state information with agents within

their line-of-sight to model flocking behavior in birds.

In this thesis, consensus plays a key role in distributed learning. Unknown factors

in the environment, such as where the most informative data can be found, is learned

on line in a distributed way by propagating sensor measurements gathered by each

robot around the network. The robots essentially reach a consensus on the function

they are trying to learn, each robot getting the benefit of the senor measurements of

all the other robots in the network. This is similar to distributed filtering techniques

that have recently been introduced, for example in [62, 117], though in contrast to

those works, the controllers in this thesis are concerned with maintaining provable

stability of the combined learning and control system.

Herding, the third multi-robot control problem relevant to this thesis, has been

studied under many variations, and is usually seen as a modification to the consensus

problem. Herding is often carried out using potential field formulation in which agents

attract each other if they are too far and repel each other if they are too close, as

in [35]. Situations in which agents only effect each other when they are within a certain

distance are treated in [104] and extensions which attempt to maintain connectivity

of the underlying communication graph in these situations are considered in [29,116].

These systems require nonsmooth analysis techniques, for example those described

in [24,86]. Results pertaining to the distributed computation of graph connectivity are

also an important part of the latest work on herding and consensus, as in [115]. Graph

theory more generally has long history in pure mathematics, and a well known text on

graph theory is [37]. Our application in Chapter 7 uses system identification to tune

:I ~_ -il'-(-~';-c;i.ili_;~-i=;;ri--r;iir;l~- ;.irr""--;~i:;n(:_~j.-ii~ !------~r-:~- :::

the parameters of a herding model. Both systems identification and herd models have

a rich literature separately, though there appears to little prior work in combining the

two. One exception is the work of Correll et al. [22,23] which uses system identification

to learn the parameters of a rate equation describing the behavior of a multi-robot

system used for turbine blade inspection. Many of the results in this thesis are based

on results that have been published in [91,93,94,96-100].

2.3 Mathematical Preliminaries

This section gives the mathematical notation and definitions used throughout the

thesis and states two basic theorems that will come in handy in later chapters. We

will use Rd to denote the d-dimensional Euclidean space, and R0 and R>o to be

the non-negative and strictly positive quadrants of d-dimensional Euclidean space,

respectively. We mean the symbols >, <, > and < to apply element-wise for vectors.

An open interval on the real line with end points x and y is denoted (x, y) and the

closed interval [x, y], with [x, y) and (x, y] being the intervals closed on the left, open

and the right, and open on the left, closed on the right, respectively. The symbol

a. will be used to refer to the boundary of a set and a - /d. to refer to a partial

derivative. Real vectors will not be differentiated from scalars with a bold font, but

wherever it is not obvious we will explicitly state v E Rd or s E R for a vector v and

scalar s. The vector of ones is denoted 1 and the n x n identity matrix is denoted In.

The derivative of a function v with respect to time will be denoted either with the

conventional dv/dt, or with the shorter i notation where convenient. The e2 norm is

denoted II II and 1 " Ip gives the EP norm. A function f :Q Q R is called Lipschitz on

Q if there exists a constant L such that If(x 2) - f(xl) I /3flx 2 - xll1, for all points

xl, x2 E Q. The a function is called locally Lipschitz if, for any point x E Q, there

exists a ball B(x) centered at x such that the function is Lipschitz on B(x) with a

constant /3(x) that depends upon the point x. A sufficient condition for a differential

equation ± = f(x) to have a unique solution for a given initial condition is that the

function f is locally Lipschitz [14, 43, 49].

2.3.1 Convex Optimization

We now state some basic definitions from convex optimization which can be found

in any standard text on the topic, for example [8]. A set Q C R' is called convex if,

for any two points in Q, all points along the line segment joining them are also in Q.

Formally,

x+(1l-a)yEQ Vx,yEE and Va E[0,1]. (2.1)

An important consequence of the convexity of Q is that any convex combination of

points in Q is also in Q. A convex combination of m points xi E Q is one of the form

m m

x=Eaixi where ca= 1 and ac>O Vi. (2.2)
i=1 i=1

A function f : Q R is called convex if

f(ax + (1 - a)y) < af(x) + (1 - oa)f(y) Vx, yE and Va E [0,1]. (2.3)

This is equivalent to saying that the set of all points lying on or above the function f

is a convex set (this set is known as the epigraph of f). A function is called strictly

convex if the '<' can be replaced with a '<' in the above relation. Also, with regards

to optimization, we will use the word minimum to mean minimum or infimum if no

minimum exists.

We now state a theorem concerning the convexity of the set of minima of a con-

vex function. The theorem follows from Weierstrass' Theorem and some well-known

properties of convex functions.

Theorem 2.1 (Minima of Convex Functions) For a continuous, convex func-

tion f : Q- IR , where the domain 2 C IR" is convex, if any of the following are

true:

1. Q is bounded

;;

2. There exists a scalar y such that the level set {x E Q I f(x) < 7} is nonempty

and bounded

3. f is such that limjllx 1 _ f(x) = 00

then the set of global minima of f is non-empty and convex.

Proof 2.1 Please refer to [8].

2.3.2 Graph Laplacians

An undirected graph' 9 = (1, £) is defined by a set of indexed vertices I = { 1,..., n}

and a set of edges S = {el,...,ec }, where ei = {j, k} and j, k E 1. In the context of

our application, a graph is induced in which each agent is identified with a vertex, and

an edge exists between any two agents that are in communication with one another.

Consider a function w : Ix I H Ro>0 such that wij 0 Vf{i,j} S and wij > 0

V{vi, vj } E S. We call wij a weighting over the graph G. Next consider the weighted

graph Laplacian matrix L, whose terms are given by

S -wij for ii j (2.4)

E =nwij for i =j.

A graph is connected if, for any two vertices, there exists a set of edges that defines

a path between them. The following result is well known in graph theory and will be

useful in proving properties of our distributed, on-line learning algorithm in Chapter

4.

Theorem 2.2 (Graph Laplacians) For a connected, undirected graph, the weighted

graph Laplacian is symmetric, positive semi-definite, L > 0, and L has exactly one

zero eigenvalue, with the associated eigenvector 1 = [1,.. . , 1] . In particular, L1 =

1TL = 0, and xTLx > 0, Vx cl, c E R.

Proof 2.2 Please refer to [37].

'We will only be dealing with undirected graphs in this thesis. When we refer to a graph it is
assumed to be undirected.

2.4 Multi-Robot System Model

In this section we introduce the basic multi-robot system model that will be used

throughout the thesis and provide a condensed review of gradient systems and their

convergence and stability properties.

Let there be n robots, where robot i has a position pi E P c R . The state

space for a single robot is P and the dp is the dimension of the state space. Consider

a vector P E pn C Rndp which is the vector obtained by stacking all of the robot

positions together, P = [p ... p]T. We will refer to the vector P as the configuration

of the robots since a single point P in the high dimensional space pn represents the

positions of all the n robots in the low dimensional space P. Now consider a cost

function H : pn i R that represents the suitability of a given configuration of

robots for a given task. We will alternately write 7-(P) or H(pI,..., pn) in referring

to a specific value of the function for a configuration P. Let the cost function be

differentiable everywhere on P7 so that its partial derivative with respect the each

robot's position is well-defined, /-t/lpi. Also, let all/pi be locally Lipschitz on Pn

to guarantee the existence of solutions of our system.

Let the robots have simple integrator dynamics

= us, (2.5)

where ui is the control input to robot i. This assumption will be used throughout the

thesis unless otherwise explicitly stated. We have found in experiments that a fast

low level control loop is sufficient in many cases to approximate integrator dynamics.

The standard form for the controllers used in this thesis is given by

S 8 (P)
ui = -k a (2.6)

where k E R> is a positive control gain. The closed loop multi-robot system is then

_$~-~'C1I l;-;~~i--'-.~iiiii-~:~i~~i--i.-~

n. robots in R d'

Figure 2-1: This figure shows the relationship between the motions of individual
robots in their environment and the trajectory of a single point in a high dimensional
configuration space.

represented by the n coupled differential equations

(2.7)-k (P)
89pi

Equation (2.7) is the subject of this thesis. We will refer to it repeatedly as the

"multi-robot system," the "closed-loop dynamics," or the the "gradient system," and

we display it in a box for emphasis. The relationship between the motion of the

group of robots in their environment and the motion of a single point in the high

dimensional configuration space is shown in Figure 2-1.

2.4.1 The Induced Graph

The multi-robot system (2.7) induces a graph in the following way. The gradient

component Mo/pi may only depend upon some of the other robots in the network.

Let Ai be the set of indices of the other robots upon which the gradient component

~;;;;;;;;;;;~;;;;;;;;;;;;;~;;;;;;;;;;;;;

R-/(11 , - , 11)

ha/llpi9 depends, and let Pr be the vector of the positions of those robots. We have

-k M(P)
api

For robot i to compute it's own controller, it only needs information from the robots

Afi. Therefore a graph is induced in which each robot is a vertex, and there is an

edge between any two robots that require one another's positions to compute their

gradient component. The controller is then said to be distributed over this graph.

For example, in the next section we will describe a controller that is distributed over

the Delaunay graph.

Of course it be the case that a particular hardware platform and particular envi-

ronmental conditions render a controller infeasible given the communication graph.

In this case an approximation must be used. We recommend two possible strategies

for approximating the controller on a given communication graph: 1) each robot com-

putes its controller using only the robots with which it is in communication, and 2)

each robot maintains an estimate of the positions of the robots in fA and uses these

estimates to compute its controller. In this thesis we assume, unless otherwise stated,

that the communication graph is sufficient for each robot to compute its controller,

since our emphasis is more on dynamical properties of the controllers then on network

properties.

2.4.2 Properties of Gradient Systems

We can equivalently express the n coupled equations in (2.7) as a single equation

using the configuration vector P as

p - kd'H(P)=-k d(2.8)
dP

From (2.8) it is clear that our multi-robot system is a gradient system, meaning the

right hand side of the governing differential equation is proportional to the negative

gradient of the scalar valued cost function 7-. Gradient systems have particularly

__ ~)_I^ __l___(lX*~~^ i;C__ ;L;_lillii;ii//illiiii--(-i;i~iil-- i~ji _ ~-~-ii.i-l:i__lliii:ii ~.ii~-----i~;~i;-:riii--;l^i-;--l_-_l_-:

simple and powerful convergence and stability properties, the most important of which

will be given here.

Theorem 2.3 (Global Convergence of Gradient Systems) Let

Q = {P* dK/dP p*= 0} be the set of all critical points of K. If H is radially

unbounded, or if all trajectories of the system are bounded, then all trajectories of the

system P = -kdK/dP converge asymptotically to Q.

Proof 2.3 The theorem follows as a corollary to LaSalle's Invariance Principle [49,

55, 103]. Let K be the Lyapunov function candidate. Then ' = -k|lld/dP1 2 < 0,

and if K is radially unbounded, the trajectories of the system are bounded, therefore

by LaSalle's Invariance Principle all trajectories converge to the largest invariant

set contained in Q. By the definition of the dynamics, Q itself is an invariant set,

therefore all trajectories converge to 2.

Remark 2.1 This result does not necessarily imply that the trajectories converge to a

single point in Q. However, this is true if Q is a set of isolated points. Furthermore, if

the system ever reaches a point P* E Q, it will stay at that point for all time, whether

or not it is an isolated critical point, since P = 0 Vt > 0 at such a point.

The following useful result pertains to the local stability of critical points of 7.

Theorem 2.4 (Local Stability of Equilibria of Gradient Systems) Let P* be

a critical point of K. Then P* is a locally asymptotically stable equilibrium of the

gradient system P = -kdK/dP if and only if P* is an isolated minimum of -.

Proof 2.4 Please see [43] Chapter 9, Section 4, corollary to Theorem 1.

Remark 2.2 Theorem 2.3 is concerned with all critical points of -- maxima, min-

ima, and saddle points. However, it is intuitively clear that the system ought to prefer

minima. This intuition is made precise in Theorem 2.4. There are initial conditions

for which the system will converge to a saddle point or a maximum, but these critical

points are not locally stable. That is, a perturbation will cause the system to leave

the critical point. Minima, on the other hand, are locally stable. They are robust to

perturbations.

We will use Theorems 2.3 and 2.4 to prove convergence and stability for many

particular controllers throughout the thesis.

2.5 Voronoi Coverage Control

Cortes et al. [26] proposed a controller for deploying a group of robots over an environ-

ment to provide sensor coverage of the environment. The controller uses a Voronoi

tessellation to divide up the environment among the robots, each robot being in

charge of sensing over its Voronoi cell. In this thesis we use this controller, which

we call the Voronoi controller, as a baseline strategy. We will demonstrate that the

Voronoi controller is a special case of a more general class of coverage controllers. It is

necessary therefore to provide a motivation and derivation for the Voronoi controller

before proceeding to our contributions in the following chapters. In this section we

review the Voronoi controller and prove some crucial details about it's derivation.

2.5.1 Voronoi Cost Function

The cost function upon which the Voronoi controller is based is adapted from the field

of locational optimization, which addresses how to optimally place retail of industrial

facilities [30,114]. The canonical example is placing retail facilities to minimize the

aggregate travel time of a population of customers.

Consider a multi robot system as in Section 2.7 in which the robots are positioned

in a convex bounded environment Q. An arbitrary point in Q is denoted q and the

robot positions pi E Q = P. Define the sensory function, ¢ : Q - IR>o, and let

it be known to all of the robots. The sensory function should be thought of as a

weighting of importance over Q. We want to have many robots where ¢(q) is large,

and few where it is small. For now we will assume that the function ¢(q) is known by

the robots in the network. In Chapter 4 we will relax this requirement with on-line

learning.

The precise definition of the sensory function depends on the desired application.

In an application in which a team of robots are used to clean up an oil spill, an

appropriate choice for the sensory function would be the concentration of the oil

as a function of position in the environment. For a human surveillance application

in which robots use audio sensors, O(q) may be chosen to be the intensity of the

frequency range corresponding to the human voice. The sensory function O(q) may

also be the probability density function relating to the occurrence of events in Q.

The robots are equipped with sensors and the quality of sensing is assumed to

decrease according to a differentiable, strictly increasing function f : Ro>0 -- IR.

Specifically, f(lq - pi |) describes how costly is the measurement of the information

at q by a sensor at pi. This form of f(x) is physically appealing since it is reasonable

that sensing will become more unreliable farther from the sensor. Then the standard

Voronoi cost function can be written

7(P) = min f(llq - pil)(q) dq. (2.9)
jq i { 1,....n}

The minimum over sensors reflects the fact that a point q should be the responsibility

of the sensor that has the best sensing performance at q. The problem of covering

the environment Q is now formulated as moving the robots to a configuration P* to

minimize 7-.

The cost function (2.9) has been used in a wide variety of applications including

data compression, allocation of resources, and placement of industrial and commercial

facilities. In the following section we consider computing the gradient of (2.9) in order

to design a gradient descent controller.

Consider the minimization of (2.9)

min H(P) = min min f (11q - pi 11)(q) dq.
P P i

The minimum inside the integral induces a partition of Q into non-overlapping cells,

Vi, to give

n

minR (P) = min Z f(1 q - pi |)0(q)dq, (2.10)
P P =

where Vi = {q E Q I f(lq-pi f(llq-pjll) Vj # i}. Since f is strictly increasing,

this is equivalent to

V1 = {q EQ I q - pil| I |q- pj| Vj ¢ i}. (2.11)

The region Vi is the Voronoi cell of pi. The collection of Voronoi cells is called the

Voronoi tessellation2 [70] of Q, an example of which is shown in Figure 2-2(a).

2.5.2 Computations with Voronoi Tessellations

We now define a number of quantities relating to Voronoi cells. Let 8Vi and 8Q be

the boundary of Vi and Q, respectively. By qav (P) we mean a point q E 81K, and

nov is the outward facing unit normal of 8V. Given a robot i, we define Ai as the

index set of robots that share Voronoi boundaries with Vi, NJs = {j I Vi n V 0}.

We denote the set of points on the Voronoi boundary shared by agents i and j as

lij = Vi n V as shown in Fig. 2-2. Then qlj, (pi, pj) is a point on that shared boundary,

and ngl, is the unit normal of lij from pi to pj. By the definition of the Voronoi cell

(2.11), we know the following facts:

81v = (ujilj) u (8V n 8Q), (2.12)

4ij = lji , (2.13)

nizj = -nz, . (2.14)

It can also be proved that the shared boundaries lij are hyperplanes, and the Voronoi

cells are convex.

The following lemma states an important fact about the cost function (2.10).

Lemma 2.1 (Cancellation of Boundary Terms) The gradient of 2-(P) is given

by

- f (||q -pil|)O(q) dq. (2.15)

2It is convenient for us to use < in the definition of Voronoi cell, rather than the more common
definition with <

(_I_ _ _ _ __ji;/lll_____~; I_~___ ~~__l;_l__i__ijii;

p+p,)12

V92

(a) Voronoi Tessellation (b) Detail of Voronoi Cell Boundary

Figure 2-2: An example of a Voronoi Tessellation is shown on the left and the quanti-
ties and constraints associated with the Voronoi boundary shared between neighboring
agents is shown on the right.

Proof 2.5 Differentiating under the integral sign [32], we have

f (lq - pi l)0(q) dq
09pi api

f 8qav, (F)
+ f(I q - Pll)Oq) n(P d)S)¢() dapi

+J , f (Ilq -Pc p11)0(q) ql,(pi, pj)op nl,, dq,

where q(Pand ji(,) are d x d matrices. Using (2.12), (2.13), and (2.14)

M = -f(Ilq, ill)o(q) dq

+ E (f(lq -pill - f(Ilq - pj 1))4(q) aqj(pipj) nt,, dq.

By definition of 1ij , IIq - Pill = IIq - Pll Vq E lij, so the last sum vanishes. Since

points on the boundary of the environment do not change position as a function of pi,

we have
q _0 Vq E 8V n aQ

8pi
and the second term vanishes. O

Remark 2.3 Lemma 2.1 is surprising for its simplicity. One might expect the gra-

dient of I to be more complicated due to the fact that the Voronoi tessellation which

defines the boundary of the integrals is a function of the robots' positions. Essentially,

all of the complicated boundary terms cancel out leaving a simple expression for the

gradient.

Remark 2.4 For an agent to compute its gradient component (2.15) it must be able

to compute its Voronoi cell, which means it must know the positions of its Voronoi

neighbors. It is a common assumption in the literature [26, 77, 87] that a robot knows

the positions of its Voronoi neighbors either by sensing or communication. Unfortu-

nately, this assumption presents a practical conundrum: one does not know beforehand

how far away the farthest Voronoi neighbor will be, thus this assumption cannot be

translated into a communication range constraint (aside from the conservative require-

ment for each robot to have a communication range as large as the diameter of Q).

In practice, only Voronoi neighbors within a certain distance will be in communica-

tion, in which case results can be derived, though with considerable complication [25].

We will take this assumption as implicit. Indeed, our experimental and numerical

results suggest that performance degrades gracefully with decreasing communication

range among robots.

We now restrict ourselves to the case in which f(x) = 1/2x2 . This form of f(x)

is appropriate for light-based sensors, for example cameras, infrared detectors, or

laser scanners, since the intensity from a light source drops of with the square of the

distance to the source. The cost function becomes

i=1

Define the mass, first moment, and centroid of the Voronoi cell i as

Mvi = fy (q) dq, LV, = f q(q)dq, and C = Lv /Mvg, (2.17)

respectively. Note that f(x) strictly increasing and ¢(q) strictly positive imply both

My > 0 V I 0 and Cv E V\9&V (Cv is in the interior of V). Thus My and C0

have properties intrinsic to physical masses and centroids.

Using this notation, N-/&p, simplifies to

S- J (q - p)(q)dq = -M (Cv, - pi) . (2.18)

Critical points of N (configurations where the gradient is zero) are those in which

every agent is at the centroid of its Voronoi cell, pi = CV, Vi. The resulting partition

of the environment is commonly called a Centroidal Voronoi Configuration (CVC).

It is known that CVC's can correspond to local maxima, minima, or saddle points

of 7. Finding global minima of N is known to be difficult (NP-hard for a given

discretization of Q) even in the fully centralized case. Next, we present a distributed

control law that is used in [26] to make the robots converge to a CVC.

2.5.3 Voronoi Controller

A classic discrete-time method to compute CVC's is Lloyd's algorithm [60]. In each

iteration this method executes three steps: (i) compute the Voronoi regions; (ii)

compute the centroids; (iii) move each pi to its corresponding centroid.

In [26] continuous-time version of this approach is proposed for robots with simple

integrator dynamics as in (2.5). The control law is given by

ui = k(Cv, - pi) (2.19)

and it guarantees that the system converges to a CVC. This control law gives a

variation on the multi-robot system (2.7), with

A = .- (2.20)
My api

The proof of convergence is similar to that of Theorem 2.3. Firstly, we must

restrict the state space S c Pn to those configurations for which pi # pj Vi Z j, that

is S = {P T= ...f p]T I pi pj Vi h j}. It is known from [26] that S is invariant

under the control law (2.19) (this relies upon Q being convex). Now define the set

of CVCs Q = {P I pi = Cv Vi}. Notice from a-ll/ap that Q is precisely the set of

critical points of H over P. This leads to the following convergence result, which is

similar to Theorem 2.3, but has a slightly more subtle proof.

Theorem 2.5 (Voronoi Convergence) The system with dynamics 5i = k(C -pi)

i = 1, 2,... , n converges asymptotically to the set of centroidal Voronoi configurations

Proof 2.6 The theorem follows from LaSalle's Invariance Principle [49, 55, 103]. By

assumption, the domain of the robots Q is bounded, therefore P is bounded. P is

also invariant under the control law (2.19), therefore all trajectories are bounded.

The control law is locally Lipschitz (this can be verified directly from the definition

of locally Lipschitz). Computing K along the trajectories of the system we find K =

- Z'? M lC - pi I2 < 0, so all the conditions of LaSalle's Invariance Principle are

satisfied, and the system converges to the largest invariant set in Q, but Q itself is

invariant, so the system converges to Q.

Remark 2.5 Theorem 2.4 applies directly to this controller as well. Unfortunately, it

is difficult to determine for this cost function which, if any, critical points are isolated

minima. Indeed, this appears to be strongly dependent upon the specific geometry of

Q and q(q). For example, if Q C R2 is a circular disc and ¢(q) is constant, then the

set of critical points can be shown to be a closed orbit in R 2n (this is not difficult to

visualize considering the symmetry of the problem).

2.6 Synopsis

In this chapter we laid the groundwork for the remainder of the thesis. Firstly, we

situated our work in the research literature. Next, we fixed the mathematical notation

that will be used throughout the thesis. We then formulated the main multi-robot

system model to be used throughout the thesis and stated two foundational theorems,

one concerning the convergence of gradient systems to the set of critical points of their

associated cost function, and one stating that only isolated local minima are stable.

Finally, we described in detail an existing multi-robot coverage control strategy that

relies upon a Voronoi tessellation, and we proved the convergence of that strategy to

a centroidal Voronoi configuration.

The Voronoi controller (2.19) serves as a baseline throughout the thesis. We show

in Chapter 3 that it is, in fact, a limiting instance of a more general class of coverage

controllers that model a broad range of sensing and actuation modalities. We add

stable on-line learning to learn the sensory function O(q) in Chapter 4, and we look

at three detailed case studies with experiments in Chapters 5, 6, and 7.

Chapter 3

Generalized Coverage Control

3.1 Introduction

In this chapter we introduce two of the main theoretical contributions of the thesis.

Firstly we propose a general multi-robot cost function which can be specialized to

a number of different multi-robot tasks. The negative gradient of the cost function

is used as a multi-robot controller as in equation (2.7). The cost function has three

main components: a sensory function, a sensor cost, and a mixing function. We put

special emphasis on the role of the mixing function, and show that a particular family

of mixing functions act as a smooth approximation to the Voronoi controller seen in

Chapter 2. The Voronoi controller is recovered exactly in the limit as a parameter

goes to -oo, while a new probabilistic interpretation is achieved with a parameter

value of -1. Herding and consensus controllers are also derived with different values

of the mixing function, sensor cost, and sensory function.

Secondly, we prove a result that justifies the fact that our controllers are proven

to converge only to local minima of the cost function, rather than global minima.

It is known that gradient descent controllers can be proven to find global minima of

convex functions, but in general they can only be proven to find local minima for

nonconvex functions. It is tempting, therefore, to try to find convex cost functions

for multi-robot problems. We prove in this chapter that any multi-robot task other

than consensus must be characterized by a nonconvex cost function, and therefore,

in general, one cannot expect better than convergence to a local minima. This does

not close the door on the problem, but rather, it focuses attention on finding special

classes of nonconvex cost functions that may allow for specialized convergence results.

3.1.1 Related Work

Cortes et al. [26] introduced a controller for multi-robot coverage that works by con-

tinually driving the robots toward the centroids of their Voronoi cells, as described

in Section 2.19. This inherently geometric strategy has seen many recent extensions

to robots with a limited sensing radius in [25], to heterogeneous groups of robots and

nonconvex environments in [77], and to incorporate learning of unknown environments

in [97]. A recent text that presents much of this work in a cohesive fashion is [14] and

an excellent overview is given in [63]. Coverage controllers also have been successfully

implemented on robotic systems in [94,96]. In this work we adopt notational con-

ventions from the Voronoi based coverage control literature. Other common methods

for coverage control take a probabilistic perspective. For example [57] proposes an

algorithm for positioning robots to maximize the probability of detecting an event

that occurs in the environment. Distributed dynamic vehicle routing scenarios are

considered in [4,76], in which events occur according to a random process and are ser-

viced by the robot closest to them. Another common coverage control method is for

robots to drive away from one another using artificial potential fields [44]. Despite the

rather different models and objectives in these works, there are two common points

which motivate us to find a unifying principle: 1) they all rely upon an optimization,

and 2) they all use controllers that solve this optimization through the evolution of a

dynamical system.

Some existing approaches do not fit under the framework we propose in this chap-

ter. A significant body of work has looked at coverage control as a motion planning

problem. A survey of this work can be found in [20], and some significant contribu-

tions can be found in, for example, [16,56] and the citations therein. Other authors

have proposed information theoretic algorithms which consider placing sensors se-

quentially rather than driving them with a controller. Works such as [42,52] position

I / j:;i;~_l;__;_~_jl~_^i----~~-i-.i_;-lll- -1 -III..I1II*lili -:-i--~i-~----;~ i-_-_^i-j--i__illi I i.. I-i iil I- i~ --l-i- ----_^----~i(i-l

sensor nodes to maximize information for the sake of estimating a Gaussian random

process in the environment.

3.1.2 Contributions

The optimization approach in this chapter ties together much of the existing literature

on coverage control. Specifically, our contributions are:

1. We propose a cost function, putting particular emphasis on the role of a mizing

function, a previously unrecognized component that captures critical assump-

tions about the coverage task. We introduce a family of mixing functions with

a free parameter, a, and show that different values of the parameter correspond

to different assumptions about the coverage task, specifically showing that a

minimum variance solution (i.e. a probabilistic strategy) is obtained with a pa-

rameter value of a = -1, Voronoi coverage (a geometric strategy) is recovered

in the limit a - -oo, and a broad family of potential field based herding and

consensus controllers are recovered for positive values of a.

2. We prove a new result linking the convexity of a cost function to the multi-agent

phenomenon of consensus. We show that coverage tasks are fundamentally

different from consensus, and that they require the optimization of a nonconvex

cost function. This suggests inherent limitations to gradient descent controller

designs, which are pervasive in the coverage control literature.

The chapter is organized as follows. In Section 3.2 we introduce the cost func-

tion, describing the purpose of each of its parts including the mixing function. We

then produce a class of provably stable distributed coverage controllers by taking

the gradient of the cost function. In Section 3.3 we derive three special cases of the

controller; a Voronoi controller, a minimum variance controller, and a potential field

controller. Section 3.4 presents our results on the relation between the convexity of a

cost function, and multi-agent consensus. Simulation results are given in Section 3.5

and a synopsis is presented in Section 3.6.

3.2 Generalized Coverage

In this section we introduce a general multi-agent cost function. We will use this

cost function to define a new class of multi-agent controllers by introducing a mixing

function, which describes how information from different robots should be combined.

We use the cost function to derive a stable gradient descent controllers of the form

(2.7).

3.2.1 Coverage Cost Function

In keeping with the notation from Chapter 2, let there be n robots, and let robot

i have a position pi E P C Rdp, where P is the state space of a robot, and dp is

the dimension of the space. The configuration of the multi-robot system in denotes

P = T[pT. p]T" E p. We want our robots to cover a bounded region Q Id,

which may or may not be related to the position space P of the robots. For example,

the robots may be constrained to move in the space that they cover, so P = Q as

in [26], or the robots may hover over a planar region that they cover with cameras,

so P c 1R3 and Q c R2 , as in [94].

For each robot, a cost of sensing, or servicing, a point q E Q is given by a

function f(pi, q). For simplicity of analysis we assume that f(pi, q) takes on only non-

negative values, and that it is differentiable with respect to pi (this can be generalized

considerably as in [25]). The sensor measurements of the n robots are combined in a

function g(f (p, q),... , f(pn, q)), which we will call the mixing function. The mixing

function embodies assumptions about the coverage task; that is, by changing the

mixing function we can derive Voronoi based coverage control, probabilistic coverage

control, and a variety of other kinds of distributed controllers.

Combining these elements, we propose to use a cost function of the form

H(P) - g(f (p, q),.. f (Pn, q))O(q) dq. (3.1)

where : R -dq 1R>o (we use the notation R>o to mean the set of positive real

numbers and IRd the set of vectors whose components are all positive, and likewise

for R>o and RIo) is a weighting of importance over the region Q. Intuitively, the

cost of the group of robots sensing at a single arbitrary point q is represented by the

integrand g(f(pl, q),... , f (p, q)). Integrating over all points in Q, weighted by their

importance O(q) gives the total cost of a configuration of the robots. We want to find

controllers that stabilize the robots around configurations P* that minimize -i. We

will see in Section 3.4 that for coverage, and many other multi-agent problems, I is

necessarily nonconvex, therefore gradient based controllers will yield locally optimal

robot configurations. The cost function (3.1) will be shown to subsume several dif-

ferent kinds of existing coverage cost functions. Drawing out the relations between

these different coverage algorithms will suggest new insights into when one algorithm

should be preferred over another.

3.2.2 Mixing Function

The mixing function gc : Rn, - R describes how information from different robots

should be combined to give an aggregate cost of the robots sensing at a point q. This

is shown graphically in Figure 3-1 where the overlap of the two sensors is shown for

illustrative purposes as the intersection of two circles. We propose a mixing function

of the form

g (fh .) = 1 f, (3.2)
i= 1

with a free parameter a. The arguments fi 2 0 are real valued, and in our context

they are given by evaluating the sensor function f(pi, q), hence the notation fi.

This mixing function has several important properties. Firstly, notice that for

a > 1 it is the p-norm of the vector [fi . .. fn]T . Specifically, it is convex for a > 1

and as a -- o0, g.(.) --+ maxi(-), which is the t" norm. However, in the regime

where a < 1, g(.) is not a norm because it violates the triangle inequality. In this

regime it is also nonconvex, the significance of this will be explored more in Section

Sensor cost Mixing function
f(Pi, q) n f (p,,q)'

Figure 3-1: The mixing function is illustrated in this figure. The mixing function
determines how information from the sensors of multiple robots is to be combined,
shown graphically as the intersection of the two circles in the figure.

3.4. One can readily verify1 that as a -- -oo, g(.) -- mini(-). From an intuitive

point of view, with a < 1, ga(-) is smaller than any of its arguments alone. That is,

the cost of sensing at a point q with robots at pi and pj is smaller than the cost of

sensing with either one of the robots individually. Furthermore, the decrease in g,

from the addition of a second robot is greater than that from the addition of a third

robot, and so on. There is a successively smaller benefit to adding more robots. This

property is often called supermodularity, and has been exploited in a rather different

way in [52]. Surface plots of ga(fl, f2) for a = -1, 1, and 2 are shown in Figures

3-2(a), 3-2(b), and 3-2(c), respectively, and the decrease in ga(') as the number of

arguments grows is shown in Figure 3-2(d). In this work we consider the number of

robots to be fixed, but it is useful to illustrate the supermodularity property of the

mixing function by considering the successive addition of new robots.

'We know limp ,[--. h] 1/f = maxi hi. Write lima~--o[E f]l/cl as limp . 0 [[E he]1/] - 1

with hi = 1/fit and = -a. We have limu , [[-i hI1//]- 1 = [maxi hi]- ' [] -1 = min fi.

I

..

.......

0.8

............ ... :

0.2

u 0

(a) Mixing Function Surface (a = -1)

u 0

(b) Mixing Function Surface (a = 1)

75

.5

!5

(c) Mixing Function Surface (a = 2)

1 2 3 4 5 6 7
Number of Robots

(d) Mixing

(a = -1)

8 9 10

Function Supermodularity

Figure 3-2: The proposed mixing function with a = -1, 1, and 2 is shown in 3-2(a),

3-2(b), and 3-2(c), respectively. The function is convex for a > 1 and nonconvex

otherwise. The nonlinear decrease in the function as more sensors are added, a

property known as supermodularity, is shown in Figure 3-2(d).

Including this mixing function in the cost function from (3.1) gives

(3.3)(f(Pi, q)a) q(q) dq.
i=l 1

3.2.3 Gradient Control

We use the multi-robot system equation (2.7) to derive the gradient controller

(3.4), = -k api q) (q) dq.On -f go) i-

.........

H a =

To provide some intuition about the meaning of this function, notice that in the case

that f(pi, q) is strictly increasing, the function inside the integral (f(p, q)/ga)a-1

gives an approximation to the indicator function2 of the Voronoi cell of agent i, the

approximation improving a a -- -o. This is shown graphically in Figure 3-3. For

8

4-

3.

2

0.2 0.4 Ole 0,8

(a) a = -. 5

time =0.0s

0 0.2 0.4 0.6 0.8

(b) a = -1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(c) a = -5 (d) a = -10

Figure 3-3: Contour plots of (f(pi, q)/g,) - are shown for a configuration of ten agent
positions. The Voronoi tessellation is shown as well for comparison. As the parameter
a approaches -oo, (f (p, q)/g9)a-1 becomes closer to the indicator function of the
Voronoi cell Vi.

simplicity, we choose te function f(pi, q) to be

f (p q) = q-pl', sothat fpq)= - (q - p). (3.5)
2 p

Other choices of f (p, q) were investigated in [25] and could be used here as well.

This function represents the cost of a single robot i sensing at the position q. The

quadratic form is appropriate for a variety of sensors including light based sensors,

2 The indicator function for a set S C Q returns 1 for q E S, and 0 otherwise.

3

such as cameras or laser scanners, chemical sensors, and others. For tasks in which

robots have to drive to a point q for servicing, and we want the cost to be proportional

to the distance travelled, it would be more appropriate to use f(pi, q) = I q - pill, for

example. Convergence to critical points of 7 and stability of isolated local minima

can be proved by a direct application Theorem 2.3 and Theorem 2.4, respectively,

from Chapter 2.

Theorem 3.1 (Convergence of Coverage Control) For a group of robots with

closed-loop dynamics (3.4) the robots converges to the set of critical points of 7-.

Proof 3.1 The theorem is immediate from Theorem 2.3.

Theorem 3.2 (Stability of Local Minima) For a group of robots with closed-loop

dynamics (3.4) only configurations P* for which 7H(P*) is an isolated local minimum

are locally asymptotically stable.

Proof 3.2 The theorem follows directly from Theorem 2.4.

Remark 3.1 (Stability Vs. Convergence) Although we already brought attention

to this distinction in Chapter 2, it is useful to reiterate the point. Theorem 3.1 says

that the system will converge to the set of critical points of H,, while Theorem 3.2

says that only local minima of H-, are stable. It is a basic fact of dynamical systems

that, given a special set of initial conditions, trajectories may converge to unstable

equilibria. However small perturbations will cause them to leave an unstable equilib-

riun, while stable equilibria are robust to small perturbations. In our experience cost

functions such as 'Ha have many saddle points and local maxima, so it is meaningful

to specify that the system prefers local minima of -,.

Remark 3.2 (Network Requirements) The computation of the controller requires

that robot i knows the states of all the robots in the network. For this to be feasible

there must either be a global supervisor or a fully connected network communication

topology. It would be more useful if the controller depended only upon the states of

robots with which it communicates. We suggest two methods to accomplish this, but

we do not analyze them in detail in this thesis. First, robot i can approximate its

control law simply by computing (3.4) using only the states of the robots with which it

is in communication. We expect this to give a good approximation because the func-

tion (f(pj, q)/g,)a- 1 depends weakly upon the states of agents that are not Voronoi

neighbors, especially for small values of a, as evident from Figure 3-3 . A rigorous

stability analysis of this approximation scheme is difficult, however. A second option

is for a robot i to use an estimated configuration vector, P, in its calculation of the

control law. The estimated configuration can be updated online using a standard dis-

tributed consensus algorithm (a so called "consensus estimator"). We expect that such

a scheme may be amenable to a rigorous stability proof as its architecture is similar

to adaptive control architectures. The investigation of these matters is left for future

work.

3.3 Deriving Special Cases

In this section we show how the cost function 3.1 can be specialized to give three

common kinds of coverage controllers, a Voronoi controller, which is geometric in

nature, a minimum variance controller, which has a probabilistic interpretation, and

a potential field controller. We conjecture that other coverage objectives beyond these

three can be achieved with different choices of the mixing function parameter a.

3.3.1 Voronoi Coverage

The Voronoi-based coverage controller described in Section 2.19 is based on a gradient

descent of the cost function

v = | q - pi 2 (q) dq, (3.6)

where Vi = {q E Q I]jq - pill Ilq - pjll, Vj Z i} is the Voronoi cell of robot i and

the use of the subscript V is to distinguish it from N and N7-. The Voronoi partition

can equivalently be written using the min function as

Nv = min(I q - pil 2)¢(q) dq, (3.7)

because a point q is in the Voronoi cell V if and only if Ilq - pjll is minimized for

j = i. As noted in Section 3.2.2, lima-_-_ g(f,..., fn) = mini fi. Therefore Nv is a

special instance of (3.3) with the mixing function g-o, = lim,,_-,g and f(pi, q) =

1/2lq - pll2 .

The choice of the min function for a mixing function now warrants some reflection.

Consider a distributed actuation scenario in which we want to position robots so as to

service an event that occurs randomly at some point in the environment q. Suppose

any robot is equally capable of rendering the service, robots have to physically travel

to the event to render the service, and our objective is to service an event as quickly

as possible. Naturally, an event should be serviced by the robot that is closest to

it, as it will reach the event the most quickly. In this case, the min function is the

appropriate choice for a mixing function. By using the min function we are saying

that the cost incurred by all the robots due to the event at q is the same as that

incurred by the robot that is closest to q.

On the other hand, consider a sensing task in which an event of interest occurs

randomly at a point q and is sensed at a distance by sensors located on the robots.

In this case the use of the min function is more difficult to justify. Using the min

function in this instance would imply that even though both pi and pj have some

sensory information about the event, the cost function only counts the information

from the one that is closest to q. This seems to be a poor choice of cost function for

sensing, since in such cases we would want to capture the intuition that two sensors

are better than one. The mixing function (3.2) captures this intuition. Furthermore,

even in distributed actuation tasks, using a continuous approximation to the Voronoi

cell improves the robustness of the controller. The discrete, geometric nature of the

Voronoi computation combined with the continuous controller can lead to chattering,

and small sensing errors can result in large changes in the control input. Fortunately,

the Voronoi tessellation can be approximated arbitrarily well by choosing a small value

of a, thereby preserving the Voronoi controller behavior while improving robustness.

3.3.2 Minimum Variance Coverage

We show in this section that setting the mixing function parameter to c = -1 causes

the robots to minimize the expected variance of their measurement of the location of

a target of interest. As a side effect, we will formulate an optimal Bayesian estimator

for the location of the target given the measurements of the agents.

Suppose our agents are equipped with sensors that give a noisy measurement of

the position of a target in the environment. Let the target position be given by

a random variable q that takes on values in Q, and agent i gives a measurement

y = q + w, where w - N(O, 12 f(pi, q)) is a bi-variate normally distributed random

variable, and where 12 is the 2x2 identity matrix. The variance of the measurement,

f(pi, q), is a function of the position of the sensor and the target. Intuitively one

would expect a sensor to localize a target with more precision the closer the target

is to the sensor. Then the measurement likelihood of agent i is IP(yi I q : pi) =

1/(2rf (pi, q)) exp{-Ily - q112/(2f (pi, q))}, and the notation P(- : pi) is to emphasize

that the distribution is a function of the agent position. Assume the measurements

of different agents conditioned on the target position are independent. Also, let 4(q)

be the prior distribution of the target's position. Then Bayes rule gives the posterior

distribution,

n.) P(y j I q pi)o(q)
P(q I y... yn)= 0=1 (3.8)

-Q Ii=1 P(yj I q : pi) (q) dq3

One can use the posterior to obtain a Bayesian estimate of the position of the event q

given the measurements. For example, one may choose to estimate q using the mean,

the median, or the maximum of the posterior in (3.8).

Our interest here, however, is not in estimating q. Instead we are interested in

positioning the robots so that whatever estimate of q is obtained is the best possible

one. To this end, we seek to position the robots to minimize the variance of their

ii i ; ;~;___~_ _~___~_____;

combined sensor measurements. The product of measurement likelihoods in the nu-

merator of (3.8) can be simplified to a single likelihood function, which takes the form

of an un-normalized Gaussian

P(y q : pi) = A exp -2_1(.) , (3.9)

whose variance is equivalent to our mixing function gl() = (f(i,q)-)- 1 .

The values of A and y are not important in this context, though we state them for

completeness:

S= g-i(-) E f(Pi, q)-'yi, and
i=1

1 exp 1
jl 9-12 - i 2

(2r)n i=1 f(pi, q) 2 2 i=1

If we want to position the robots so as to obtain the most decisive information from

their sensors, we should move them to minimize this variance. Notice, however, that

g-l(f(pl,q),..., f(pn,q)) is a random variable since it is a function of q. Taking the

expectation over q of the likelihood variance gives our original cost function,

_H1 = Eq[g_1(f(pl, q),..., f(pn,, q))] = fQ 9-1(f(Pjq),..."(Pn,q))O(q)dq. (3.10)

Thus we can interpret the coverage control optimization as finding the agent positions

that minimize the expected variance of the likelihood function for an optimal Bayes

estimator of the position of the target.

A more theoretically appealing criterion would be to position the agents to min-

imize the variance of the posterior distribution in (3.8). This gives a considerably

more complicated cost function.

fQ=1 Phn l(Yi q i) (q)q dq

,f 0 (i 9: pi) dq

where

Q i= 1 (y q: pi)q(q)qdq4=E[q I yl,..., y,] = fQ (3.12)SfQIl I'P(yI I : pi)O(q) dq

The complication of this cost function and the fact that gradients can not be easily

computed makes it a less practical option.

3.3.3 Potential Field Coverage

The third type of coverage controller we consider is significantly different from the

previous two in that it does not involve an integral over the environment. Instead

it relies on the idea that robots should push away from one another to spread out

over an environment, but should not move too far from one another or else they will

become disconnected. Surprisingly, however, we will show that this rather different

coverage philosophy can be reconciled with our generalized coverage cost function t,

in (3.3).

Let the importance function, ¢(q), be given as a sum of delta-Dirac functions

centered at each of the robot positions

0(q) = (l q - pill). (3.13)
i=1

Substituting this for ¢(q) in (3.3), the integral in can then be evaluated analyti-

cally to give Tpot = i=1 ga(f (Pi,Pi), .. , pf(P,pi)), and with a = 1 we get

Hpot Z : (pj,pi), (3.14)
i=1 j=l,joi

which is a common cost function for potential field based models for herding and

consensus, where f(pj, pi) can be interpreted as an inter-agent potential function.

One choice for f(pj, pi) is

f (pj,pi) = pj - i - _pj-pi1 1 (3.15)

__ ; __~__ii_;__i__jil~il(~l___ Il;/ll;^___/lj__*liiF il~-iiiii..

which, taking the gradient of (3.14), yields the controller

= =k (i -p 2 - 3 Ipi - pill (3.16)

Controllers similar to this one have been studied in a number of works, for example

[29,35,44,104]. There are numerous variations on this simple theme in the literature.

3.3.4 Computational Complexity

The gradient controllers described in this work must inevitably be discretized and

implemented in a discrete time control loop. A common criticism of the Voronoi

based coverage controller is that it is computationally intensive. At each iteration

of the loop, a robot must re-compute its Voronoi cell. Additionally, the controller

must compute spatial integrals over a region. In general, a discretized approximation

must be used to compute the integral of O(q) over the Voronoi cell, which is again

computationally intensive. The two parameters that are important for computation

time are the number of robots n and the number of grid squares in the integral

computation, which we will call m. The typical decentralized algorithm for a single

robot to compute its Voronoi cell (from [26]) runs in O(n) time. The time complexity

for computing a discretized integral is linear in the number of grid squares, and at

each grid square requires a check if the center point is in the Voronoi cell, which is

an O(n) operation. Therefore the time complexity of the integral is in O(nm). The

Voronoi cell must be computed first, followed by the discretized integral, therefore

the standard Voronoi controller has time complexity O(n(m + 1)) at each step of the

control loop.

Our controller in (3.4) does not require the computation of a Voronoi cell, but it

does require the discretized spatial integral over the environment. We do not have to

check if a point is in a polygon, but the integrand we evaluate, namely g, is linear in n.

Therefore the integral computation still has time complexity O(nm), which is the time

complexity of the controller at each step of the control loop. Yet as a decreases, the

behavior of the controller approaches that of the Voronoi controller. The controller

we propose in this chapter is therefore significantly simper in implementation (since

it does not require the Voronoi computation), and it is faster computationally.

3.4 Convexity and Consensus

Since we treat the multi-agent coverage problem as an optimization, it is natural to

ask what sort of optimization we are dealing with, and what optimization tools can

be brought to bear to solve it. We show in this section that the cost function in (3.3)

is nonconvex, and that nonconvexity is a required feature of a large class of multi-

agent problems, however undesirable this may be from an optimization perspective.

Specifically, we demonstrate a link between the convexity of a cost function and the

multi-agent phenomena known as consensus. For our purposes, consensus describes a

multi-agent configuration in which all agents take on the same state, pl = p2 = ... =

p,. Consensus is geometrically represented in the state space pn as a dp-dimensional

hyperplane that passes through the origin (from the dp(n - 1) independent equality

constraints). This is illustrated by the diagonal line in Figure 3-5 in a simplified 2D

setting. We will prove, with some technical assumptions, that a multi-agent problem

with a convex cost function admits at least one globally optimal consensus solution.

Figure 3-4 shows a graphical schematic illustrating the meaning of the theorem.

Consider a general multi-agent cost function 7- : P H IR. As before, an agent

i has a state pi E P c Rd. It will be more convenient in this section to refer to a

configuration of agents as a tuple (pl,... ,Pn) pn, rather than the column vector

notation used previously. Let us assume that agents are anonymous with respect to

the cost function, by which we mean that the positions of any two agents can be

interchanged without affecting the value of the cost function. This is formalized by

the following assumption.

Assumption 3.1 (Anonymity of Agents) The cost function N is such that

H (...,Pi,... ,pj,...) = l(...,pj, ..., Pil ...) Vi, j {1,...,n}. (3.17)

7 robots in Rdp

Consensus

Figure 3-4: This schematic illustrates the meaning of Theorem 3.3 and Corollary 3.1.

If the cost function 7- is convex, the robots will all move to the same position, a

behavior called consensus.

Assumption 3.1 is in keeping with the ethos of multi-robot systems, where the em-

phasis is on the global patterns that result from the interactions of many identical

robots. Furthermore, let us assume that 7- and pn satisfy at least one of the three

properties in Theorem 2.1, which is simply to say that the set of minima of 7W over

P1 is non-empty. Now we give the main result of this section.

Theorem 3.3 (Convexity and Consensus) Under Assumption 3.1, if the cost func-

tion 7(pl,... , Pn) is convex, Pn is convex, and one of the conditions in Theorem 2.1 is

satisfied, then H(Pi,... , p,) has a global minimum such that pi = pj Vi, j E {1,. .. , n}.

Proof 3.3 Our argument rests upon Assumption 3.1 and the fact from Theorem 2.1

that the set of minima of the convex function WI is a convex set. Let Q be the set of

minima, and let (... , p, . . . , pj, . . .) be an optimal solution in that set. By Assumption

3.1, (... ,p, ... ,pi,...) is also an optimal solution for any i and j. Therefore all

permutations of components in (p*,... , p) are optima. Then by convexity of h*, all

convex combinations of points in h* are in h*. In particular, the point (p,... ,),

where pi = 1/n - l pi is an optimal solution (since it is a convex combination of

permutations of (pl,..., Pn)).

(P2*, pl*)

Consensus Line
P1 = P2

Set of minima is convex
since H-' is convex

/ P1
Consensus Solution

Figure 3-5: This schematic shows the geometrical intuition behind the proof of The-
orem 3.3 in a simplified 2D setting. Corollary 3.1 is proved by noticing that the set
of minima is a single point (the consensus solution) if H is strictly convex.

We show a geometric schematic of the proof argument in Figure 3-5. The proof

uses the fact that the convex set of minima must intersect the consensus hyperplane

(the hyperplane where pi = pj Vi, j) at at least one point. A simple corollary follows.

Corollary 3.1 (Strict Convexity) If the conditions of Theorem 3.3 are met and

the cost function 'H(p,... ,pn) is strictly convex, then the minimum is unique and is

such that pi = pj Vi,j E {1,..., n}

Proof 3.4 A strictly convex function has at most one minimum over a convex do-

main.

Remark 3.3 (Consensus vs. Non-consensus) Theorem 3.3 suggests that it is fu-

tile to search for convex cost functions for multi-robot problems other than consensus.

It delineates two classes of multi-agent behaviors reminiscent of complexity classes in

the theory of computation. One class, which we will call consensus behaviors, can be

described as optimizing a convex cost function. The other class, which we will call

non-consensus behaviors, is fundamentally different in that it can only be described

: l';~"":" ~ - --- : --------------C -~--f-'-- -;^-r.l-;-^r -,:xr r---ili-~- :--;i -; .;;:;~~~; I~~L _ii~~i-T

with nonconvex cost functions. This is important because if we wish to design an

optimization to solve a multi-agent problem, and we know that the problem cannot

be solved satisfactorily by all the agents taking the same state, then we must use a

nonconvex cost function. Likewise if we observe a multi-agent behavior in nature

which cannot be described by all agents reaching the same state (the construction of

a termite nest, for example), then an optimization-based explanation of this behavior

must be nonconvex.

Remark 3.4 (Coverage is Nonconvex) This is directly applicable to coverage prob-

lems. Indeed, coverage cannot be achieved with all agents moving to the same place,

therefore coverage problems must involve the optimization of a nonconvex cost func-

tion. Our parameterized cost function Ha from (3.3) is nonconvex for a < 1, in which

regime it corresponds to a coverage task (e.g. a --+ -oo for Voronoi and a = -1 for

minimum variance). It becomes convex (assuming f is convex) for a > 1 in which

regime it results in consensus. Theorem 3.3 explains why this is the case.

Remark 3.5 (Future Directions) From an algorithmic point of view, this is un-

fortunate. Convex optimization has a powerful and well characterized tool set guaran-

teed to reach global minima, but nonconvex optimization requires searching out special

cases and special cost function properties. Often one must be satisfied with local min-

ima. Distributed coverage controllers that use gradient methods (such as those in

this chapter) guarantee convergence to local minima, which is all one can expect in a

general nonconvex setting. This points towards at least two open questions for future

work: can we find nonconvex multi-robot cost functions that have special properties

that guarantee global results? For example can we find multi-robot cost functions for

which all minima are global (all minima have the same cost) or for which there is only

one minimum even though the function is nonconvex? Alternately, are there noncon-

vex optimization methods not based on gradient descent that can be implemented in a

multi-agent setting?

3.5 Simulation Results

The controller for the three scenarios described in Section 3.3 were simulated in a

Matlab environment. The environment Q was taken to be a unit square, and the

function ¢(q) was set to be the sum of two Gaussian functions, one centered at (.2, .2)

and the other at (.8, .8), both with variance .2. We expect to see a higher density of

robots around areas of large ¢(q). In our case, the robots group around the Gaussian

centers.

The results of a simulation with ten robots using the Voronoi based controller,

which corresponds to a -- -oo, is shown in Figs. 3-6(a) and 3-6(b). Similar plots

are shown for the minimum variance controller, with o = -1, in Figs. 3-6(c) and

3-6(d). Comparison of the two controllers shows that the Voronoi based controller

causes the robots to spread out more, while as a increases, the robots group more

closely together. When a > 1, the cost function becomes convex, and the robots

all move to the same position, which corroborates our results relating convexity to

consensus (this is not shown in the plots).

The third scenario shown in Figs. 3-6(e) and 3-6(f) uses the potential field con-

troller from (3.16). This controller uses a sum of delta-Dirac functions for q(q) rather

than a sum of Gaussians, which causes the robots to arrange themselves in the close-

packed lattice pattern.

3.6 Synopsis

In this chapter we introduced a unifying optimization framework for multi-robot

control that brings together several different existing algorithms. We point out that

important properties of the underlying objective are embodied in the way sensor

information or actuator capabilities are combined from different robots. We propose

a parameterized function to accomplish this combination, where different parameter

values are shown to lead to different kinds multi-robot algorithms. Finally, we prove

that for all multi-robot problems other than consensus, the underlying optimization is

:i(_ i; _ ii___j--- ----------- ----_I _

necessarily nonconvex, making global optimization an unrealistic objective in general,

especially for gradient descent controllers. Looking towards future research, this

motivates a search for special classes of nonconvex functions that admit stronger

convergence guarantees, and a search for distributed controllers other than those

based on gradient methods that may lead to stronger convergence guarantees.

(a) Trajectory Voronoi

g -

4r- % %

01 hOI ' -i,r

o

I.

*.- .. ' .0 0.5(c) Trajectory a -1

' '

b

01\ I' "6 q,

• 5 ,,I

C

(e) Trajectory Pot. Field

(b) Final Config. Voronoi

(d) Final Config. a = -1

(f) Final Config. Pot. Field

Figure 3-6: Trajectories and final configurations are shown for ten robots using the
gradient control law with the Voronoi controller (3-6(a), 3-6(b)), the minimum vari-
ance controller (3-6(c), 3-6(d)), and a potential field controller (3-6(e), 3-6(f)). The
Voronoi tessellation is shown for all scenarios for comparison, even though the right
two controllers do not use the Voronoi cells for control.

1

, 0' 0"
I

I 0

0

0.5

C,

0 0.5

Chapter 4

Incorporating Learning

4.1 Introduction

In this chapter we address the question of how to control the multi-robot system

when the sensory function, O(q), which represents the weighting of importance over

the environment, is not known before hand. We build upon the gradient controller

developed in Chapter 3, incorporating a parameter tuning mechanism to learn the

sensory function in a provably stable way. The control strategy can be thought of

as proceeding simultaneously in two spaces. In the space of robot positions, the

robots move to minimize the cost function representing the collective sensing cost of

the network. At the same time, in a high-dimensional parameter space, each robot

adapts a parameter vector to learn' the distribution of sensory information in the

environment. We prove that the robots eventually reach a near-optimal configuration,

and if their paths are sufficiently rich, they reach an optimal configuration. An

overview of the control strategy is shown in Figures 4-1.

We first describe a learning law in which each robot uses only its own sensor

measurements. We then include a consensus term in the learning law to couple the

learning among neighboring robots. The main effect of this coupling is that sensor

measurements from any one robot propagate around the network to be used by all

1We will use the words learning and adaptation interchangeably. Learning and adaptation are
specifically meant in the sense of parameter tuning, as in adaptive control, rather than the broader
meaning often used in Biology and Bio-inspired applications.

Coverage in Position Space

Consensus in Parameter Space

Figure 4-1: An overview of the decentralized control scheme is shown. The robots, at
positions Pi, Pj, and Pk, spread out over the area, Q, to reach optimal final positions.
Simultaneously, each robot adapts a parameter vector (^a, &j, and ak) to build an
approximation of the sensory environment. The parameter vectors for neighboring
robots are coupled in such a way that their final value, a, is the same for all robots
in the network.

robots. All robots eventually learn the same function incorporating all the sensor

measurements collected by all the robots.

4.1.1 Related Work

We use the notion of an optimal sensing configuration developed in [26] and build upon

it a parameter adaptation mechanism similar to what is used in adaptive control [67,

89,103]. Our emphasis in this chapter is on incorporating learning to enable optimal

coverage of an unfamiliar environment. This is in contrast to [26] and other papers

that use the same optimization framework (e.g. [25, 77,87]) in which the distribution

of sensory information in the environment is required to be known a priori by all

robots. This a priori requirement was first relaxed in [95] by introducing a controller

with a simple memoryless approximation from sensor measurements. The controller

was demonstrated in hardware experiments, though a stability proof was not found.

In the present work we remove this a priori requirement by introducing an adaptive

I I I II

controller inspired by the architecture in [88]. The results in this chapter elaborate

and improve upon our previous works [99, 100].

It is found that when each robot uses only its own sensor measurements to learn

the distribution of sensory information, learning performance can be sluggish. We

address this problem by including a consensus term2 in the parameter adaptation

law. Consensus phenomena have been studied in many fields, and appear ubiqui-

tously in biological systems of all scales. However, they have only recently yielded

to rigorous mathematical treatment; first in the distributed and parallel computing

community [9, 10, 107, 108] in discrete time, and more recently in the controls com-

munity in continuous time [13, 27, 46, 71, 111, 112]. In the present work, consensus

is used to learn the distribution of sensory information in the environment in a de-

centralized way by propagating sensor measurements gathered by each robot around

the network. This is similar to distributed filtering techniques that have recently

been introduced, for example in [62,117], though in contrast to those works, we are

concerned with maintaining provable stability of the combined learning and control

system. Consensus improves the quality and speed of learning, which in turn causes

the robots to converge more quickly to their optimal positions.

4.1.2 Contributions

In short, the main contribution of this chapter is:

1. To provide a controller that uses parameter adaptation to accomplish coverage

without a priori knowledge of the sensory environment. A consensus term is

used within the parameter adaptation law to propagate sensory information

among the robots in the network. Using a Lyapunov-like proof, we show that

the control law causes the network to converge to a near-optimal sensing config-

uration, and if the robots' paths are sufficiently rich, the network will converge

to an optimal configuration.

2The phenomenon of decentralized consensus is known by many names including flocking, herding,
swarming, agreement, rendezvous, gossip algorithms, and oscillator synchronization. All of these
are, at root, the same phenomenon-convergence of the states of a group of dynamical systems to a
common final vector (or manifold) through local coupling.

This chapter is organized as follows. In Section 4.2 we state the main assumptions

and definitions to set up the problem. Section 4.3 introduces the learning controller

in its simplest form, in which each robot learns an approximation of the sensor func-

tion independent from the other robots. The learning controller is refined in Section

4.4 by coupling the learning between neighboring robots using a consensus term in

the parameter adaptation law. Section 4.5 generalizes the controller to the broadest

context: that of a distributed gradient controller whose cost function has a linearly

parameterized gradient. We analyze the convergence rate of the learning law in Sec-

tion 4.6, and consider several alternative stable learning laws in Section 4.7. Finally,

numerical simulations are given in Section 4.8 and a synopsis is provide in Section

4.9.

4.2 Problem Formulation

We will use the Voronoi based controller described in Chapter 2.19 as the foundation

for building the adaptive architecture and for proving convergence qualities. Recall

the Voronoi cost function

nH(pl,...,pn) = J - p112 (q) dq, (4.1)

and recall the mass, first moment, and centroid of a Voronoi region V are given by

M = q(q) dq, Lv = f, q (q) dq, and C = L,/M , (4.2)

respectively. Finally, recall the result proved from Lemma 2.1,

= - (q - pi)¢(q) dq = -M (C - pi). (4.3)

Equation (4.3) implies that critical points of 1 correspond to the configurations such

that pi = CV Vi, that is, each agent is located at the centroid of its Voronoi region.

I-----iric;--~ runonr~ ~-~ inr~~--i-l--- ii;li;l~:r-; r - --- ---l- ---xl-^)r-r:,-. -- r-r-._......~-rri- ~ re_;r.;;;;itlrt- ;;:l;i-n--~-l~:l~--~I~~~C;--rrr;-i-~~;r i

4.2.1 Assumptions and Definitions

This brings us to the concept of optimal coverage summarized in the following defi-

nition.

Definition 4.1 (Optimal Coverage Configuration) A robot network is said to

be in a (locally) optimal coverage configuration if every robot is positioned at the

centroid of its Voronoi region, pi = Cv Vi.

We emphasize again that global optimization of (4.1) is known to be difficult (NP-

hard for a given discrete representation of O(q)) even in the centralized case with

full information. Thus when we refer to an optimal coverage configuration we mean

a locally optimal one. Variations on the control law which attempt to find global

minima through exploration are discussed in [87,92].

We also make the assumptions, already discussed in Chapter 2, that the robots

have dynamics

1i = Ui, (4.4)

where ui is the control input, and that they are able to compute their own Voronoi

cell, V = {q I | q - Pi l< l -q pj 1).

More importantly for this chapter, we use a basis function approximation scheme

to learn the sensory function q(q). Let K : Q - Ro be a vector of bounded, contin-

uous basis functions. Each robot has these functions available for computation. The

sensory function approximation for robot i is given by i(q, t) = IC(q)T&i(t), where

&i (t) is a parameter vector that is tuned according to an adaptation law which we will

describe in Section 4.3. Figure 4-2 shows a graphical representation of this function

approximation scheme. For our analysis, we require that the following assumption

holds.

Assumption 4.1 (Matching Conditions) There exists and ideal parameter vector

a E R"' such that

0(q) = IC(q) T a, (4.5)

;j(cq)

0i= di(q)Ta

Figure 4-2: The sensory function approximation is illustrated in this simplified 2-D
schematic. The true sensory function is represented by q(q) and robot i's approxi-
mation of the sensory function is ij(q). The basis function vector K/C(q) is shown as
three Gaussians (dashed curves), and the parameter vector ai denotes the weighting
of each Gaussian.

and a is unknown to the robots. Furthermore,

a > lamin (4.6)

where amin E R>o is a lower bound known by each robot.

Requirements such as Assumption 4.1 are common for adaptive controllers. In

theory, the assumption is not limiting since any function (with some smoothness

requirements) over a bounded domain can be approximated arbitrarily well by some

set of basis functions [88]. In practice, however, designing a suitable set of basis

functions requires application-specific expertise.

There is a variety of basis function families to chose from for Ki(q). We use Gaus-

sians in our simulations, but other options include wavelets, sigmoids, and splines.

Gaussian basis functions have a computational advantage over non-local basis func-

tions because, in any discrete representation, they have compact support. To compute

the value of the network at a location el(q), or to tune the weights of the network ai

with new data, one has only to consider Gaussians in a region around the point of

interest.

Define the moment approximations using Oj(q, t) as

Mvv(t) = fv i (q, t) dq, .Lv(t) = f qi(q, t) dq, and Cvi(t) = iL (t) / .v (t). (4.7)

Next, define the parameter error

(t) = &(t) - a, (4.8)

and notice the relation

0i(q, t) - (q) = IC(q)i (t). (4.9)

In order to compress the notation, we introduce the shorthand KC(t) = C(pi(t)) for

the value of the basis function vector at the position of robot i, and 4i(t) = 0(pi(t))

for the value of the sensory function at the position of robot i. As previously stated,

robot i can measure Oi with its sensors. We will also commonly refer to quantities

without explicitly writing their arguments. However, we may include arguments in

some instances to avoid ambiguity.

The function approximation framework described above brings us to another con-

cept of optimality for coverage.

Definition 4.2 (Near-Optimal Coverage Configuration) A robot network is said

to be in a near-optimal coverage configuration if each robot is positioned at the esti-

mated centroid of its Voronoi region, pi = V' Vi.

Finally, we distinguish between two qualities of function approximations.

Definition 4.3 (Globally True Approximation) A robot is said to have a glob-

ally true (or just true) approximation of the sensory function if its approximation is

equal to the actual sensory function at every point of its domain, $i(q) = O(q) Vq E Q.

Definition 4.4 (Locally True Approximation) A robot is said to have a locally

true approximation of the sensory function over a subset Q C Q if its approximation

is equal to the true function at every point in the subset, i(q) = O(q) Vq E 2.

In light of the above definitions, if the parameter error is zero, i = 0, then robot i

has a true approximation of the sensory function. Also, if ai = 0 Vi, then a near-

optimal coverage configuration is also optimal. An overview of the geometrical objects

involved in our set-up is shown in Figure 4-3.

Q: Convex area ¢(q): Sensory function

pi: Robot location

V4 Voronoi region
of robot

"' v: Estimated
centroidCv,: True centroid, centroid

True position error Estimated

position error

Figure 4-3: A graphical overview of the quantities involved in the controller and
environment is shown. The robots move to cover a bounded, convex area Q their
positions are pi, and they each have a Voronoi region Vi with a true centroid Cv and
an estimated centroid Cvi. The true centroid is determined using a sensory function
¢(q), which indicates the relative importance of points q in Q. The robots do not
know ¢(q), so they calculate an estimated centroid using an approximation qi(q)
learned from sensor measurements of q(q).

4.3 Decentralized Adaptive Control Law

We want a controller to drive the robots to an optimal configuration, that is, we

want to position them at their Voronoi centroids. We emphasize that it is not easy

to position a robot at its Voronoi centroid because (1) the robot does not know the

sensory function ¢(q) which is required to calculate its centroid, and (2) the centroid

moves as a nonlinear function of the robot's position. To overcome the first problem,

our controller learns an approximation of the centroid on-line. To overcome the

second problem, our controller causes each robot to pursue its estimated centroid.

We will prove that the robots achieve a near-optimal configuration, and that every

robot learns a locally true approximation of the sensory function. Furthermore, if a

robot's path is sufficiently rich, it achieves a globally true approximation, and if every

robots' path is sufficiently rich, the robots reach an optimal configuration.

We propose to use the control law

ui = K(Cv - pi), (4.10)

where K is a (potentially time-varying) uniformly positive definite control gain ma-

trix, which may have a skew-symmetric component to encourage exploration as in [92].

The area Q is required to be convex so that the control law is feasible, that is, the

robots never attempt to cross the boundaries of Q. Since Cv, Vi C Q and pi E Q,

by convexity, the segment connecting the two is in Q, and the control law is feasible.

The parameters ai used to calculate Cv, are adjusted according to a set of adap-

tation laws which are introduced below. First, we define two quantities,

Ai(t) = j w (r)C(r)C(T)T dr, and Ai(t)= Ow(-r)ki()i(r) dr. (4.11)

These can be calculated differentially by robot i using Ai = w(t)I,CT , and A, =

w(t)KCi&i, with zero initial conditions. The function w(t) > 0 determines a data

collection weighting. We require that it is integrable (belongs to L1), and continuous

(belongs to CO). Define another quantity

fV C (q)(q - pi)T dqK f(q - pi)IC(q)T dq
F = (4.12)f, #(q) dq

Notice that Fi is a positive semi-definite matrix. It can also be computed by robot i

as it does not require any knowledge of the true parameter vector, a. The adaptation

law for i is now defined as

aprei = -Feii - ,-(Aiai - A), (4.13)

The two terms in (4.13) have an intuitive interpretation. The first term compensates

for uncertainty in the centroid position estimate. The second term carries out a

gradient descent to minimize the sensory function error Oi(pi) integrated over time.

The gradient descent interpretation is explored more in Section 4.7. We stress that

a decentralized implementation requires that each robot adapts its own parameter

vector using local information available to it. If one were interested, instead, in

designing a centralized adaptation law, one could simply use a common parameter

vector that is adapted using the information from all robots.

Equation (4.13) is the main adaptation law, however the controller (4.10) has a

singularity at ai = 0 (since My, is in the denominator of Cv,). For this reason we

prevent the parameters from dropping below amin > 0 using a parameter projection

[101]

i = F(pre - Iprojpre,), (4.14)

where F E Rmxm is a diagonal, positive definite adaptation gain matrix, and the

diagonal matrix Iproj, is defined element-wise as

0 for ai(j) > amin,

Iproj,(j) = 0 for ai (j) = amin and apre, (j) > 0 (4.15)

1 otherwise,

where (j) denotes the jth element for a vector and the jth diagonal element for a

matrix.

The controller described above will be referred to as the basic controller, and its

behavior is formalized in the following theorem.

Theorem 4.1 (Basic Convergence) Under Assumption 4.1, the network of robots

with dynamics (4.4), control law (4.10), and adaptation law (4.13,4.14) converges to

a near-optimal coverage configuration. Furthermore, each robot converges to a locally

true approximation of the sensory function over the set Q2i = {pi(7) I7 2 0, w(-) >

0}, made up of all points on the robot's trajectory with positive weighting.

Proof 4.1 We will define a lower-bounded, Lyapunov-like function and show that its

time derivative is non-increasing. This will imply that it reaches a limit. Further-

more, the time derivative is uniformly continuous, so by Barbalat's lemma3 [5, 80] it
3We cannot use the more typical LaSalle invariance theorem because our system is time-varying

iii:_;;:_i__i;j;;_ij_____C__l__l_____i__ /__~_i;:i~l_______ ____~_~l_____l__iil_

approaches zero. The quantities ICv (t) - pi (t) and w(7)¢i(Pi(7), t)2 , 0 > T > t, will

be included in the time derivative of this function, thereby implying pi(t) -* Cv(t),

and 4i(q, t) -* (q) Vq E Si for all i.

Define a Lyapunov-like function

Tt
1 Tp_15

V = a + E ar-2 a i, (4.16)
i=1

which incorporates the sensing cost H, and is quadratic in the parameter errors ai.

Note that the sensing cost I is computed with the actual sensory function O(q), so

it inherently incorporates function approximation errors as well. V is bounded below

by zero since H is a sum of integrals of strictly positive functions, and the quadratic

parameter error terms are each bounded below by zero.

Taking the time derivative of V along the trajectories of the system gives

9 i Pi Pi + iT i , (4.17)
i= 1

and substituting from (4.3) and noticing that ai = i yields

S= - J([- pi)T (q) dqp i + TF-1i] . (4.18)

Using (4.9) to substitute for O(q) gives

SS= - f(q - pi) i dq + f IC(q)(q - pi)T dqpi + i -Ts
i= 1

Substituting for p3 with (4.4) and (4.10), and moving a out of the second integral

due to the data weighting function w(t).

(since it is not a function of q) leads to

Vvi (_ [+T (_ - Pi)
i=1

+&T K(q)(q - pj)T dq(- pi) + - .

Expanding (Cv - pi) in the second term, and substituting for ij with (4.14) gives

n

i= 1

A- A T) - AlTproJiprei] .

Now we can expand (Aii - Ai), noting that Ai = fo w(r)lCi(lCTa) dT, to get

= - [i - pi)T K(Cvi - pi)

+ j w()CC&(t) d+ - jaiprjiapreil,

and, finally, bringing T inside the integral (it is not a function of ', though it is a

function of t) results in

n

i=1

+ ()((/, i) (i(t)) 2 a + a Iprojiapre, (4.19)

Inside the sum, the first and second terms are clearly non-negative. We focus mo-

mentarily on the third term. Expanding it as a sum of scalar terms, we see that the

jth scalar term is of the form

ai (j)Iproj (j)&pre (j). (4.20)

From (4.15), if &(j) > amin, or da(j) = amin and e,(j) > 0, then Iproj(j) = 0

~ I_^(~_~_~~_ _ _~~_ __;_; ~___~l__~_;_~ijll__~11 1 _____II_)~ _il ;____;_;__I_;)_:_ _~_~_(____;l___;_____i I;_ iijii_;l/j_:jliiii*ii

and the term vanishes. Now, in the case ai(j) = amin and p,,re(j) < 0, we have

di(j) = ai(j) - a(j) 0 (from Assumption 4.1). Furthermore, Ipro j(j) = 1 and

apre, (j) < 0 implies that the term is non-negative. In all cases, then, each term of

the form (4.20) is non-negative, and all three terms inside the sum in (4.19) are

non-negative. Thus V 0.

We have that V is lower bounded and V 0, so V approaches a limit. We establish

the uniform continuity of 1 in Lemma A.1 in Appendix A, so by Barbalat's lemma

limt,,, = 0. From (4.19), this implies limt, I pi(t) - v, (t) = 0 Vi from the first

term in the sum, so the network converges to a near-optimal coverage configuration.

Furthermore, from Ci(7)Td(t) = bj(pi(7), t) - 0(pi(7)), we have from the second

term of(4.19)

lim w(T)(0i(pi(T),t) - 0(pi(T))) 2 dT = 0 Vi = 1,...,n. (4.21)

Now notice that the integrand in (4.21) is non-negative, therefore it must converge

to zero for all 7 except on a set of Lesbegue measure zero. Suppose the integrand is

greater than zero at some point 7. The integrand is continuous (since ICi(t), Ai(t), and

Oi(t) are), so if it is greater than zero at 7, it is greater than zero in a neighborhood

of non-zero measure around it, (7 - e, T + e), for some e > 0, which is a contradiction.

Thus, we have i(q, t) -+ ¢(q) Vq E Q1 and Vi.

In [92] the following extension to the above theorem was derived. We restate it

here to give a more thorough characterization the controller's behavior.

Corollary 4.1 (Sufficient Richness for Basic Controller) In addition to the con-

ditions for Theorem 4.1, if the robots' paths are such that the matrix limt,o Ai(t) is

positive definite Vi, the network converges to an optimal coverage configuration, and

each robot converges to a globally true approximation of the sensory function, O(q).

Proof 4.2 Consider the second term in (4.19). Move the two di(t) outside of the

integral (since they are not a function of 7) to get

ry&(t)TW[j (TF)ICjIC[d-l &di(t) = nYdcti(td

Since 1V - 0, if limt,, Ai (t) is positive definite (we know the limit exists because

IC(q) is bounded and w(t) E L1), then di(t) - 0. This implies that robot i con-

verges to a globally true approximation of the sensory function, q(q). Furthermore,

if limto Ai(t) > 0 Vi, then Cv = Cv Vi, so the network converges to an optimal

coverage configuration.

Remark 4.1 One may wonder how the controller will behave if Assumption 4.1 fails,

so that there is no ideal parameter vector a that will exactly reconstruct O(q) from

the basis functions. Indeed, this will be the case in any real-world scenario. Such

a question requires a robustness analysis that is beyond the scope of this thesis, but

analyses of robustness for centralized adaptive controllers can be found, for example, in

[88] and most texts on adaptive control (e.g. [67,89, 103]). It is observed in numerical

simulations that the adaptation law finds a parameter to make Oi(q) as close as possible

to q(q), where closeness is measured by the integral of the squared difference, as

described in Section 4.7.

Remark 4.2 One may also wonder how the controller behaves with time varying sen-

sory functions q(q, t). It can be expected from existing results for centralized adaptive

controllers, that our controller will track sensory functions that change slowly with

respect to the rate of adaptation of the parameters. The ability to track a time varying

sensory function can be enhanced by using a forgetting factor in the data weighting

function w(t) as described in Section 4.7.3.

4.4 Parameter Consensus

In this section we use the properties of graph Laplacians from Section 2.3.2 to prove

convergence and consensus of a modified adaptive control law. The controller from

LII~1~ __ L__

(4.3) is modified so that the adaptation laws among Voronoi neighbors are coupled

with a weighting proportional to the length of their shared Voronoi edge. Adaptation

and consensus were also combined in [68] and [112], however in those works consensus

was used to align the velocities of agents, not to help in the parameter adaptation

process itself. Our use of consensus is more related to the recent algorithms for

distributed filtering described in [62] and [117].

4.4.1 Consensus Learning Law

We add a term to the parameter adaptation law in (4.13) to couple the adaptation

of parameters between neighboring agents. Let the new adaptation law be given by

prei Fi ai- (Ai& - Ai) - A w(& - y), (4.22)
j=1

where wij is a weighting over the Delaunay graph (see Section 2.3.2) between two

robots i and j and (E R, (> 0, is a positive gain. The projection remains the same

as in (4.14), namely

ai = F(Iprei - Iproj,&prei)"

A number of different weightings wj are conceivable, but here we propose that wij

be equal to the length (area for N = 3, or volume for N > 3) of the shared Voronoi

edge of robots i and j,

m = dq. (4.23)

Notice that wij > 0 and wij = 0 if and only if i and j are not Voronoi neighbors,

so wij is a valid weighting over the Delaunay communication graph as described in

Section 2.3.2. This weighting is natural since one would want a robot to be influenced

by its neighbor in proportion to its neighbor's proximity. This form of wij will also

provide for a simple analysis since it maintains the continuity of the right hand side

of (4.22), which is required for using Barbalat's lemma.

Theorem 4.2 (Convergence with Parameter Consensus) Under the conditions

of Theorem 4.1, using the parameter adaptation law (4.22), the network of robots con-

verge to a near-optimal coverage configuration. Furthermore, each robot converges to

a locally true approximation of the sensory function over the set all points on every

robot's trajectory with positive weighting, Q = Uj 1n=' j. Additionally,

lim(ai-Sj)=0 Vi,jE{1,... ,n}. (4.24)
t-oo

Proof 4.3 We will use the same method as in the proof of Theorem 4.1, adding the

extra term for parameter coupling. It will be shown that this term is non-positive.

The claims of the proof follow as before from Barbalat's lemma.

Define V to be (4.16), which leads to

= - ~[(v - p~) K(ci - pi) + W P (,)(IC i()T (t))2dT
i=1

n n

+T Iproji-pre Zi~j(i - Q). (4.25)
i=1 j=1

We have already shown that the three terms inside the first sum are non-negative.

Now consider the parameter coupling term. We can rewrite this term using the graph

Laplacian defined in Section 2.3.2 as

n n m

a E- wij= (-&TL&j, (4.26)
i=1 j=1 j=1

where aj = a(j)l, a = [a1^(j) ... ~, (j)]T, and dj = j - ajj. Recall the ideal

parameter vector a = [a(1) ... a(j) ... a(m)]T , and the parameter estimate

for each agent

ai = [&(1) -.. &i(j) "'" i(m)]T. We have simply regrouped the parameters by

introducing the aj notation. From Section 2.3.2 we saw that ajL = a(j) 1TL = 0.

This gives

m m

TL = TLa > 0, (4.27)
j=1 j=1

since L > 0. Thus]V < 0.

Lemma A.2 establishes the uniform continuity of V for this controller. We can

therefore use Barbalat's lemma to conclude that V -+ 0. As before this implies the

two claims of Theorem 4.1. Since the graph Laplacian is positive semi-definite, and

&a(j) > amin, limt_,, &TL&, = 0 = limt, &j = afinal(j)l Vj E {1,...,m}, where

afinal E R is some undetermined vector, which is the common final value of the

parameters for all of the agents. The consensus assertion (4.24) follows.

Finally, recall the fact that for robot j, j(q) --- O(q) over Qj, but ai - aj,

therefore j(q) -+ O(q) over Qj. This is true for all robots i and j, therefore i -- O(q)

over Q = UY 1.Qj for all i.

Corollary 4.2 (Sufficient Richness for Consensus Controller) In addition to

the conditions for Theorem 4.2, if the robots' paths are such that f, IC(q)C(q)Tdq

is positive definite, the network converges to an optimal coverage configuration, and

each robot converges to a globally true approximation of the sensory function, c(q).

Proof 4.4 Since qi(q, t) -+ q(q) over Q, we have ai(oo)TlC(q))K(q)Tii(oo) = 0 over

Q, where ai (oo) is shorthand for limt, di(t). Then

0 = a (oo) (q)C(q)T&i (oo)dq &i(c)T IC(q)IC(q)Tdq i (oo) (4.28)

Therefore if fQ C(q)/C(q)Tdq > 0, then dj(oo) = 0. This is true for all i.

Remark 4.3 The condition of Corollary 4.2 is less strict than that of Corollary 4.1

because only the union of all the robots' paths has to be sufficiently rich, not each

path individually. This means it is easier to achieve an optimal configuration with

the consensus controller.

Remark 4.4 Another commonly used weighting for algorithms over communication

graphs is

1 for j E c
wij - 0 for j , Ari,

where ANi is the set of indices of neighbors of i, as was proposed in [100]. In this

case, stability can be proved, but with considerable complication in the analysis, since

V) is not continuous. Even so, recent extensions of Barbalat's lemma to differential

inclusions from [61, 86] (and applied to flocking systems in [104]) can be used to prove

the same result as in Theorem 4.2.

Remark 4.5 Introducing parameter coupling increases parameter convergence rates

and makes the controller equations better conditioned for numerical integration, as

will be discussed in Section 4.8. However there is a cost in increased communication

overhead. In a discrete-time implementation of the controller in which parameters

and robot positions are represented finitely with b bits, a robot will have to transmit

(m+ 2)b bits and receive A (I (m+ 2)b bits per time step. While for the basic controller,

each robot must transmit 2b and receive 21Aflb bits per time step. This may or may

not represent a significant communication overhead, depending upon b and the speed

of the control loop. In hardware experiments we have found this to be a negligible

communication cost. Note that although discretization is necessary for a practical

implementation, it does not affect the essential phenomenon of consensus, as shown

in [33, 48].

4.5 Adaptive Gradient Controller

The parameter adaptation architecture developed thus far for the Voronoi controller

can be analogously constructed for any distributed gradient controller with an un-

known cost function if the gradient of that cost function can be linearly parameterized.

Specifically, the distributed gradient controllers from Chapter 3 can all support adap-

tation in the same way as the Voronoi controller. In this section we summarize the

most general case, which can then be specialized to a specific gradient controller. As

before, let H(P) be the unknown cost of a network of robots and let its gradient be

linearly parameterized by

0 = i(p)Ta, (4.29)

where ri : Pr - R mxd is known to agent pi, but a is unknown. Also, suppose

each robot has a sensor with which it can measure OlN/pi PI(t) at the current robot

configuration P(t), and let the robots communicate over a communication graph with

a weighting function wij. The Voronoi controller fits this description with

/(P) = - i (q)(q - pi)T dq. (4.30)

Let the robots' dynamics be given by

Iji = -Kri(P) i, (4.31)

and the adaptation of robot i's estimated parameters be given by

(n)

i = -IF (P)Kn +P)i + 7(Ai i + A) + (wij (6i - Qj) (4.32)
j=1

where

Ai(t) = O(7)i(P(r))s(P(7))T dr (4.33)

and

Ai(t) = w(-) dT. (4.34)

To be precise, Ai and Ai as defined here are slightly different from their definition for

the Voronoi controller. Convergence and consensus results analogous to Theorem 4.2

and Corollary 4.2 follow directly for this controller using the same proof arguments.

4.6 Parameter Convergence Analysis

As a separate matter from the asymptotic convergence in Theorem 4.1 and Theorem

4.2, one may wonder how quickly parameters converge to their final values. In this

section we show that parameter convergence is not exponential, though given suffi-

ciently rich trajectories it can be shown to converge exponentially to an arbitrarily

small error. The rate of this convergence is shown to be faster for the controller with

parameter consensus than for the basic controller. We neglect the projection opera-

tion, as the non-smooth switching considerably complicates the convergence analysis.

From (4.13) and (4.14), neglecting the projection, but including the adaptation

gain matrix F, we have

i = -F(Fda + ~y(A ai - Ai)), (4.35)

which can be written as

i = -ryAi(t),i - FFa&, (4.36)

leading to

d -aTF rAi(t)&i TFiai (4.37)
dt 11ill Ili

Let Amin,(t) > 0 be the minimum eigenvalue of PrA(t) (we know it is real-valued and

non-negative since Ai(t) is symmetric positive semi-definite). Then we have

dIiill < -7Amini(t) lli + I+ Faiii. (4.38)

Now consider the signal lrFFi~ii We proved in Theorem 4.1 that IIv - pi l - 0

and all other quantities in FFai are bounded for all i, therefore IlFFiFl| -+ 0. Also,

Amin, (0) = 0, and Amin, (t) is a nondecreasing function of time. Suppose at some

time T, robot i has a sufficiently rich trajectory (so that Ai(T) is positive definite,

as in Corollary 4.1), then Amin(t) > Amin i(T) > 0 Vt > T. Then from (4.38), |&|ill

will decay faster than an exponentially stable first order system driven by JFFi&i .

Finally, the gains F and y can be set so that IrFiail is arbitrarily small compared

to 'yAmini without affecting stability. Thus, if the robot's trajectory is sufficiently

rich, exponentially fast convergence to an arbitrarily small parameter error can be

achieved.

Now we consider a similar rate analysis for the controller with parameter consen-

sus. In this case, because the parameters are coupled among robots, we must consider

the evolution of all the robots' parameters together. Let

= [a]. (4.39)

be a concatenated vector consisting of all the robots' parameter errors. Also, define

the block diagonal matrices F = diag>= (FFi), A - diag (FA), and the generalized

graph Laplacian matrix

[(1)L(1, 1)Im - " L(1, n)Im I
I£ = " ". (4.40)

The eigenvalues of £ are the same as those of FL, but each eigenvalue has multiplicity

m. As for a typical graph Laplacian, C is positive semi-definite. The coupled dynamics

of the parameters over the network can be written

A = -(A + C£)A - FA, (4.41)

with A defined in the obvious way. Notice the similarity in form between (4.36) and

(4.41). Following the same type of derivation as before we find

dIt J I -Amin(t)|AII + |1FAI , (4.42)

where Amin(t) > 0 is the minimum eigenvalue of yA(t) + C((t). Again, it is real-valued

and non-negative since yA(t) + (C(t) is symmetric positive semi-definite.

As before, the signal iFAI - 0. If after some time T, mineig(A(T)) > 0 then

Amin(t) > mineig(A(t)) > 0 Vt > T and the network's trajectory is sufficiently rich.

Then from (4.37), FlAil will decay at least as fast as an exponentially stable first order

system driven by llFA . Finally, the gains F, y, and C can be set so that IFAFI is

arbitrarily small compared to yA(t) + C£(t) without affecting stability. Thus, if the

robot network's trajectory is sufficiently rich, exponentially fast convergence to an

arbitrarily small parameter error can be achieved for the whole network.

To compare with the performance of the basic controller consider that yA(t)

7A(t) + £C(t). Therefore the minimum eigenvalue for the consensus controller is

always at least as large as that for the basic controller implying convergence is at

least as fast. In practice, as we will see in Section 4.8, parameter convergence is

orders of magnitude faster for the consensus controller.

4.7 Alternative Learning Laws

The adaptation law for parameter tuning (4.13) can be written more generally as

ai = -Fa^ + fi(p, V~i, &a, t), (4.43)

where we have dropped the projection operation for clarity. There is considerable

freedom in choosing the learning function f(-). We are constrained only by our

ability to find a suitable Lyapunov-like function to accommodate Barbalat's lemma.

_ I I~ LI_

4.7.1 Gradient Laws

The form of fi(.) chosen in Section 4.3 can be called a gradient law, since

a= F1- t W (7)(i - i)2 d (4.44)

The parameter vector follows the negative gradient of the Least Squares cost function,

seeking a minimum.

Another possible learning law is to follow the gradient, given by

f = - W(7)(; - O)2
= -,w(t)KC(JC i - 0). (4.45)

Using the same Lyapunov function as before, it can be verified that this learning law

results in a near-optimal coverage configuration.

These two gradient laws can be combined to give

fi= -7 [W(t)j3i(KT - 0i) + (Aid - A)] , (4.46)

which is, in fact, equivalent to the first law with a weighting function w(t,) =

6(t - T)w(t) + w(r), where 6(t - 7) is the delta-Dirac function (we can make w(-) a

function of t, and 7 with minimal consequences to the convergence proof). The same

Lyapunov-like function can be used, such that the resulting time derivative is

j - [I (V - pi)TK(Cv - p i) ai[Iprojjaprei +
i=

leading to the same convergence claims as in Theorem 4.1 and Corollary 4.1.

4.7.2 Recursive Least Squares Laws

Another interesting possibility for a learning law is the continuous-time Recursive

Least Squares method. This law can be interpreted as continuously solving the Least

Squares minimization problem recursively as new data is acquired. Let

J = j ()(i - i)2 d, (4.47)

be the standard Least Squares cost function with a data weighting function w(').

Then, taking the gradient with respect to ai and setting to zero we find

Ai(t)ai = Ai(t). (4.48)

If the matrix Ai(t) is full rank, we can pre-multiply both sides by its inverse to solve

the Least Squares problem. However, we seek a recursive expression, so taking the

time derivative we obtain

ai = -Pii (t)w()Ki(K Ti - i), where P(t) = A (t) - . (4.49)

Using an identity from vector calculus, Pi can be computed differentially by Pi =

-Piw(t)KCi1CTPi, but the initial conditions are ill defined. Instead, we must use some

nonzero initial condition, Pio, with the differential equation Pi = -Piw(t)KCl/C[P, to

give the approximation

P = A - 1 + Pie. (4.50)

The initial condition can be interpreted as the inverse covariance of our prior knowl-

edge of the parameter values. We should choose this to be small if we have no idea

of the ideal parameter values when setting initial conditions.

Before we can apply the Recursive Least Squares law to our controller, there is

one additional complication that must be dealt with. We can no longer use the same

projection operator to prevent the singularity when Mv = 0. However, it is possible

to formulate a different stable controller that eliminates this singularity altogether.

This formulation also has the advantage that it no longer requires a(j) > amin Vj in

Assumption 4.1. We can use the controller

ui = K(Lv - IMvypi), (4.51)

with the adaptation law

a = -P [M Fai + w (t)A(K[a - ,)] (4.52)

to approximate the Recursive Least Squares law. Asymptotic convergence can be

proven for this case by using the Lyapunov function

n 1Tpi-a-i, (4.53)

i= 1

which leads to

Jw 29 = - k M (0 - ps) TK(Cv - pm) + 2a[[(t)K,[{] a (4.54)i=1

Note that the only difference in the Lyapunov function is that F has been replaced

with the time-varying quantity P.

We can also formulate a learning law analogous to the combined gradient law

(4.46) as

ai = -Pi A(i vF& + -w(t)KCj(a i - qi) + (Aii - A) , (4.55)

with Ai and Ai defined as before. The same Lyapunov function can be used (4.53),

resulting in

= -kA(- p) T K(Ov - &p) aAa.
i= 1

Interestingly, the integral terms (those involving Ai and Ai) of the learning law in

(4.55) have a gradient interpretation. Taking just those terms we have

fi = -Pi(Aia - Ai)

= -di + Pio0Adi

aai(i + PioAi~d,

(4.56)

so the law approximates the gradient of the squared parameter error. The last term

on the right hand side arises from the mismatch in initial conditions between P and

Ai.

The combination of Least Squares and gradient learning apparent in this law is

quite similar to the Composite Adaptation described in [102, 103]. In fact, if one

identifies the prediction error as ICi - ¢/ and the tracking error as Ai- Ai¢0 we have

composite adaptation (except, of course, for the term containing F, which is required

for the stability proof).

Unfortunately, it is found that the equations resulting from the Least Squares

formulation are difficult to solve numerically, often causing robots to jump outside of

the area Q, which then corrupts the Voronoi calculation. Alleviating this problem is

a matter of ongoing research.

4.7.3 Data Weighting Functions

The form of the function w(-) can be designed to encourage parameter convergence.

One obvious choice is to make w(T) a square wave, such that data is not incorporated

into fot w(r)KiKT d'r after some fixed time. This can be generalized to an exponential

decay, w(r) = exp(--r), or a decaying sigmoid w(T) = 1/2(erf(c- t) + 1). Many other

options exist.

One intuitive option for w(-) is w(r) 2= pI|i|2, since the rate at which new data is

collected is directly dependent upon the rate of travel of the robot. This weighting, in

; i -: lil- ----iii---l--~-------~- li---i - -Cii--i)-^-i-~-r;__,_i-~_~~;; r.~;;i~r~-

a sense, normalizes the effects of the rate of travel so that all new data is incorporated

with equal weighting. Likewise, when the robot comes to a stop, the value of 0(pi)

at the stopped position does not overwhelm the learning law. This seems to make

good sense, but there is an analytical technicality: to ensure that Ai and Ai remain

bounded we have to prove that i E L2. In practice, we can set w(r) = lpiz|2 up to

some fixed time, after which it is zero.

We can also set w(t, T) = exp{-(t - T)}, which turns the integrators Ai, Pi, and

Ai into first order systems. This essentially introduces a forgetting factor into the

learning law which has the advantage of being able to track slowly varying sensory

distributions. Forgetting factors can have other significant benefits such as improving

parameter convergence rates and allowing the flexibility to reject certain frequencies

of noise in the error signal. A thorough discussion of forgetting factors can be found

in [103], Section 8.7.

4.8 Numerical Simulations

Simulations were carried out in a Matlab environment. The dynamics in (4.4) with

the control law in (4.10), and the adaptation laws in (4.14) (with (4.13) for the basic

controller and (4.22) for the consensus controller) for a group of n = 20 robots were

integrated forward in time. A numerical solver with a fixed-time-step of .01s was

used to integrate the equations. The area Q was taken to be the unit square. The

sensory function, O(q), was parameterized as a linear combination of nine Gaussians.

In particular, for KI = [JK(1) ...)IC(9)]T, each component, I(j), was implemented

as
1 (q - pj)2

kC(j) = 2 exp - 2 (4.57)

where aj = .18. The unit square was divided into an even 3 x 3 grid and each pj

was chosen so that one of the nine Gaussians was centered at the middle of each

grid square. The parameters were chosen as a = [100 amin - - amin 100]T,

with amin = .1 so that only the lower left and upper right Gaussians contributed

significantly to the value of O(q), producing a bimodal distribution.

The robots in the network were started from random initial positions. Each robot

used a copy of the Gaussians described above for IC(q). The estimated parameters ^i

for each robot were started at a value of amin, and Ai and Ai were each started at zero.

The gains used by the robots were K = 312, r = 9, y = 300 and (= 0 for the basic

controller, and y = 100 and (= 50 for the consensus controller. In practice, the first

integral term in the adaptive law (4.13) seems to have little effect on the performance

of the controller. Choosing r small and y comparatively large puts more weight on

the second term, which is responsible for integrating measurements of 0(pi) into the

parameters. The spatial integrals in (4.7) and (4.13) required for the control law

were computed by discretizing each Voronoi region V into a 7 x 7 grid and summing

contributions of the integrand over the grid. Voronoi regions were computed using a

decentralized algorithm similar to the one in [26].

4.8.1 Simulation Results

Figure 4-4 shows the positions of the robots in the network over the course of a

simulation run for the parameter consensus controller (left column) and the basic

controller (right column). The centers of the two contributing Gaussian functions

are marked with xs. It is apparent from the final configurations that the consensus

controller caused the robots to group more tightly around the Gaussian peaks than

the basic controller. The somewhat jagged trajectories are caused by the discrete

nature of the spatial integration procedure used to compute the control law.

Figure 4-5(a) shows that both controllers converge to a near-optimal configuration-

one in which every robot is located at the estimated centroid of its Voronoi region,

in accordance with Theorem 4.1. However, the true position error also converged to

zero for the consensus controller, indicating that it achieved an optimal coverage con-

figuration, as shown in Figure 4-5(b). The basic controller did not reach an optimal

coverage configuration. Furthermore, convergence was so much faster for the consen-

sus controller that we have to use a logarithmic time scale to display both curves on

the same plot. Again, the somewhat jagged time history is a result of the discretized

spatial integral computation over the Voronoi region.

00 0.2 0.4 0.6 0.8 1

(a) Consensus Initial Config.

%

XI - - 9

,
% % % - d

, ?II x"

'-I

u0 0.2 0.4 0.6 0.8

(c) Consensus Trajectories

(e) Consensus Final Config.

1

0.8

0.6

0.4

0.2

0
1

4.

'I

(b) Basic Initial Config.

L' 9
DI. * %'' , . . - " G

'~- &:
iI

' I - .1.

x; ' '0

'04 0..

0.2 0.4 0.6 0.8

(d) Basic Trajectories

1 "0 0.2 0.4 0.6 0.8 1

(f) Basic Final Config.

Figure 4-4: Simulation results for the parameter consensus controller are shown in

the left column (4-4(a), 4-4(c), and 4-4(e)), and for the basic controller in the right

column (4-4(b), 4-4(d), and 4-4(f)). The Gaussian centers of ¢(q) are marked by the

red x's.

0.81

~.~~.....~......1111II..................

0.2 0.4 0.6 0.8 1

E o.1 E 0.1
--- Basic o --- Basic

0.08 -Consensu 0.08 - Consensu

10.06 0.06

,,, 0.06
0.02 0.02
0o o

10- 2 10 1 02 10 100 102
Time (s) Time (s)

(a) Mean Estimated Position Error (b) Mean True Position Error

Figure 4-5: The estimated position error, I|Cvi -pil , and the true position error,
IIC - pill averaged over all the robots in the network is shown for the network of
20 robots for both the basic and parameter consensus controllers. The true position
error converges to zero only for the parameter consensus controller, 4-5(b). However,
in accordance with Theorem 4.1, the estimated error converges to zero in both cases,
4-5(a). Note the logarithmic time scale.

The Figure 4-6(a) demonstrates that a locally true sensory function approximation

is achieved for each robot over Qi = {pi(T) I > 0, w(-) > 0}, the set of points

along the robot's trajectory with positive weighting. The plot shows the integral in

(4.21) as a function of time averaged over all the robots in the network converging

asymptotically to zero. The disagreement among the parameter values of robots is

shown in the right of Figure 4-6(b). The parameters were initialized to amin for all

robots, so this value starts from zero in both cases. However, the consensus controller

causes the parameters to reach consensus, while for the basic controller the parameters

do not converge to a common value.

Figure 4-7(a) shows that the consensus controller obtained a lower value of the

Lyapunov function at a faster rate than the basic controller, indicating both a lower-

cost configuration and a better function approximation. In fact, Figure 4-7(b) shows

that the parameter errors IId l actually converged to zero for the consensus controller,

so the conditions for Corollary 4.2 were met. This was also evidenced in Figure 4-5(b)

since the true position error converged to zero. For the basic controller, on the other

hand, the parameters did not converge to the true parameters.

100

~I~' I 1 IIII1~iCII1111~1111~11~11

100 _x 106
0 --- Basic --- Basic
,,i 80 -Consensus -Consensus ,--

g'20 o 0.5
•0 . 10

'U U-0-

10-2 10 102 10-2 1 0 102

Time (s) Time (s)

(a) Mean Int. ¢(q) Error (b) Consensus Error

Figure 4-6: The integrated sensory function error, namely fo w(T)(KCii) 2 dT, averaged

over all the robots is shown for the basic and consensus controllers in 4-6(a). The

plot demonstrates that each robot converges to a locally true function approximation

over all points along its trajectory with positive weighting, w(7) > 0, as asserted in

Theorem 4.1. The quantity E= 1 T J-1 (i - aj) is shown in 4-6(b), representing

a measure of the disagreement of parameters among robots. The disagreement con-

verges to zero for the consensus controller, as asserted in Theorem 4.2, but does not

converge for the basic controller.

4.9 Synopsis

In this chapter we augmented the distributed coverage controller from Chapter 3

to including learning of the sensory function. The learning controller was proven to

cause the robots to move to the estimated centroids of their Voronoi regions, while also

causing their estimate of the sensory distribution to improve over time. Parameter

coupling was introduced in the adaptation laws to increase parameter convergence

rates and cause the robots' parameters to achieve a common final value. The control

law was demonstrated in numerical simulations of a group of 20 robots sensing over

an area with a bimodal Gaussian distribution of sensory information.

101

rr~....................... I

x0 °150 . --- Basic
--- Basic m - --..... -Consensus

0 2 ___-Consensus 2

1.5 E100
LLU> 1
0 VC " 50

= 0.5

010

10 10° 102 0 100 102
Time (s) Time (s)

(a) Lyapunov Function (b) Mean I a (t)ll

Figure 4-7: The Lyapunov function is shown in 4-7(a) for both the basic and param-
eter consensus controllers. Notice that the parameter consensus controller results in
a faster decrease and a lower final value of the function. The normed parameter error
IadI averaged over all robots is shown in 4-7(b). The parameter error converges to zero
with the consensus controller indicating that the robot trajectories were sufficiently
rich.

102

us~-_ L -- _--I II I I I '' =~CP~

Chapter 5

From Theory to Practice:

Coverage with SwarmBots

5.1 Introduction

In Chapter 4 we introduced a distributed, theoretically-proven controller for a group

of robots to provide sensor coverage of an environment while learning the sensory

function. In this chapter we describe the algorithmic and systems challenges we

solved to implement this coverage controller on a group of robots. We present results

of experiments with 16 robots. As described in Chapter 4 and shown graphically in

Figures 4-1 and 4-2, we implement an algorithm in which robots simultaneously learn

the areas of the environment which need to be covered, and move to cover those areas.

The learning algorithm uses on-line parameter adaptation and a consensus algorithm

to approximate the sensory function from sensor measurements.

5.1.1 Related Work

There is little existing experimental work on multi-robot coverage control using the

Voronoi based method aside from that presented in this thesis. The first experi-

mental results with Voronoi based coverage were obtained in [95] with a controller

that approximated the sensory function, though not using learning as in this the-

103

sis. Other experiments were carried out for a time-varying sensory function in [78].

Other multi-robot coverage methods not involving Voronoi tessellations have been

investigated experimentally, however. For example, [23] used both reactive and de-

liberative approaches to inspect turbine blades with multiple robots. Preliminary

experiments with one fixed and one moving robot were described in [82], and [51]

describes multi-robot experiments with a lawn mowing-type coverage algorithm. Ex-

periments of multiple robots covering an environment using an exploration algorithm

without localization information are reported in [6].

5.1.2 Contributions

The main contribution of this chapter is as follows:

1. The controller from Chapter 4 with on-line learning of the sensory function is

implemented on a group of 16 SwarmBots. The performance of the robot group

is compared to that predicted by the theoretical results of Chapter 4.

In Section 5.2 we translate the controller from 4 into an algorithm that is practical

for implementation on robot platforms with limited computational resources. We also

enumerate the differences between the practical algorithm and the idealized controller.

In Section 5.3 we give results of two experiments and show experimental snapshots.

The algorithm is shown to operate in realistic situations in the presence of noise on

sensor measurements and actuator outputs. Conclusions and discussion are in Section

5.4.

5.2 Coverage Control Algorithm

The Coverage control algorithm has two components, corresponding to the two spaces

described in Figure 4-1. In position space, the robots pursue their estimated centroids,

given by

pi(t + 1) = (t). (5.1)

104

I~ - _

The estimated centroid of the Voronoi region is its geometric center, weighted by

the sensory function approximation. We calculate the discrete approximation of the

centroid of V by dividing it up into a set of grid squares. Let the set of center points

of the grid squares be V and each grid square has equal area Aq. Then the estimated

centroid Cv, of Vi, weighted by i(q, t), is given by

Zt qc qIi(q,t)Aq
Cvi (t) (5.2)

Eq1V Oi(q, t)Aq '

where Oi(q, t) is defined by

i(q, t) = IC(q)& a i (t) , (5.3)

as in Chapter 4, and &i(t) is the estimated parameter vector of robot i.

In parameter space, the robots collaboratively learn the function ¢(q). They do

this by iteratively integrating the values of ¢(pi) into the quantity Ai(t). They also

integrate the value of the basis function vector at their position IC(pi(t)) into the

quantity Ai(t). Specifically,

Ai(t + 1) = Ai(t) + K(p(t))O(pi(t)) and, (5.4)

Ai(t + 1) = A(t) + K(p(t))C(p(t)). (5.5)

Here for simplicity we use a uniform time weighting function, w(t) = 1. Each robot

then tunes its parameter vector using

&ipre(t) = e(t) + -y(Ai(t) - Ai(t)& &(t)) + ((3(t) - &(t)). (5.6)

j ENi (t)

where y and (are positive gains. We do not use the length of the shared Voronoi face

as a weighting in the parameter tuning (5.6). Instead we use the simpler 0- 1 weight-

ing described in Remark 4.4. As described in Chapter 4, the term Ai(t) - Ai(t)&i(t)

changes the parameters to follow the negative gradient of the Least Squares cost

function. The term EjeN (t) (aj(t) - &i(t)) has the effect of propagating every robot's

parameters around the network to be used by every other robot, and ultimately causes

105

Algorithm 1 Consensus-Based Coverage
Require: Each robot knows its position pi(t)
Require: Each robot can communicate with its Voronoi neighbors
Require: Each robot can compute its Voronoi cell, Vi
Require: Each robot can measure q(pi) with its sensors

Initialize: Ai(0) = 0, Ai(0) = 0, and ai(0) = [amin,..., amin]T

loop
Update:

Ai(t + 1) = A(t) + I(pi(t))4(pi(t))

Ai(t + 1) = Ai(t) + IC(p(t))I(pi(t))T

ipre(t) = Ai(t) + y(Ai(t) - A(t)&A(t)) + i 3 (Gj(t) - i(t)

jGJ'/j(t)

Project aipre(t) to ensure parameters remain positive: i (t + 1) -

max(aipre (t), amin)
Compute the robot's Voronoi region Vi
Discretize V1 into grid squares with area Aq and center points q E 14
Compute the centroid estimate:

S(EqEj qoi(q, t)AqA
-- E ((q)), where $i(q,t) = /C(q)Ti(t)

Drive to the estimated centroid: pi(t + 1) = CV (t)
end loop

all robots' parameter vectors to approach a common value. Finally, parameters are

maintained above a predefined minimum positive value amin E R, amin > 0, using

ai(t + 1) = max(aipre(t), amin), (5.7)

where the min(., -) operates element-wise on the vector &ipre(t). Our consensus-based

coverage algorithm (as executed asynchronously by each robot) is written in Algo-

rithm 1.

In summary, our coverage control algorithm integrates the sensor measurements

and robot trajectory into Ai E Rm and Ai E Rmxm, respectively. These are then

used to tune the parameter vector ai(t), which is also combined with the neighbors'

parameter vectors. The parameter vector is used to calculate the sensory function

106

:_i__

estimate j (q, t), which is used to calculate the estimated Voronoi centroid C(v, which

the robot then moves toward. The algorithm is a discrete-time interpretation of the

control law from [100], which, under mild assumptions, was proved to cause robots

to converge to the centroids of their Voronoi cells.

By implementing the control algorithm on a group of robots, a number of compli-

cations are introduced that were not considered in [100], as described in Table 5.1. The

presence of noise in all measurement and actuation operations is a significant change

from the noiseless scenario considered in [100]. Noise on the position measurements

of neighbors in particular seemed to be a large source of error in the computation

of the centroid of the Voronoi regions. We find that the algorithm performs well

despite the presence of these real-world complications. The robustness of the algo-

rithm can be attributed to its closed-loop structure, which constantly incorporates

position updates and new sensor measurements to naturally correct mistakes. Also,

the consensus-learning law tends to smooth the effects of noise on the sensory func-

tion measurements. This is because the parameter vectors are iteratively combined

with neighbors' parameter vectors, so inaccuracies that might otherwise accumulate

due to measurement errors are counteracted by measurement errors from neighboring

robots.

5.3 Results and Experimental Snapshots

The algorithm was implemented in integer arithmetic on a network of 16 SwarmBots

[64] (Figure 5-5(a)). Each SwarmBot used an on-board IR system to sense relative

neighbor positions (for computing its Voronoi cell) and to communicate its parameter

vector to its neighbors. The robots moved in a square environment 2.44mx2.44m.

Each robot's global position was measured by an overhead camera and sent to it by

radio. Each SwarmBot used a 40MHz 32-bit ARM Thumb microprocessor, which

provided enough processing power to execute our algorithm in real-time. There was

no centralized or off-line processing.

The system reliably performed numerous experiments and demonstrations. Here

107

Table 5.1: Algorithm 1 vs. Controller from Chapter 4
Algorithm 1

* Discrete-time difference equa-
tions
* Nonholonomic "unicycle" robot
dynamics cause position errors
and turning delays
* Asynchronous execution of in-
structions
* Approximate Voronoi cells con-
structed from noisy measurements
of neighbors within sensing range
* Discretized sums over the
Voronoi cell
* Noisy measurement of global po-
sition
* Noisy actuators
* Noisy measurement of sensory
function
* Basis function approximation
cannot reconstruct exact sensory
function

Controller from Chapter 4

* Continuous-time differential
equations
* Holonomic "integrator" robot
dynamics

* Synchronous evolution of equa-
tions
* Exact Voronoi cells computed
from exact positions of all Voronoi
neighbors
* Exact integrals over the Voronoi
cell
* Exact knowledge of global posi-
tion
* Noiseless actuators
* Noiseless measurement of sen-
sory function
* Basis function approximation
can reconstruct sensory function
exactly with ideal parameter vec-
tor

we present detailed results of two experiments. In the first experiment in Section

5.3.1, the robots were given a noiseless measurement of a simulated sensory function

(ps). This allowed us to compare the performance of the algorithm to a known

ground truth. Since the function ¢(q) is known, we also know the true position errors

of the robots (the distances to their true centroids), as well as the true parameter

errors. In the second experiment in Section 5.3.2, the robots used their on-board light

sensors to sense light intensity in the environment as a sensory function. In this case

we have no ground truth value for ¢(q). We verify that the algorithm exhibits the

behavior that one would expect given the scenario.

5.3.1 Simulated Sensory Function

The simulated sensory function, O(q), was represented by two Gaussians, one in

the lower right of the environment and one in the upper left. The set of basis

108

'

functions was chosen to be 9 Gaussians arranged in a grid over the square envi-

ronment. In particular, each of the nine components of IC(q) was implemented as

1/(2-ir2) exp {-|Iq - pjIj2/(2o)}, where rj = .37m. The 2.44mx2.44m square was

divided into an even 3 x 3 grid and each pj was chosen so that one of the 9 Gaussians

was centered at the middle of each grid square. The parameters for the simulated

sensory function were chosen as a = [200 amin ... amin 2 0 0]T, with amin = 1

so that only the upper left and lower right Gaussians contributed significantly to the

value of 9(q).

Figure 5-1 shows the positions of 16 robots over the course of an experiment.

The algorithm caused the robots to group around the Gaussian peaks. The robots

had no prior knowledge of the number or location of the peaks. Figure 5-2(a) shows

the distance to the centroid, averaged over all the robots. The distance to the true

centroid decreased over time to a steady value. The distance to the estimated centroid

decreased to a value close to the pre-set dead zone of 5cm. The significant noise in

the distance to the estimated centroid comes from noise in the IR system used to

measure the neighbor positions. This caused the Voronoi cells to change rapidly,

which in turn caused the centroid estimates to be noisy. Despite this noise, the true

distance to the centroid decreased steadily, indicating that the algorithm is robust

to these significant sources of error. Figure 5-2(b) shows that the normed parameter

error, averaged over all of the robots, decreased over time. Figure 5-2(c) shows

i=1 i(t)T (, (t) - &j (t)), representing the disagreement among the parameter

vectors of different robots. The disagreement started at zero because all parameters

were initialized with the same value of amin. The disagreement initially grew, then

decreased as the robots' parameters reached a consensus.

5.3.2 Measured Sensory Function

An experiment was also carried out using light intensity over the environment as the

sensory function. Two incandescent office lights were placed at the lower left corner

of the environment, and the robots used on-board light sensors to measure the light

intensity. The same 3 x 3 grid of basis functions as in the first experiment was used. In

109

(b) Middle Snapshot

2.144 2.44 2.44

000 0 0 0

1 .2 2 o2
21

.2 2 o o o
S00

O0 1.22 2.44 00 1.22 2.44 0 1.22 2.44
meters meters meters

(d) Initial Config. (e) Trajectories (f) Final Config.

Figure 5-1: Results for the algorithm are shown in video snapshots in the left column
(5-1(a), 5-1(b), and 5-1(c)). The positions collected from the overhead camera for
the same experiment are plotted in the right column (5-1(d), 5-1(e), and 5-1(f)). The
Gaussian centers of ¢(q) are marked by red x's.

this experiment there was no ground truth against which to compare the performance

of the algorithm since we did not know the "true" light intensity function over in the

environment. We instead show that the algorithm caused the network to do what

one would expect given the qualitative light intensity distribution.

Figure 5-3 shows snapshots of the experiment taken from the overhead camera.

Notice that the robots collected in higher density around the light sources while

still covering the environment. Figure 5-4(a) shows that the distance to the robots'

estimated centroids decreased, albeit with a significant amount of noise due to un-

certainty in the neighbor position estimates, as in the previous experiment. Figure

5-4(a) also shows the distance to the estimated centroid filtered so that the decreas-

ing trend becomes more evident. Also, Figure 5-5(b) shows that the robots learned

a function with a large weight near the position of the light sources. The weights on

the 9 Gaussians adjusted to find the best fit of the data. Figure 5-4(b) shows that,

110

(a) Initial Snapshot (c) Final Snapshot

0.5 500
- Estimated wI

-0.4 --- Actual 400

S0.3 30

o 0

C 0.1.

0 50 100 150 200 2 0 50 100 150 200
Time (s) Time (s)

(a) Mean Position Error (b) Mean Parameter Error

x 10s

0
u3

w2
C

0
o°0

0 50 100 150 200
Time (s)

(c) Consensus Error

Figure 5-2: The distance to the actual centroid, and the distance to the estimated
centroid, averaged over all the robots are shown in 5-2(a). The normed parameter
error averaged over all robots is shown in 5-2(b). The plot in 5-2(c) shows a quantity
representing the disagreement of parameters among robots.

as in the previous experiment, disagreement between robot parameters initially grew,

then decreased as the robots tended toward consensus. The parameters never actu-

ally reach consensus because of noise and calibration differences among the different

robots' light sensors.

5.4 Synopsis

In this chapter, we implemented a control algorithm for multi-robot coverage on a

minimalist robot platform. The controller was adapted to the hardware platform

available, and was shown to perform robustly despite the presence of sensor and

actuator noise, and other real-world complications. We presented the results of two

111

..

(b) Middle Snapshot

1.22 2.44 9 1.22 2.44 CO 1.22 2.44
meters meters meters

(d) Initial Config. (e) Trajectories (f) Final Config.

Figure 5-3: Results for the algorithm are shown in video snapshots in the left column
(5-3(a), 5-3(b), and 5-3(c)). The positions collected from the overhead camera for
the same experiment are plotted in the right column (5-3(d), 5-3(e), and 5-3(f)). The
robots used the light intensity measured with on board light sensors as the sensory
function.

experiments with 16 robots. In the first experiment, the robots were given simulated

sensory function measurements so that we could compare the results with a known

ground truth. In the second experiment, the robots used measurements from light

sensors as a sensory function. We hope these results represent a significant step

toward the use of multi-robot coverage control algorithms in practical monitoring

and surveillance applications in the future.

112

-~":'

(a) Initial Snapshot

50 100 150 20
Time (s)

(a) Mean Position Error

50 100 150 200
Time (s)

(b) Consensus Error

Figure 5-4: The distance to the estimated centroid, averaged over all the robots in

the network is shown in 5-4(a). The plot in 5-4(b) shows a quantity representing the

disagreement of parameters among robots.

10

.. o ..

(a) SwarmBot (b) Function Approximation

Figure 5-5: The iRobot SwarmBot platform is shown in 5-5(a). The basis function
approximation of the light intensity (smooth surface) over the area for one robot is
shown in 5-5(b) superimposed over a triangular interpolation of the light intensity
measurements of all the robots (jagged surface).

113

114

Chapter 6

Coverage with Quad-Rotors

6.1 Introduction

In this chapter we apply the theory from Chapter 3 to control flying robots with

downward facing cameras. This work demonstrates how to incorporate a realistic

sensor model of the camera to obtain an appropriate cost function t to derive the

gradient based controller from Equation (2.7). The computation of the gradient

controller in this case is more difficult, and the application of the gradient convergence

and stability theorems (Theorems 2.3 and 2.4) require the verification of some more

intricate technical details.

Multiple collaborating robots with cameras are useful in a broad range of applica-

tions, from surveying disaster sites, to observing the health of coral reefs. However, an

immediate and difficult question arises in such applications: how should one position

the robots so as to maintain the best view of an environment? In this chapter we offer

an approach motivated by an information content principle: minimum information

per pixel. Using information per pixel as a metric allows for the incorporation of

physical, geometric, and optical parameters to give a cost function that represents

how well a group of cameras covers an environment. We develop the approach in de-

tail for the particular case of multiple downward facing cameras mounted to robots.

The cost function leads to a gradient-based distributed controller for the robots to

position themselves in three dimensions so as to best observe a planar environment

115

Figure 6-1: This snapshot of an experiment shows three flying quad-rotor robots
moving so that their cameras cover the environment represented by the white polygon.

over which they hover. We present simulation results in a Matlab environment. We

also present experimental results with three AscTec Hummingbird quad-rotor robots.

Our algorithm can be used in support of a higher-level computer vision task, such

as object recognition or tracking. We address the problem of how to best position the

robots given that the data from their cameras will be used by some computer vision

algorithm. Our design principle can be readily adapted to a number of applications.

For example, it could be used to control groups of autonomous underwater or air

vehicles to do mosaicing [79], or to produce photometric stereo from multiple camera

views [41], for inspection of underwater or land-based archaeological sites, biological

environments such as coral reefs or forests, disaster sites, or any other large scale en-

vironment of interest. Our algorithm could also be used by autonomous flying robots

to do surveillance [21], target tracking [12,18,50], or to aid in navigation of agents on

the ground [81].

116

.............

6.1.1 Related Work

One recent extension described in [63], Figure 14, proposed an algorithm for the

placement of hovering sensors, similar to our scenario. Our method in this chapter

is related to this work in that we propose a cost function and obtain a distributed

controller by taking its gradient. However, the cost function we propose is different

from previous ones in that it does not involve a Voronoi partition. To the contrary, it

relies on the fields of view of multiple cameras to overlap with one another. Another

distinction from previous works is that the agents we consider move in a space that is

different from the one they cover. Previous coverage scenarios have considered agents

constrained to move in the environment that they cover, which leads to a constraint

that the environment must be convex (to prevent agents from trying to leave the

environment). In contrast, we consider agents moving in a space R3 , covering an

arbitrary lower dimensional environment Q C IR2. This eliminates the need for Q

to be convex. Indeed, it need not even be connected. It must only be Lebesgue

measurable (since the robots will calculate integrals over it), which is quite a broad

specification.

There have also been other algorithms for camera placement, for example a prob-

abilistic approach for general sensor deployment based on the Cramer-Rao bound was

proposed in [42], and an application of the idea for cameras was given in [31]. We

choose to focus on the problem of positioning downward facing cameras, similarly

to [54], as opposed to arbitrarily oriented cameras. Many geometrical aspects of the

problem are significantly simplified in this setting, yet there are a number of practical

applications that stand to benefit from controlling cameras in this way, as previously

described. More generally, several other works have considered cooperative control

with flying robots and UAV's. For an excellent review of cooperative UAV control

please see [85], or [11] and [83] for two recent examples.

6.1.2 Contributions

The main contributions of this chapter are:

117

1. Applying the ideas of Chapter 3, we propose the minimum information per

pixel principle to formulate a cost function for multiple hovering robots with

downward facing cameras. We use the cost function to design a gradient descent

controller to deploy multiple robots to their optimal positions in a distributed

fashion.

2. We implement the proposed controller on three quad-rotor robots and test its

performance in experiments.

The proposed robot coordination algorithm is fully decentralized, provably stable,

adaptive to a changing number of flying agents and a changing environment, and will

work with a broad class of environment geometries, including convex, non-convex,

and disconnected spaces.

6.2 Optimal Camera Placement

We motivate our approach with an informal justification of a cost function, then

develop the problem formally for the single camera case followed by the multi-camera

case. We desire to cover a bounded environment, Q c R2 , with a number of cameras.

We assume Q is planar, without topography, to avoid the complications of changing

elevation or occlusions. As in previous chapters, let pi G P represent the state of

camera i, where the state-space, 1, will be characterized later. We want to control n

cameras in a distributed fashion such that their placement minimizes the aggregate

information per camera pixel over the environment,

min dq.
(Pt,...,Pn)E

n Q pixel

This metric makes sense because the pixel is the fundamental information captur-

ing unit of the camera. Consider the patch of image that is exposed to a given

pixel. The information in that patch is reduced by the camera to a low-dimensional

representation (i.e. mean color and brightness over the patch). Therefore, the less

information content the image patch contains, the less information will be lost in its

118

low-dimensional representation by the pixel. Furthermore, we want to minimize the

accumulated information loss due to pixelation over the whole environment Q, hence

the integral. In the next two sections we will formalize the notion of information per

pixel.

6.2.1 Single Camera

We develop the cost function for a single camera before generalizing to multiple

cameras. It is convenient to consider the information per pixel as the product of

two functions, f : P x Q - (0, c00], which gives the area in the environment seen

by one pixel (the "area per pixel" function), and : Q -* (0, oc) which gives the

information per area in the environment. The form of f(pi, q) will be derived from

the optics of the camera and geometry of the environment. The function O(q) is a

positive weighting of importance over Q and should be specified beforehand (it can

also be learned from sensor data, as in Chapter 4). For instance, if all points in the

environment are equally important, O(q) should be constant over Q. If some known

area in Q requires more resolution, the value of O(q) should be larger in that area

than elsewhere in Q. This gives the cost function

min f(p, q)q(q) dq, (6.1)
p JQ

which is of a general form similar to the one seen in Chapter 3. We will introduce

significant changes to this basic form with the addition of multiple cameras.

The state of the camera, p, consists of all parameters associated with the camera

that effect the area per pixel function, f(p, q). In a general setting one might consider

the camera's position in R3, its orientation in so(3) (the three rotational angles),

and perhaps a lens zooming parameter in the interval (0, oc), thus leading to an

optimization in a rather complicated state-space (P = R3 x so(3) x (0, o00)) for only

one camera. For this reason, we consider the special case in which the camera is

downward facing (hovering over Q). Indeed, this case is of particular interest in

many applications, as described in Section 6.1. We define the field of view, B, to be

119

Figure 6-2: The camera optics and the geometry of the environment are shown in
this figure.

the intersection of the cone whose vertex is the focal point of the camera lens with

the subspace that contains the environment, as shown in Figure 6-2. In Section 6.3.1

we will consider a camera with a rectangular field of view, but initially consider a

circular field of view, so the rotational orientation of the downward facing camera

is irrelevant. In this case P = R 3, and the state-space in which we do optimization

is considerably simplified from that of the unconstrained camera. Decompose the

camera position as p = [cT, z]T, with c E R'2 the center point of the field of view, and

z E R the height of the camera over Q. We have

B=(q - clq < tanO (6.2)

where 0 is the half-angle of view of the camera.

To find the area per pixel function, f(p, q), consider the geometry in Figure 6-2.

Let b be the focal length of the lens. Inside B, the area/pixel is equal to the inverse of

the area magnification factor (which is defined from classical optics to be b2/(b - z)2)

times the area of one pixel [40]. Define a to be the area of one pixel divided by the

square of the focal length of the lens. We have,

f(p, q) a(b - z) 2 for qEB (6.3)

00 otherwise,

120

rr

o nB Bi

Figure 6-3: This figure shows the relevant quantities involved in characterizing the

intersecting fields of view of two cameras.

Outside of the field of view, there are no pixels, therefore the area per pixel is infinite

(we will avoid dealing with infinite quantities in the multi-camera case). The cost

function in (6.1) takes on an infinite value if any area (of non-zero measure) of Q is

outside of the field of view. Indeed, we know there exists a p E P such that the cost

is finite, since Q is bounded (given c and 0, there exist z E R such that Q C B).

Therefore, we can write the equivalent constrained optimization problem

minp fQ a(b + z)2 b(q) dq, (6.4)

subject to Q C B.

One can see in this simple scenario that the optimal solution is for p to be such that

the field of view is the smallest ball that contains Q. However, with multiple cameras,

the problem becomes more challenging.

6.2.2 Multiple Cameras

To find optimal positions for multiple cameras, we have to determine how to account

for the area of overlap of the images of the cameras, as shown in Figure 6-3. Intuitively,

an area of Q that is being observed by two different cameras is better covered than if it

121

-- - --- ---- ---- ---- ---- ---- ---- ---- ---- ----

were being observed by only one camera, but it is not twice as well covered. Consider

a point q that appears in the image of n different cameras. The number of pixels

per area at that point is the sum of the pixels per area for each camera. Therefore

(assuming the cameras are identical, so they use the same function f(pi, q)) the area

per pixel at that point is given by the inverse of the sum of the inverse of the area

per pixel for each camera, or

n
area ((pq)) ,
pixel =

i=1

where pi is the position of the ith camera. We emphasize that it is the pixels per

area that sum because of the multiple cameras, not the area per pixel because, in the

overlap region, multiple pixels are observing the same area. Therefore the inverse of

the sum of inverses is unavoidable. Incidentally, this is the same form one would use

to combine the variances of multiple noisy measurements when doing sensor fusion.

Finally, we introduce a prior area per pixel, w E (0, oc). The interpretation of

the prior is that there is some pre-existing photograph of the environment (e.g. an

initial reconnaissance photograph), from which we can get a base-line area per pixel

measurement. This is compatible with the rest of our scenario, since we will assume

that the robots have knowledge of the geometry of the environment Q, and some

notion of information content over it, ¢(q), which could also be derived from a pre-

existing photograph. This pre-existing information can be arbitrarily vague (w can

be arbitrarily large) but it must exist. The prior also has the benefit of making the

cost function finite for all robot positions. It is combined with the camera sensors as

if it were another camera to get

n
area

= () + w 1pixel = 1f ') w)

Let A% be the set of indices of cameras for q is in the field of view, . = {i I q e B).

122

We can now write the area per pixel function as

gq(f(pl, q),. f(p, q)) = (S f(pi, q) - 1 + w-l) - '. (6.5)
ieAfq

which is very similar to the mixing function g, with a = -1, from Chapter 3. The

only difference is the prior w. In a probabilisitic setting, as in Section 3.3.2, this

would represent the variance of a Gaussian prior. Forming the standard cost function

as in Chapter 3, gq is integrated over the environment to give the cost function

7H(pi, . . , pn) = fQ 9q(f (p1, q), . . . , f (p., q)) (q) dq. (6.6)

We will often refer to g and I without their arguments. Now we can pose the multi-

camera optimization problem,

min R. (6.7)
(pl ,,p)EP

n

The cost function (6.6) is of a general form valid for any area per pixel function

f(pi, q), and for any camera state space P (including cameras that can can swivel

on giinbels). We proceed with the special case of downward facing cameras, where

P = R 3 and f(pi, q) is from (6.3) for the remainder of the chapter.

6.3 Distributed Control

We will take the gradient of (6.6) and find that it is distributed among agents. This

will lead to a gradient-based controller. We will use the notation 9g,i to mean

gq,i(f(pl, q), . . .,f(pn, q)) = (f(pj, q)- + w-), (6.8)
jENAq\{i}

where .Nq\{i} is the set of all indices in ANq, except for i.

Theorem 6.1 (Gradient Component) The gradient of the cost function (p,. . .., pn)

with respect to a robot's position pi, using the area per pixel function in (6.3) is given

123

S= f (g - g,j) c (q) dq, (6.9)
aci "nai |q - cill

and

Oz jn (gq - gq,i)(q) tan 0 dq

- Ifn a (q) dq. (6.10)
one a(b - Zi)3

Proof 6.1 We can break up the domain of integration into two parts as

- gqc/(q) dq + gqo(q) dq.
JnB Q\B

Only the integrand in the first integral is a function of pi since the condition i E fq

is true if and only if q E Bi (from the definition of A/q). However the boundaries

of both terms are functions of pi, and will therefore appear in boundary terms in the

derivative. Using the standard rule for differentiating an integral, with the symbol 9.

to mean boundary of a set, we have

' = j "q O (q) dq
89Pi Qn3 aPi

+ f gq(q9) na(QniB) dq
J(Qni3) (9i

+ gq,i(q) Qq\) n(q\B~) dq, (6.11)

where qa. is a point on the boundary of a set expressed as a function of pi, and na .

is the outward pointing normal vector of the boundary of the set. Decomposing the

boundary further, we find that O(Q n Bi) = (OQ n B3) u (Q n OBi) and &(Q\Bi) =

(aQ\Bi) U (Q n i38). But points on 9Q do not change as a function of pi, therefore

124

__~I_ ^ __11~ / _ ;;iiiiliii_ ~____ _.L-._ .ll-lll.---liX-~IIICI~-~~

we have

dq(oQni) 0 Vq E Q n

and q(Q\ 0 Vq E aQ\B.

Furthermore, everywhere in the set Q n dBi the outward facing normal of d(Q\Bi) is

the negative of the outward facing normal of d(Q n B),

na(Q\,) = -n(a(QnLB) Vq E Q n 83i.

Simplifying (6.11) leads to

_ = j (gq - gq,j)(q)
Nci Oi

9(QnO,) n(QnaB) dq. (6.12)
dci

and

7- (g - gq,i)o(q)

azi QNOBa

Dq(Qn3) T f 2gq
n(QnaB) dq - a(b (q) dq, (6.13)

8zi n a(b - Z)3

where we used the fact that gq/dci = [0 0]T, and a straightforward calculation yields

dg,/dqz = -2gn/(a(b - z,) 3). Now we solve for the boundary terms,

gq(Qn T naTi) T n
n(QnaB) and z n(Qna),

which generally can be found by implicitly differentiating the constraint that describes

the boundary. Henceforth we will drop the subscript on q, but it should be understood

that we are referring to points, q, constrained to lie on the set Q n dBi. A point q on

125

the boundary set Q n c3,B will satisfy

jq - cill = zi tan 8, (6.14)

and the outward facing normal on the set Q n B1 is given by

n(Qa) - (q - ci)
|q - cil

Differentiate (6.14) implicitly with respect to ci to get

- -2 (- Ci) = 0,8ci

where 12 is the 2 x 2 identity matrix, therefore

9q T (q - ci) (q - ci)
ci ||q - cill q - ci l '

which gives the boundary terms for (6.12). Now differentiate (6.14) implicitly with

respect to zi to get

Oq (q - ci)
- tan 0,az q - ci

which gives the boundary term for (6.13). The derivative of the cost function 7 with

respect to pi can now be written as in Theorem 6.1

Remark 6.1 (Intuition) We will consider a controller that moves a robot in the

opposite direction of its gradient component. In which case, the single integral for

the lateral component (6.9) causes the robot to move to increase the amount of the

environment in its field of view, while also moving away from other robots j whose

field of view overlaps with its own. The vertical component (6.10) has two integrals

with competing tendencies. The first integral causes the robot to move up to bring

more of the environment into its field of view, while the second integral causes it to

move down to get a better look at the environment already in its field of view.

126

---i ii _ --- r-r- -I.rr.r~_- ;;ii~;il;i :iii;;-i-_;-;; ,-i-iiiLI=-~---- -li-fl--^-- -~T :

Remark 6.2 (Requirements) Both the lateral (6.9) and vertical (6.10) compo-

nents can be computed by robot i with knowledge of 1) its own position, pi, 2) the

extent of the environment Q, 3) the information per area function ¢(q), and 4) the

positions of all other robots whose fields of view intersect with its own (which can be

found by communication or sensing).

Remark 6.3 (Network Requirements) The requirement that a robot can com-

municate with all other robots whose fields' of view intersect with its own describes

a minimal network graph for our controller to be feasible. In particular, we require

the network to be at least a proximity graph in which all agents i are connected to all

other agents j E Ai, where M = {j I Q n L3 n Bj / 0, i f j}. The controller can be

run over a network that is a subgraph of the required proximity graph, in which case

performance will degrade gracefully as the network becomes more sparse.

We form the controller using the gradient according to the standard multi-robot

controller in Equation (2.7),

i = -k (6.15)
pi"

We can prove the convergence of this controller to locally minimize the aggregate

information per area.

Theorem 6.2 (Convergence) For a network of n robots with the closed-loop dy-

namics in (6.15),

lim = 0 Vi E {1...n}. (6.16)

Proof 6.2 The proof is an application of Theorem 2.3 from Chapter 2. The closed-

loop dynamics pi = -d7l/api are a gradient system. We must only show that all

evolutions of the system are bounded. To see this, consider a robot at pi such that

Q n B = 0. Then j3 = 0 for all time (if the field of view leaves Q, the robot stops

for all time), so c.(t) is bounded. Given Q n B1 0, HI is radially unbounded (i.e.

127

coercive) in ze, therefore < 0 implies that ze is bounded for all time. Therefore, all

conditions of Theorem, 2.3 are satisfied and the trajectories of the system converge to

the set of critical points.

To be more precise, there may exist configurations at which = = 0 Vi thatapi
are saddle points or local maxima of X. However, since the controller is a gradient

controller, only isolated local minima of H are stable equilibria, according to Theorem

2.4.

This controller can be implemented in a discretized setting as Algorithm 2. In

general, the integrals in the controller must be computed using a discretized approx-

imation. Let Q n 13B and Q N Bi be the discretized sets of gird points representing

the sets Q n e13 and Q n Bi, respectively. Let Aq be the length of an arc segment

for the discretized set Qn B3, and the area of a grid square for the discretized set

Q n Be. A simple algorithm that approximates (6.15) is then given in Algorithm 2.

Algorithm 2 Discretized Controller
Require: Robot i knows its position pi, the extent environment Q, and the informa-

tion per area function O(q).
Require: Robot i can communicate with all robots j whose field of view intersects

with its own.
loop

Communicate with neighbors to get pj
Compute and move to

ci(t + At) = c(t)

-k E -q g (gq - gq,i) (q-oi (q)Aq

Compute and move to

zi(t + At) = zi(t)

-k Eqq~;ja (gq - gq,i) (q) tan OAq
2gq

+k qEQn a(b-zi)3 (q)Aq

end loop

Remark 6.4 (Time Complexity) To determine the computational complexity of

this algorithm, let us assume that there are m points in both sets Q n 8BI and Q n 3 .

128

_ _ ._ _~_;__^IL.XI~_/ __jli*i__~iil::_~_~_l__l ~__I_____;II_1_C~~I_111- i_~-I--_(ii_;i~ii i/Cii~l-~~-:_7~7~~i-i----IXI-li- .--X_-.~^_.~-_i-i L._*l.ii._i(-.. -i.l:i i--~~-.^~~~:~-~I~Zji----~-~-~l--lll-l-il

We can now calculate the time complexity as

m n

T(n, m) E(O(1) + 0(1)) +
j=1 k=1

m n n-1

(0 (1) + Z O(1) + O 0(1)) E O(nm).
j=1 k=1 k=1

When calculating the controller for all robots on a centralized processor (as was done

for the simulations in Section 6.5), the time complexity becomes T(n, m) E O(n2m).

Remark 6.5 (Adaptivity) The controller is adaptive in the sense that it will stably

reconfigure if any number of robots fail. It will also work with nonconvex environ-

ments, Q, including disconnected ones. In the case of a disconnected environment,

the robots may (or may not, depending on the specific scenario) split into a number of

sub-groups that are not in communication with one another. The controller can also

track changing environments, Q, and changing information per area functions, ¢(q),

provided these quantities change slowly enough. This is not addressed by the proof,

but has been shown to be the case in simulation studies.

Remark 6.6 (Control Gains and Robustness) The proportional control gain, k,

adjusts the aggressiveness of the controller. In a discretized implementation one

should set this gain low enough to provide robustness to discretization errors and

noise in the system. The prior area per pixel, w, adjusts how much of the area Q

will remain uncovered in the final configuration. It should be chosen to be as large as

possible, but as with k, should be small enough to provide robustness to discretization

errors and noise in the system.

6.3.1 Rectangular Field of View

Until this point we have assumed that the camera's field of view, Bi is a circle,

which eliminates a rotational degree of freedom. Of course, actual cameras have a

rectangular CCD array, and therefore a rectangular field of view. In this section we

129

revisit the gradient component in Theorem 6.1 and calculate it for a rectangular field

of view and a robot with a rotational degree of freedom.

Let the state space of pi = [cT zi 0i]T be P = R3 x S, where 4i is the rotation

angle. Define a rotation matrix

R(Vi) = cos i sin i (6.17)
- sin Oi cos i

where R(O4)q rotates a vector q expressed in the global coordinate frame, to a co-

ordinate frame aligned with the axes of the rectangular field of view. As is true for

all rotation matrices, R(Oi) is orthogonal, meaning R(0b)T = R(i) - 1. Using this

matrix, define the field of view of robot i to be

BI = {q I R(-) (q - ci) < zi.tan 0}, (6.18)

where 0 = [01, 0 2]T is a vector with two angles which are the two half-view angles

associated with two perpendicular edges of the rectangle, as shown in Figure 6-4, and

the < symbol applies element-wise (all elements in the vector must satisfy <). We

have to break up the boundary of the rectangle into each of its four edges. Let lk be

the kth edge, and define four outward-facing normal vectors nk, one associated with

each edge, where n = [1 O]T, n 2 = [O 1]T , n 3 = [-1 0], and n 4 = [0 - 1]. The

cost function, N(Pl,... ,Pn), is the same as for the circular case, as is the area per

pixel function f(pi, q).

Theorem 6.3 (Rectangular Gradient) The gradient of the cost function Nl(pi, . . ., p)

with respect to a robot's position pi using the area per pixel function in (6.3) and the

rectangular field of view in (6.18) is given by

E n (gq - gqi) R(4i)Tnk(q) dq, (6.19)ci k=l IQnik

130

: = -'::;'- ' ~ I--I-' '1 '~I--"-~~'-"----)-----"-i --Llii"'ii;l('- '--i"CI"'-- "" --~-~ 'r:-~;~-~lr-- --x_-ulx~l _-r..-r, I., i-. -;;r -- _~-i:lli--;-~jr;~-: =;~1 -;; --I'~- ---- :- -I--=- ------- ^-: --,I -I:-i i LIX^- -l;-- ~;i~;r:i~y-.-i;r;;~~;~;;~;~~rl~~~

Figure 6-4: The geometry of a camera with a rectangular field of view is shown in

this figure.

-I= Z (gq - gq,j) tan OTnko(q) dq

S Z9 (q)dq, (6.20)
QnB a(b - z)

and

- j (gq - gq,i)
"i == nik

•(q - c~)TR(?Pi + 7r/2)Tnko(q) dq. (6.21)

Proof 6.3 The proof is the same as that of Theorem 6.1 up to the point of evaluating

the boundary terms. Equations (6.12) and (6.13) are true. Additionally the angular

component is given by

" _ f (gq - gq,i)o(q)
aci QnOB,

&q(QOB,)T
o t' Tn(QnaB) dq.allt

131

I

The constraint for points on the k th leg of the rectangular boundary is

(q - ci)T R (i)Tnk = zi tan OTnk,

from (6.18). Differentiate this constraint implicitly with respect to ci, zi, and 'i and

solve for the boundary terms to get

'q T
R(i) nk R(Ti)Tnk,aci

aq TR(bi)Tnk = tan Tnk,
azi

and =R()Tnk = - C)T R(i + 7r/2)Tnk,

where we have used the fact that

(j) - sin Ob cos /'iS cos -sin =R(i + r/2).
&4 'i -cos Oi - sin J

Break the boundary integrals into a sum of four integrals, one integral for each edge

of the rectangle. The expression in Theorem 6.3 follows.

Remark 6.7 (Intuition) The terms in the gradient have interpretations similar to

the ones for the circular field of view. The lateral component (6.19) has one integral

which tends to make the robots move away from neighbors with intersecting fields of

view, while moving to put its entire field of view inside of the environment Q. The

vertical component (6.20) comprises two integrals. The first causes the robot to go up

to take in a larger view, while the second causes it to go down to get a better view

of what it already sees. The angular component (6.21) rotate the robot to get more

of its field of view into the environment, while also rotating away from other robots

whose field of view intersects its own. Computation of the gradient component for the

rectangular field of view is of the same complexity as the circular case, and carries

the same constraint on the communication topology.

132

- --:_~ii'~jr-rx~LT-~~a~~~jr~~~=-~-T=~li -----lili-;~-i~-;r-l~~~il~~--::l-~-~:?(- ;:~~.~i~_iii~;iiii;~-~i~~--li~:iT-jn~-~

6.4 Experiments

We implemented Algorithm 2 on a group of three AscTec Hummingbird flying quad-

rotor robots. Our experiments were performed at CSAIL, MIT in a laboratory

equipped with a Vicon motion capture system. The robots' position coordinates

(x, y, z, yaw) were broadcast wirelessly at 50Hz via a 2.4 Ghz xBee module. Each

robot was equipped with a custom ARM microprocessor module running a PID po-

sition control loop at 33Hz. Pitch and roll were fully stabilized by the commercial

controller described in [38]. A schematic of the experimental setup is shown in Figure

6-5.

The coverage algorithm was implemented on the same onboard ARM modules,

running asynchronously in a fully distributed fashion. The algorithm calculated way

points (ci(t) and zi(t) from Algorithm 2) at 1Hz. This time-scale separation between

the coverage algorithm and the PID controller was required to approximate the inte-

grator dynamics assumed in (2.5). The camera parameters were set to a = 10-6 and

b = 10-2m (which are typical for commercially available cameras), the field of view

was 0 = 35deg, the information per area was a constant O(q) = 1, the prior area per

pixel was w = 10-6m 2, and the control gain was k = 10-5 . The environment to be

covered was a skewed rectangle, 3.7m across at its widest, shown in white in Figure

6-6.

To test the effectiveness of the algorithm and its robustness to robot failures, we

conducted experiments as follows: 1) three robots moved to their optimal positions

using the algorithm, 2) one robot was manually removed from the environment, and

the remaining two were left to reconfigure automatically, 3) a second robot was re-

moved from the environment and the last one was left to reconfigure automatically.

Figure 6-6 shows photographs of a typical experiment at the beginning (Figure 6-

6(a)), after the first stage (Figure 6-6(b)), after the second stage (Figure 6-6(c)), and

after the third stage (Figure 6-6(d)).

The initial positions are shown in Figure 6-6(a), the final positions of the three

robots are shown in Figure 6-6(b), the final positions of the two after removing one is

133

Vicon System

Robot
Position

Figure 6-5: This figure shows the experimental setup. The robots positions were
captured with an Vicon motion capture system. The robots used their position in-
formation to run the coverage algorithm in a distributed fashion.

shown in Figure 6-6(c), and the final position of the last robot after removing the sec-

ond is shown in Figure 6-6(d). The coverage cost of the robots over the course of the

whole experiment, averaged over 19 experiments, is shown in Figure 6-7, where the er-

ror bars represent one standard deviation. Notice that when one robot is removed, the

cost function momentarily increases, then decrease as the remaining robots find a new

optimal configuration. The algorithm proved to be robust to the significant, highly

nonlinear unmodeled aerodynamic effects of the robots, and to individual robot fail-

ures. This chapter is accompanied by a video showing the experiments and numerical

simulations.

We repeated the above experiment a total of 20 times. Of these 19 were successful,

while in one experiment two of the robots collided in mid air. The collision was caused

by an unreliable gyroscopic sensor, not by a malfunction of the coverage algorithm.

With appropriate control gain values, collisions are avoided by the algorithm's natural

tendency for neighbors to repel one another.

134

(b) Three Config.

(c) Two Config. (d) One Config.

Figure 6-6: Frame shots from an experiment with three AscTec Hummingbird quad-

rotor robots are shown. After launching from the ground (Figure 6-6(a)), the three

robots stabilize in an optimal configuration (Figure 6-6(b)). Then one robot is man-

ually removed to simulate a failure, and the remaining two move to a new optimal

position (Figure 6-6(c)). Finally a second robot is removed and the last one stabilizes

at an optimal position (Figure 6-6(d)). The robots move so that their fields of view

(which cannot be seen in the snapshots) cover the environment, represented by the

white polygon.

135

X1I

(a) Initial Config.

4.0 .."

o
0 3.5 .. o

2.5 0

-5 0 5 10 15 20 0 5 10 0 5 10 15

Time (s)

Figure 6-7: The cost function during the three stages of the experiment, averaged
over 19 successful experiments, is shown in Figure 6-7. The error bars denote one
standard deviation. The experiments demonstrate the performance of the algorithm,
and its ability to adapt to unforeseen robot failures.

6.5 Simulations

We conducted numerical simulations to investigate the scalability and robustness of

the algorithm. Hovering robots with integrator dynamics (2.5) were simulated using

Algorithm 2 on a centralized processor. The values of a, b, 0, ¢, w, and k were the

same as in the experiments. The simulations were over a non-convex environment,

as shown in Figure 6-8. Communication constraints were modeled probabilistically.

The probability of robot i communicating with robot j was calculated as a linear

function of the distance between them decreasing from 1 at a distance of 0, to 0 at

a distance of R = 1.5m, and the environment width was roughly 3m. Uncertainty

in the robots' velocity was modeled as white Gaussian noise with covariance of 13 X

10-4 m2/s 2 (where 3Is is the 3 x 3 identity matrix). Figure 6-8 shows the results of

a typical simulation with ten robots. The robots start in an arbitrary configuration

and spread out and up so that their fields of view cover the environment. The

decreasing value of the cost function 7 is shown in Figure 6-8(d). The function

does not decrease smoothly because of the simulated communication failures, velocity

136

(a) Initial Config. (b) Middle Config. (c) Final Config.

0.05

-0. 0 4

0 0.03
-0.02

Time (Iterations)
(d) Cost Fmunction

Figure 6-8: Results of a simulation with ten robots covering a nonconvex environment
are shown. The x 's mark the robot positions and the circles represent the fields of
view of their cameras. Communication failures and noise on the robots' velocities
are also modeled in the simulation. The initial, middle, and final configurations
are shown in 6-8(a), 6-8(b), and 6-8(c), respectively. The decreasing value of the
aggregate information per pixel function, H, is shown in 6-8(d). The jaggedness
of the curve is due to simulated communication failures, noise, and the discretized
integral approximation.

noise, and discretized integral computation in Algorithm 2.

6.6 Synopsis

In this chapter we presented an application of the ideas from Chapter 3 to design a

distributed control algorithm to allow hovering robots with downward facing cameras

to cover an environment. We incorporate a realistic sensor model for the camera and,

using this model, formulate the cost function 7 representing the aggregate informa-

tion per pixel of the robots over the environment. The controller is proven to locally

minimize the cost function, and can be used in nonconvex and disconnected environ-

ments. We implemented the algorithm on a group of three autonomous quad-rotor

robots, and experimentally demonstrated robustness to unforeseen robot failures. We

137

......... ...

also investigated scalability and robustness to network failures in simulations with ten

flying robots.

138

; -)--I-I-- a~-u -i -w--;;r-ri-~;--;~~;^-~;-ri--~-- -:C.r~~~:~;:- --; ---; : -r,.i_.;..i;;,;;;~; ~~~~rr;r;~

Chapter 7

Modeling Animal Herds

7.1 Introduction

In this chapter, we demonstrate an application of the potential field controller in

Chapter 3 to model the dynamics of groups of animals and robots. The setting is

one of system identification: we are presented with position data from a group of

agents, and we want to learn a dynamical model with a potential field structure, as

in Chapter 3, to represent the data. The method we present is general, however we

will demonstrate the technique to model a group of cows. The cows are equipped

with GPS sensors that give us position measurements over time. We use system

identification techniques to learn the model, that is to tune the parameters of the

model to fit the GPS data.

We wish to model groups of interacting dynamic agents, such as flocks, swarms,

and herds, using measured data from those agents. For example, we would like to

use the trajectories of people in a crowd to develop dynamical models that capture

the behaviors of the crowd as a whole. This is a prohibitively complicated problem

in general, however, we provide a practical solution by restricting our attention to

a special model structure. We embrace a minimalist approach in that we use only

position measurements, with a minimum of prior environmental information incorpo-

rated into the model. We propose a difference equation model that is decentralized

and nonlinear, though it is designed to be linear-in-parameters. The Least Squares

139

method is then used to fit model parameters to position data from a group of agents.

Such a model may then be used, for example, to predict future states of the group,

to determine individual roles of agents within the group (e.g. leaders vs. followers),

or, ultimately, to control the group.

The most immediate application of these ideas is for virtual fencing of live-

stock [2, 15,113], in which physical fences are replaced with sensor/actuator devices

mounted on the animals. The animals' positions are monitored, and if they stray

beyond a virtual fence line, the animals are given cues to return to the desired area.

Our modelling techniques will be useful for virtual fencing in several ways. Firstly,

our models lead to verified behavioral simulations that can be used to test virtual

fencing algorithms in a simulation environment before they are implemented in a

costly and time-consuming field test. Secondly, our dynamical models can be used

to enhance the animal control algorithm itself, so that it works in conjunction with

the animals' natural tendencies. Finally, since our model is inherently distributed

and, because of our minimalist approach, requires little computational resources, we

envision that the model can run online over the same network of animal-mounted

sensor devices that carry out the virtual fencing algorithm. The distributed model

can then be used to predict where the group is headed and inform the controller in

real time. Simultaneously, the model can be updated to fit the most recent position

data collected from the animals. This simultaneous model learning and model-based

control is in the spirit of adaptive control.

In addition to livestock management applications, there are many other uses for

learned models of distributed dynamical systems. In the case of people, the ability

to model group behavior has numerous applications in surveillance, urban planning,

and crowd control. Also, the models can be used to drive groups of robots to mimic

the behavior of observed groups. This may be useful in reproducing collaborative

behaviors exhibited in natural systems, or in producing decoy robots to participate

with natural or engineered groups, and even to influence group behavior [39].

140

___;;~_i_ l l_;_____j____;__~__ij____l_) ;)/;:__ji_:iii:\li_:i_:;i::_:~~____^;~___ ;_ __;

7.1.1 Related Work

The problem of learning models for groups of interacting dynamic agents lies at the

intersection of two fields of research: modeling of distributed dynamical systems, and

system identification. A vigorous body of work is emerging from the controls and

robotics communities focused on analyzing models of flocks, swarms, and similar dis-

tributed dynamical systems. This work, however, has not considered using learning

techniques to generate these models from data. Instead, it concentrates on the dy-

namical properties of models, such as stability of formations [34, 35, 104, 105, 116],

asymptotic consensus of agent positions or velocities [27, 46, 71, 111], or designing lo-

cal controllers from global specifications [7, 106]. These considerations are elemental

in describing more complex social phenomena, but they are quite different from the

question of learning models from data which we address in this chapter.

Conversely, the rich literature on learning dynamical systems from data, often

called system identification, has not yet addressed models of distributed dynamical

systems, such as the ones we consider in this thesis. Some related problems have been

considered, however. For example, in [22] a system identification technique is used

to model global properties of a swarm of robots over time using observed data from

the robots. These properties include collision likelihoods of robots and transition

probabilities among robot behaviors. There also has been considerable activity in

learning behavioral models of individual natural agents. In [69] and [74], system

identification is carried out on switching linear systems to learn models of the honey

bee waggle dance and human hand motion, respectively, and in [28] a technique is used

to find Motion Description Language (MDL) codes from observed ants. These works,

however, do not consider group interactions, but investigate the action of individuals

isolated from their group roles.

It is our intention in this chapter to bridge the gap between these two research

communities by applying system identification techniques to distributed model struc-

tures. In addition to this cross-pollination of ideas, we also contribute a new technique

for modelling general vector fields (i.e. non-gradient vector fields) in a way that is

141

amenable to system identification. We also pursue our ideas from theory through

implementation by testing our method with data from natural agents.

For this purpose, we developed a hardware platform to record position and orien-

tation information of groups of free-ranging cows. The hardware platform is capable

of recording GPS position information, head orientation, and is able to provide sound

and electrical stimuli, though no stimuli were administered during the data collection

for this study. We demonstrate our model learning technique by fitting it to GPS

data collected from a group of three and a group of ten free ranging cows, and validate

the resulting models by testing the whiteness of the residual error, and by comparing

global statistics of simulations verse the actual data. Previous works have considered

animal mounted sensor network devices, such as the ZebraNet platform [47], and the

sensor/actuator devices described in [2, 15, 84, 113] for automatic livestock manage-

ment. Our device has several innovations for applying animal control stimuli and for

using communication between devices over a network, however we do not describe

these innovations in detail in this chapter. In the context of this chapter, the de-

vices were used as a means to collect GPS data for learning and validating dynamical

models.

7.1.2 Contributions

The main contribution in this chapter is as follows:

1. A model similar to the potential field model of Chapter 3 is proposed for mod-

eling the herding behavior of cows and other groups of agents. Least squares

systems identification is then used to tune the parameters of the model (similar

to the on-line learning in Chapter 4) to fit GPS data from actual cows. We

also analyze the predictive ability of the model and simulate an application to

deriving controllers for robots to behave like a herd of cows.

The remainder of this chapter is organized as follows. The model structure is

described in Section 7.2. The application of system identification to identify model

parameters is described in Section 7.3, along with a review of basic system identifica-

142

tion techniques in Section 7.3.1. Our data collection device and experimental method

are described in Section 7.4. Results of the system identification technique are pre-

sented in Section 7.5 with GPS tracking data from a group of three cows and a group

of ten cows, and the quality of the learned models are evaluated in Section 7.5.3.

Finally, in Section 7.6 we use a learned model to control a group of mobile robots

to behave like the group of three cows. Simulation results of the group of robots are

presented. A synopsis and directions for future work are given in Section 7.7.

7.2 Model Description

We consider a linear-in-parameters model structure with three naturally distinct parts

to describe the motion of coupled physical agents moving over a plane surface. Firstly,

each agent is given internal dynamics to enforce the constrains of Newtons laws.

Secondly, a force' is applied to each agent from its interaction with each of the other

agents in the group. Thirdly, a force is applied to each agent as a function of its

position in the environment. All remaining effects are modeled as a white noise

process.

Throughout this section, we refer to free parameters as 0, and features, or re-

gressors, are denoted by 0. It should be understood that the parameters 0 are left

unknown for now. In Section 7.3 we describe how position data is used to tune these

parameters to fit the data. A schematic showing the different parts of the model

learning process are shown in Figure 7-1.

'In this chapter the term "force" is used in a metaphoric sense. When we talk of a "force"' we
are referring to the intention of the agent to accelerate in a particular way using it's own motive
mechanisms.

143

Figure 7-1: A schematic of the method of system identification is shown in this
figure. The time correlated (not independent identically distributed) data and the
model structure are combined in an optimization procedure to get model parameters
tuned to fit the data.

7.2.1 Individual Agent Dynamics

Given a group of m agents, the proposed model structure for an individual agent

i E {1,..., m} can be written in state-space, difference equation form as

1 0 At 0 0 0

0 1 0 At 00 (m
x = + fij(p,p) + gi(p) + w . (7.1)

0 0 ai 0 10 = 1l,j0i

0 0 0 ai 0 1

Agent i's state xT = [e[nT uT vT]T consists of its East position, North position,

Eastern component of velocity, and Northern component of velocity after the Tth

iteration, and its position is given by, pT = [e[n] T . The time step At is given by

t7+1-tr, and we assume it is constant for all . The term a represents damping, ai = 1

for zero damping, and a ja < 1 for stable systems. The function fij (p, p) determines

the coupling force applied by agent j to agent i. The function gi(pT) represents

the force applied by the environment to the agent at point pT. Finally, wT is a zero-

mean, stationary, Gaussian white noise process uncorrelated with pj Vj used to model

the unpredictable decision-motive processes of agent i. Nonholonomic constraints

which are often present in mobile agents, such as people, cattle, or automobiles, are

neglected in this treatment, though they could be incorporated with an increase in

the complexity of the model structure. Note that the force terms are only applied to

144

1- - - L

0.5 .600
0.. : . . -.. ..

o -0. "

200 ::

0 2 4 6 8 10 1800 2000 2200
Separation Distance (m) East Position (m)

Figure 7-2: The magnitude of the agent-to-agent interaction force is shown on the left

for 01 = 02 = 1. On the right, the vector field representing the force felt by an agent

at each point on the plane is shown for an example agent trajectory. The swirling

patterns evident in the field are made possible by a novel parameterization.

affect changes in velocity in accordance with Newton's second law.

7.2.2 Agent-to-Agent Interaction Force

Dropping the T superscripts for clarity, the form of the agent coupling force fij (pi, pj)

is given by

fi (P ,p) = 0~ j 1 -i ((7.2)

||pi -pill) (m-1)'

where nj = (pj -pi)/ Ipj -pi is the unit vector along the line from pi to pj (henceforth,

1 - II will denote the e2 norm). The factor (m - 1) is included to normalize the force

exerted by one neighbor by the total number of neighbors.

This is the simplest of a family of force laws commonly used in computational

models of physical, multi-body systems. The important feature of this family is

that an agent is repulsed from its neighbor at close distances and attracted to its

neighbor at far distances. To see this property clearly, examine the magnitude of

force exerted by one neighbor (m - 1 = 1) given by IIl f = 0ij - 02i/ llj - P I, and

shown in the left of Figure 7-2. Notice that with 0 1, > 0 and 02j > 0 the desired

characteristic is achieved. Indeed, as Ilpj - pill - 0, 1 fij1 -- -oo, which is repulsive,

while Ilpj - pill -+ oc, |fi-l 01j > 0, which is attractive. Other, similar force

laws can be created to produce unbounded attraction as lpj - pill -+ oc and zero

attraction as Ilpj - p II -- oc. We chose this law for its simplicity. The function can

145

Environment-to-Agent Interaction ForceAgent-to-Agent Interaction Force

equivalently be expressed as the gradient of a potential function.

After some manipulation, the sum of fij over all neighbors j can be expressed as

(7.3)fiji = c/fv i I

where

= (ei -e) ... (e,-ej) -(ei-e
OIpi-pIll IIp-piII IIpj-pijI 2

_[(ni-n (nm-ni) -(ni-ni)
L Ip[-pll I0 m-pl II lp-pi 2

O = [.ii " lim 021 ' 02i" , I'

-(em-e) 1
IIP,.-pi112

-(nm-ni) 1 and
IIP-piJI2 (m - 1)' and

and where the indices j = i are excluded from the above vectors (since we do not

want an agent to feel a force from itself). This notation will be useful in what follows.

The agent-to-agent force law with the dynamics described above gives a so called

potential field based flocking model, the analytical properties of which have been

treated extensively in the controls and robotics literature [34, 35,104, 105,116]. The

environment-to-agent force described below makes our model rather different however,

and the inclusion of the noise term wT makes the model a random process, which is

fundamentally different from the deterministic systems treated in those works.

7.2.3 Environment-to-Agent Interaction Force

The agent's preference for certain paths in the environment is modeled as a nonlinear

mapping from each point on the plane to a force vector felt by the agent. To this end,

two networks of Gaussian basis functions are used, one for each of two perpendicular

force components.

146

In particular, the function gj(pj) can be written

gi(Pi) 0 0 - i)*.. iUin
gi pi I (7.4)

[._ gn(p) J

where

i Pi - 7kl 2
9ik p= xp(2 (7.5)

ik ik

is the bi-variate Gaussian function, and k E {1,...,n}. Each Gaussian is centered

at ik, with standard deviation aik, and its strength is represented by the unknown

parameters 0uik for the Eastern component, and 0,,k for the Northern component.

Gaussian basis functions were chosen for their familiarity; the objective being to

demonstrate the modeling approach with a minimum of complications. A number of

other basis function types could be used, including wavelets, sigmoidal functions, or

splines.

It is important to note that a vector-field parameterized in this way is not a

potential gradient. A potential gradient field cannot admit circulation around closed

paths.2 We introduce a non-gradient parameterization to enable circulation, as one

can imagine agents intending to traverse closed orbits on the plane. For example,

a cow may have a routine of passing between a water source, a shaded tree, and a

grassy patch in a periodic fashion.

Figure 7-2, on the right, shows a plot of an example force-field parameterized

in the above way. The arrows show the forces induced by the field, the heavy dots

show the centers of the Gaussian functions, yik, and the curve shows the path of an

agent over the vector field. The swirling patterns evident in the vector field would be

impossible if it were a gradient field.

The expression in (7.4) can be put into a different form to match that of (7.3). In

2proof: Let T(p) be a potential function and V(p) = -grad(T) its gradient field. Then curl(V) =
curl(-grad(%)) = 0, thus by Green's Theorem, f Vds = fA curl(V)dA = 0,. where s is any closed
curve on the plane, and A. is the area enclosed by s.

147

particular

gi(pj) = gu 0,, (7.6)

where

Ogui=[g l ... g " 0 ..],

0gvi = [0 qgn], and

0 gi [uil ' 0 ... -0 .. 0 vi]T.

This form will become useful in what follows.

To consider the computational complexity of this model, consider that the number

of agent-to-agent interaction terms grows as the square of the number of agents, O(m2)

and, in the worst case, the number of environment-to-agent interaction terms grows

as the product of the time duration and the number of agents O(Tm). Therefore

computing successive iterations of the model, not to mention learning the model

parameters, will become intractable as the size of the group approaches hundreds or

thousands of members. However, we can alleviate these difficulties in a natural way.

Firstly, if the area in which the agents move is bounded, the environment-to-agent

interaction terms will approach O(m) as the entire area is explored by all the agents.

Also, for large groups we could simply add a finite communication radius around each

agent, so that neighbor agents outside that radius do not produce a force. This would

limit the complexity of agent-to-agent parameters to O(m). Thus we can modify the

model to have an overall complexity linear in the number of agents. Also, the model

is naturally decentralized, thus it could easily be implemented on a network of, say,

m processors, reducing the computation time to a constant independent of the size

of the group. In this chapter we do not consider such implementation issues, and

the groups of agents we deal with are small enough that computation speed is not a

concern.

148

7.3 System Identification with Least-Squares Fit-

ting

We will provide a brief introduction to the field of system identification. Then we

will use a Least Squares method to identify optimal parameters for our model. We

will also discuss recursive methods for Least Squares fitting that can be used to tune

parameters for our model on-line as data is collected.

7.3.1 Method Overview

In this section we employ the tools of system identification [59], the basics of which

are briefly reviewed here as they may be unfamiliar to the reader. If a stochastic

dynamical system is such that its state at the next time step is determined by its

state at the current time step and the inputs at the current time step, a state space

model of its dynamics can be formed as a difference equation,

x * = F(x', u', w' , 7), (7.7)

where x is the state, u is the input, w is a zero mean, stationary, Gaussian white noise

process and T is the discrete time index. Furthermore, we may formulate a model

structure in which several of the parameters, 0, of the model are unknown. If these

parameters are time-invariant and occur linearly in the function F, and if the noise

is additive, we can write the model as

xT+1 = (x', U", 7)O + W', (7.8)

where 0 is a row vector of functions of the state, input, and time (these are called

statistics, regressors, or features depending upon the research field in which they are

used) and 0 is a column vector of the unknown parameters. Suppose we have some

arbitrary value of the parameters of the system, 0. Then we can interpret (7.8) as

a means of predicting the expected output at the next time step given the state x',

149

inputs u', and time 7 measured at the current time,

XT+1 = E[xtrl I x', UT, 7, 0] = (x', U', 7)0, (7.9)

where the ^ denotes a predicted value (w' drops out in the expectation because it is

zero mean). Notice that the predicted output is a function of the parameter values,

X +1(0). If we then compare the predicted value, '+1, with the actual value, x'+,

we have an error that gives an indication of how different our model is from the

actual system. We form a cost function using this error. One common cost function

is constructed from summing over all the squared errors that we have collected from

measuring the output of the actual system and comparing it to the predicted output,

J = , 1L'(0) - xz1'2. We can then use an analytical optimization method, the Least

Square method, to find the parameters 0 = 0* that minimize the cost function J(O).

This can be interpreted as "fitting" the model parameters to the data, and it results

in a model that we would expect to give the best prediction of outputs given the

inputs. This process is described graphically in Figure 7-1.

System identification shares many similarities with machine learning, however,

since it deals with dynamical systems, the training data is time correlated and is

presented in a specific order-it is not Independent Identically Distributed (IID). This

is a crucial difference between system identification and most other computational

learning problems. Because of this fact, much of the machine learning intuition does

not apply to system identification, especially with regard to model validation, as

described in more detail in Section 7.5.3.

7.3.2 Manipulating the Linear Model

The model structure discussed in Section 7.2 has the convenient property that it

is linear in its unknown parameters. For this reason, it can be manipulated into a

form so that its parameters can be fitted using the system identification technique

described above. In keeping with our minimalist approach, we assume that only

position measurements, pT, 7 = 1, ..., N, are available to perform the fitting. We can

150

eliminate ui and vi from the dynamics in (7.1) to provide a second order equation in

the position only. Notice that from (7.1) we can write

p = p + At (7.10)
vT

and

= aC + f f + g r + w (7.11)

i1 i[j= ,j i

We can solve (7.10) for [UT vT]T and substitute into the right hand side of (7.11). We

then substitute the result back into the right hand side of (7.10), shifting time indices

appropriately, to obtain the desired expression

A 2 p7+1 (pi A j')a + At + fz Tw) . (7.12)

We can use the above expression to formulate a one-step-ahead predictor in the form of

(7.9). First, define the combined regressor vectors = [(eg +- - ue)/At],

and

= [(n + - n)/At c,], and a combined parameter vector

Oi fai 0 T]7 T. By taking the expectation conditioned on the positions, sub-

stituting (7.3) and (7.6) for yj, fij and gi, respectively, then making use of the

combined regressor and parameter vectors we get

r+2 = p +1 At i , (7.13)

where p,+2 is the expected value of pi after 7 + 2 time steps, given positions up to

- + 1, and w[drops out in the conditional expectation.

7.3.3 Batch Method

The so called Least Squares Batch Method method is now implemented to find the op-

timal model parameters. Specifically, we wish to find the parameters, Oi, to minimize

the mean squared prediction error over all available time steps. The mean squared

prediction error can be written Ji = 1/(N - 2) ZN-2 (P +2 _ -- +2)TP-+2 _ ,+ 2

Substituting into Ji with (7.13) and (7.10) yields

At 2

Ji - (Y -)(Yi -) (7.14)

where

U? ... uN-1 v2 . VN-1]T, and 4 i [01 T ... N-2T clT ... N-2T].15)
.. "i i "r OVi

and uT and v[are obtained from (7.10). The Least Squares problem is then formulated

as O = arg mine Ji(0i). Following the typical procedure for solving the Least Squares

problem we find that

S= [iTDi,]-*-TYe. (7.16)

The right hand side of (7.16) consists entirely of measured data while the left hand

side is the vector which represents the optimal parameters of the model. We assume

that the data are rich enough that the matrix inversion in (7.16) is possible. The

deep implications of this invertibility are discussed in [59]. The myriad merits and

deficiencies of Least Squares fitting compared with other learning methods will not

be discussed in this chapter.

The white noise signal w[can now be estimated using the resulting residual error

in the fitting process, so that

where [w is our estimate of w[. If the "true" system dynamics are represented by the

fitted model, we expect to find that i, is zero-mean, stationary, Gaussian white noise,

152

as this would confirm our initial assumption on the properties of w'. Specifically, for

perfect fitting, E[,(t)'VdT(t+7)] = 6j(-)Qi, where 6(-) is the Kronecker delta function.

Therefore, the "whiteness" of iv can be used as an indicator of the goodness of fit

that has been achieved. We use this fact in Section 7.5.3 to validate our learned

models. For simulation purposes, as in Section 7.6, we would assume wT is a white

noise process with covariance Qj equal to the empirical covariance of wfiT.

In such a way we learn a cow model for each cow in a herd using measured tracking

data. The optimal parameters are found and the characteristics of the random vector

7[are determined for each cow i = 1,..., m to yield parameters for the entire herd.

To make the entire process more clear, we have codified it as Algorithm 3.

Algorithm 3 Batch Identification of Group Dynamics
for All agents in the group do

Apply the measured data to (7.16)
Use 0* in (7.13)
This defines the model for agent i

end for

7.3.4 Recursive Method

Algorithm 4 Recursive Identification of Group Dynamics
for All agents in the group do

Initialize parameters Oi and Pi to an arbitrary value
Use Pi to calculate Ki

end for
loop

for Each agent in the group do
Apply one position to (7.18) and (7.20), using Ki
Use resulting Pi to calculate Ki for the next iteration
Use 0* in (7.13)
This defines the model for agent i for one time step

end for
end loop

The Least Squares method can also be formulated recursively, so that each new

available measurement becomes integrated into the parameter estimates, tuning them

153

as time progresses. This method would be particularly useful for the parameter

identification step in an adaptive control loop.

First, let [= T and y[= vUT VT We wish to tune parame-

ters dynamically according to

O = O- 1 + K[(y[- 0[), (7.18)

where

iK- = Pi- LT[AI2i i I -- T1i -- , (7.19)

and

P- = P- (i I 2 -1 iT -17 i i -1i / (7.20)

where K[is the parameter gain, PT is the parameter covariance matrix, A~ is a

forgetting factor (0 < Ai < 1), and 12 is the 2 x 2 identity matrix. This standard

algorithm is stated here without derivation. The interested reader can find a thorough

discussion in [59]. The algorithm for this method is given in Algorithm 4.

Note that the kinds of systems under consideration are likely to have time varying

parameters. For instance cows are likely to change their behavior throughout the

day in accordance with sunlight, temperature, their hunger and thirst, etc. For this

reason, we would expect the parameter following properties of the recursive algorithm

with a forgetting factor to be advantageous. The recursive Least Squares algorithm

can be used to learn the model while it is simultaneously being used for prediction in a

control algorithm. This would result in an adaptive control algorithm for distributed

groups. The results presented in the following sections use the Batch method. We

save a detailed study of on-line and distributed learning algorithms for future work.

154

Figure 7-3: The sensor box is shown here with lid closed (left) and lid open (right).

The box is roughly 21.5cmx12.0cmx5.5cm and weighs approximately 1kg. It is

equipped with a GPS receiver, wireless networking features, and a suite of sensing and

actuation capabilities. The Lithium-Ion batteries and solar panel allow for indefinite

operation under normal conditions. It can also modularly accommodate expansion

boards for various other applications.

7.4 Data Collection Experiments

7.4.1 Animal Monitoring Hardware

We have developed a small light-weight box (see Figure 7-3) for data collection and

animal control for use during our field experiments. The box contains electronics

for recording the GPS location of the animal as well as other sensor data which

we do not use in this work (a 3-axis accelerometer, a 3-axis magnetometer, and a

temperature sensor). The box also contains electronics for networking with other

boxes, and for applying sound and electrical stimuli to the animal, though the stimuli

were not applied during the data collection experiments described here. Building on

the pioneering work of [15, 113] on animal monitoring hardware, we improved the

performance of the device by mounting it on top of the animal's head, as shown in

Figure 7-4, instead of packaging it as a collar. We found the head mounted device

improved several aspects of the device's performance compared to the previous collar

mounting: (1) the GPS satellites were more likely to be visible from the top of the

head, (2) solar panels on the box were more likely to receive direct sun exposure, (3)

networking radio communication was less obstructed by the animal's body, (4) the

animal was less able to deliberately rotate the box, and (5) the box was prevented

from being dipped in water or mud and was generally better protected.

155

~ ==..~~

Figure 7-4: The sensor box is mounted to the head of the cow with a custom fitted
apparatus made of fabric and plastic. The apparatus is designed to use the cow's ears
to keep the box in an upright position, as shown in this figure.

Our sensor box is approximately 21.5cmx 12.0cmx5.5cm and weighs approxi-

mately 1kg. The processor is a 32bit ARM7TDMI cpu (NXP model LPC2148) with

512kB program memory, 40kB RAM, USB, and a 10 bit A/D converter. The de-

vice also has 256kB FRAM (external non-volatile memory with no rewrite limit) and

a removable SD card with 2GB storage capacity. Data can be easily and quickly

downloaded to a computer by physically transferring the SD card, or by downloading

remotely via the radios. There are 2 hardware serials which are multiplexed for a

total of 5. The sensors in the box include a GPS engine, 3-axis accelerometer, 3-axis

magnetic compass, and an ambient air temperature sensor. There are many general

purpose analogue and digital I/O lines, so additional sensors can be included.

The communication system consists of two radios. Firstly, a 900MHz radio (Ae-

rocomm AC4790) with 1 watt transmit power is used for long range, low band width

communication. This radio has a claimed 32km range and a claimed 57600b/s trans-

fer rate. However, we observed a maximum of only 2km range and a data transfer rate

of only 1000b/s. This is particularly odd as the flat, remote environment in which

the radios were tested should have been ideal for radio transmission. The cause for

the poor performance of this radio is still unknown. Secondly, the box uses a Blue-

tooth radio with 100m range and 100kb/s data rate for short range, high band width

communication.

Power is provided by a bank of 8 Lithium-Ion batteries with a total capacity of

156

. a 05 - " --- - MINWOMN -..

Figure 7-5: The GPS positions of the cows are shown superimposed on satellite images
of the paddock in which the data were collected. The left image shows data collected
from three cows in the first trial between February 2-5, 2007. The right image shows
the data collected from ten cows in the second trial between July 9-11, 2007.

16 watt-hours. The batteries are continuously recharged by a solar panel mounted on

the top of the box allowing the box to run indefinitely under normal conditions. The

batteries have enough capacity for several days of operation without the solar panels.

Finally, we have a two-tier animal control system consisting of a set of speakers

for applying arbitrary, differential sound stimuli and a set of electrodes that enable

the application of differential electrical stimuli. The animal control system was not

used during the collection of the data described in this chapter.

The box's operating system is a custom designed collaborative multitasking ar-

chitecture. Processes run as scheduled events which can be scheduled to run at mil-

lisecond intervals with no preemption or real-time constraints. The software supports

arbitrary network topologies for communication. Users interact with the system via

a serial console or a Java user interface. These can be accessed directly through the

serial port or remotely over either of the radios. This allows remote reconfiguration

of the monitoring devices in the field. The operating system can be completely re-

programmed using an attached serial cable, remotely over the radio, or by placing a

file on the SD card.

157

I I

.,...

7.4.2 Experimental Methodology

Data were collected during two trials, the first taking place from February 2-5, 2007

and the second from July 9-11, 2007, during which time three head and ten head of

cows were monitored, respectively, using the sensor boxes described above. During

both trials cows were allowed access to a 466ha, or 4.66 km2 , paddock (named 10B)

located on the US Department of Agriculture-Agricultural Research Service's (USDA-

ARS) Jornada Experimental Range (JER) in Southern New Mexico (32' 37' N, 1060

45'W) which is approximately 37km Northeast of the city of Las Cruces at an elevation

of approximately 1260m above sea level. The climate of this arid area has ambient

air temperatures that range from a high of 36' C in June to below 13' C in January

with 52% of the mean annual precipitation (230mm) falling as rain between July and

September [73, 110]. Grasses (39% to 46%) and forbs (36% to 49%) comprise the

predominant vegetation while woody shrubs compose 14% to 19% of the remaining

standing crop [3,45] that grows in a mosaic pattern across this relatively fiat landscape

composed of three major landforms [65].

In the first trial, three free-ranging mature beef cattle of Hereford and Hereford x

Brangus genetics, labeled Cow 1-Cow 3, were fitted with the sensor boxes described

above. Data were collected over four days from February 2-5, 2007 at a data collection

rate of 1Hz. In the second trial, ten free-ranging mature beef cattle of similar genetics,

labeled Cow 1 -Cow 10 were fitted with the sensor boxes. Data were collected at 1Hz

over three days from July 9-11, 2007. The cows 1, 2 and 3 correspond to the same

three cows in the first and second trials. The paddock for the experiments was fenced

with the geometry shown in Figure 7-5. During these two trials, the animals received

no audio or electric cues from the sensor boxes.

When they are introduced to a new paddock, cows commonly trace out the perime-

ter to familiarized themselves with the extent of their new environment [1]. They then

concentrate their activities on certain areas depending upon vegetation and other fac-

tors. During the first trial, shown on the left of Figure 7-5, the cows had been recently

introduced to paddock 10B from another neighboring paddock (though they had pre-

158

--r:i""~~ii~-~lr-- -----l-----l ~is~~ii-iiil~ i ---- -i-~ -1 -~il -:--- i-;---- !---' --'i-::"-";-i-'~-i-i~~,

vious experience in paddock 10B), and their perimeter tracing behavior is evident in

the plot. In the second trial (on the right of Figure 7-5), the cows had already been

in the paddock for some time before data were collected.

7.5 Modeling a Group of Cows

The method presented in Section 7.3 was used to model the dynamics of a group of

three cows, as well as a group of ten cows. Data collected as described in Section

7.4 was used for fitting the model parameters and for evaluating the resulting model.

We will first present modeling results for the three cows as it is less complicated to

interpret data for a smaller group, then we will show results for the ten cows. The

total number of agent-to-agent interaction forces grows like the square of the number

of agents, hence the difficulty in efficiently displaying results for large groups. Finally

we discuss the problem of validating the learned models, and propose a statistically

justified method for validation. Results of the validation method are shown for both

the three and ten cow models.

7.5.1 Three Cows

The dynamics of a cow group are known to be modal [90], in the sense that model

parameters are approximately constant over contiguous intervals, but can change

rapidly when switching between such intervals, for example when the group transitions

from resting to foraging. We intentionally selected a 52 minute interval of data

(from approximately 18:02hrs to 18:54hrs on February 2, 2007) for learning model

parameters that corresponded to a stretch of time when the herd was apparently in

a constant foraging mode. For each cow, the data used for the Least Squares fitting

consisted of 3100 GPS position entries collected at 1Hz. The data for all animals were

artificially synchronized to a common clock using a standard linear interpolation. The

characteristic time scale of cow dynamics is considerably longer than 1 second (that

is to say, cows move little in the span of 1 second), thus such an interpolation is

expected to have a negligible effect on modeling results.

159

Cow 1 Cow 2 Cow 3
0.1 - --Cow2 - Cow -Cowl

--Cow3 -Cow3 --- Cow2

z 0.05
- - - - - - - - - -- - -- - -- - - ---

o r _--- ----------------. -... .-----------------0
o -0.05 I

-0.1
0 10 20 30 0 10 20 30 0 10 20 30

Separation Distance (m)

Figure 7-6: The agent-to-agent interaction forces are shown for the three cows. Each
curve represents the size of the force imposed by one cow on another as a function of
the distance between the cows. A positive value is attractive while a negative value
is repulsive.

The data were used to find model parameters as described in Section 7.3. The

panels in Figure 7-6 show the agent-to-agent force magnitudes fij(pi,pj)J| for the

three cows. For each cow, the two curves show the force imposed by each of the two

other cows in the group. Note that the forces are not necessarily pair-wise symmetric,

that is, ||fij f lfjil in general. The force curves are useful for analyzing behavioral

traits of the cows. It is well known that groups of cows have complicated social sub-

groupings and hierarchies [58]. The plots indicate that Cows 1 and 3 had an affinity

for one another, while Cow 2 was comparatively not very attractive to, or attracted

by, Cows 1 and 3. We will reexamine the behavior of Cow 2 below in the context of

the ten cow group.

The environment-to-agent vector fields are shown in the panels of Figure 7-7 for

the three cows. The heavy dots show the centers of the Gaussian basis functions, 7ki,

the arrows show the direction and magnitude of the force felt by a cow at each point,

and the curve indicates the position data used for learning. The Gaussian centers were

spaced over an even grid containing the trajectory of the cow. If the trajectory did not

come within one standard deviation, Oki, of a Gaussian function, the Gaussian was

dropped from the network. This primitive pruning algorithm was used for simplicity;

more complex algorithms could be employed. The Gaussian widths were chosen to be

2/3 the length of the grid space occupied by the Gaussian. This width was found to

160

...................... z ' f • _. i-l ~::--:-;:i;:~_ ;-;i ;-i. -- ---

Cow 1

. '.

.. ...

800 1200 1600

Cow 2

...

... . Z, . ."

. --a -

.- ---......

o' fI.I * Ir . .

1

"Iti '" f

800 1200 1600
East Position (m)

Cow 3

....... .-. -

.e...... •) , -r , ,

..

, 1 ,,1600//i

///.

800 1200 1600

Figure 7-7: The environment-to-agent force fields are shown for the three cows. The
heavy dots indicate the centers of the Gaussian functions and the arrows show the
forces produced by the learned vector field. The continuous curve marks the actual
cow's path over the region.

give good performance with our data. One could imagine including the widths as free

parameters in the Least Squares cost function (7.14), but the cost function becomes

non-convex in this case and is therefore very difficult to optimize.

7.5.2 Ten Cows

For each cow, data consisted of 4000 GPS position entries collected at 1Hz during the

second trial described in Section 7.4.2. As before, care was taken to use a contiguous

stretch of data (from approximately 11:33hrs to 12:40hrs on July 9, 2007) during which

the cow group appeared to be in a foraging mode. Cows 1, 2, and 3 were the same

animals as in the first trial. The data for all animals were artificially synchronized to

a common clock using a standard linear interpolation as was done for the three cow

data.

The data were used to find model parameters as described in Section 7.3. The

panels in Figure 7-8 show the magnitude of the agent-to-agent force for the ten cows.

The number of agent-to-agent interaction forces is much higher than for three cows

161

270(

220(

170(

(10 x 9 as opposed to 3 x 2), so the plots are correspondingly more complicated. In

particular, the force plot for each animal shows ten curves. Each of the nine thin

curves represents the magnitude of force caused by each of the nine other animals as

a function of separation distance. The thick curve shows the mean over all nine force

curves. Despite considerable variation over animals (including some inverted force

curves) the mean force felt by any one animal as a result of its proximity to all of the

others is relatively similar, as indicated by the mean force curve.

The environment-to-agent vector fields are shown in the panels of Figure 7-9 for

the ten cows. The heavy dots show the centers of the Gaussian basis functions, 7ki,

the arrows show the direction and magnitude of the force felt by a cow at each point,

and the curve shows the position data used for regression. The Gaussian centers were

spaced and pruned as described for the three cow trial.

To demonstrate the potential usefulness of the learned model to study animal

behavior, consider again the behavior of Cow 2 in the context of the ten cow group.

By comparing the mean force curves in Figure 7-8 with the curves in Figure 7-6, we

see that Cow 2 does not tend to stay as far from the other cows in the larger group

as in the smaller group. It seems, for example, that Cow 3 stays farther from the

other cows than does Cow 2 in the larger group. The apparent dependence of animal

behavior on group size is a property of interest to the animal behavioral sciences. Of

course, there are a number of other factors that could be responsible for this behavior,

including time of year, the animals' physiological state, weather conditions, and the

quality and quantity of standing crop. However, by analyzing the learned model we

have generated a interesting hypothesis about cow behavior, which can be used to

guide the design of further experiments.

7.5.3 Model Validation

In terms of signal processing, our learning algorithm can be seen as taking a time-

correlated velocity signal and producing model parameters and a residual error signal.

If our velocity data are rich in temporal correlation it is good for modeling. Also, if

our learned model is successful in capturing the relevant correlation of the velocity

162

Cow 1
1.8.

0.9 , -- -

0 ------ -

-0.9

-1.8

Cow 5
.x 8 - --- ----

0.9

S1 I--

O-0.9

o -1.8
0 50 100

Cow 2 Cow3
--- Agent-to-Agent Forc
-Mean Force

---i, ---
----------- .1/ ------------

Lesso

Cow 6

- ---

Cow 7

Cow 9 Cow 10
1.8

0.9

-0.9

-1.8
0 50 100 0 50 100

Separation Distance (m)

Figure 7-8: The agent-to-agent interaction forces are shown for the group of 10 cows.
Each thin, dashed curve represents the size of the force imposed by one cow on another
as a function of the distance between the cows. The thick, solid curve shows a mean
over all of the individual force curves. A positive value is attractive while a negative
value is repulsive.

163

Cow 4

Cow 8

Cow 1

Cow 5

1300

0 .

100 800
0o 0. u -I-- .uA3
00oz

1000 1500 2000

Cow 2

.............

......... '"',, --2; : : :
. . . ., t . i .

I
'

Cow 6

1300 ,

800

300

1000 1500 2000

Cow 3

... I
L I1 .

Cow 7

Cow 10

1000 1500 2000

Cow 4

Cow 8

1000 1500 2000

East Position (m)

Figure 7-9: The environment-to-agent force fields are shown for the group of 10 cows.
Heavy dots indicate the centers of the Gaussian functions and the arrows show the
force produced by the learned vector field. The continuous curve marks the cow's
actual path over the region.

164

_ __ ~...-111_1--- 1__111_lllllllr~

signal, the residual error signal will have little temporal correlation. More plainly, we

want our velocity signal not to be white, and our residual error signal to be white.

Therefore, we are interested in testing for "whiteness" in each of these signals by

comparing them against a 90% whiteness confidence interval.

To be specific, consider some random signal x(t) generated by a stationary Gaus-

sian white noise process X(t). Each point on the empirical auto-covariance function,

T

Kx () = T 1 Z(t - T)X(t), (7.21)
t=-r

is asymptotically normally distributed, with zero mean and variance equal to ()

(see [59] Lemma 9.A1, or [72]). The 90% confidence interval is then found from the

inverse cumulative normal distribution to have boundaries defined by the curves

Cs(T) =Kx(0)erf-1(2 x .05 - 1) and C9 5(T)= Kx (0)erf-1(2 x .95 - 1),

meaning the process X(t) would produce a value Kx(7) below Cs(T) with probability

.05 and below C95(T) with probability .95 for each point 7.

Applying this reasoning to our velocity yi(t) = [vi(t) ui(t)] and residual er-

ror ibD(t) signals, we validate the learned model by examining the empirical auto-

covariance functions,

T T

t=T t=r

respectively, where the time of the sample is now explicitly written as an argument, for

example JCv(t) = tb. If the velocity yi(t) and the residual error ?i(t) were generated

by a white noise process, we would expect Ky(7) and K, (T) to fall within their

respective whiteness confidence intervals with probability .9 at each 7. Again, we

want the velocity signal to fail this test and the residual error signal to pass it.

There are other tests for whiteness, but this is the simplest one with a rigorous

statistical interpretation [59]. This whiteness test takes the place of leave-one-out

165

Velocity
0.2

- East-East Auto-Cov

0.1 - - - 90% White Cont Intv

0.1

o = = == II

> 10- 3 Residual Error

0 I02-

-2

50 100 150 200 250 300
Time Separation (s)

Figure 7-10: The empirical auto-covariance function for the Eastern component of the
velocity is shown in the top plot, and for the error residual in the bottom plot. The
dotted lines indicate a 90% whiteness confidence interval, meaning that a stationary,
Gaussian white, noise process would have generated an empirical auto-covariance
inside the interval with probability .9 at each point. By this metric, the velocity
signal is not white and the residual error signal is "nearly white," indicating a good
model has been learned for the data.

validation, or other similar validation methods common in machine learning applica-

tions. We cannot use such methods because our data is not IID, a key assumption

in most machine learning algorithms. Indeed, our model is specifically trying to cap-

ture correlation between data points, so to leave one data point out would obscure

precisely the relationship we want to learn.

The top of Figure 7-10 shows the auto-covariance from the three cow trial of

the Eastern component of the velocity for Cow 1, and the bottom figure shows the

auto-covariance of the corresponding residual error. Notice there is strong temporal

correlation in the velocity, and all points in the plot lie outside the confidence interval,

therefore it fails the whiteness test, as desired. For the residual error auto-covariance,

there is apparently little temporal correlation and a large majority of the points

lie inside the whiteness confidence interval, therefore it passes the whiteness test.

Thus, by this measure, the algorithm has done a good job of producing a model

to describe the cow's dynamics. The plots for the other components of the auto-

166

Velocity Residual
Cow Number 1 2 3 1 2 3

East-East 0 0 0 76 81 87
East-North 0 0 5 73 78 83
North-East 21 4 17 81 84 91

North-North 0 0 0 66 68 87

Table 7.1: The table shows what percentage of points lie within the 90% whiteness
confidence interval for each of the 3 cows in the first trial, and for each of the four
components of the auto-covariance function. According to this test, the velocity signal
is not white, and the residual error is approximately white, so the model fits the data
well.

covariance functions and for the other cows in the three cow trial are excluded in

the interests of space. Instead, we summarize the results in Table 7.1, which shows

for each cow, and for each of the four components of the auto-covariance functions

K_ (7) and Ky (7), the percentage of points within the 90% whiteness interval. The

results show that the velocity signals for all cows fail the whiteness test (as desired),

while the residual error signals can all be considered nearly white in that nearly 90%

of their values were within the confidence interval.

The whiteness test was also carried out for ten cows with similar results as sum-

marize in Table 7.2. The results in the table show that all of the residual errors for

the ten cow model are nearly white. As for Ky, in this case, all of the points for all of

the components and all of the cows lie outside of the whiteness confidence interval,

therefore the velocity is very likely not white for any cow.

7.6 Synthetic Control

Simulation experiments were carried out with the model fitted in Section 7.5.1. We

simulated a group of three simple mobile robots controlled to have the dynamics

in (7.1) with the parameters found in Section 7.5.1. These equations were iterated

forward in time in a Matlab environment with the robots started from the same initial

positions as the cows. The simulation procedure is summarized in Algorithm 5.

The trajectories of the robots from a typical simulation are shown in the left side

167

Residual
Cow Number 1 2 3 4 5 16 7 18 9 10

East-East 75 85 87 81 69 85 87 79 71 84
East-North 69 82 76 83 60 75 78 77 74 83
North-East 79 80 82 84 61 72 80 80 75 80

North-North 68 75 75 84 62 61 74 73 69 83

Table 7.2: The table shows what percentage of points lie within the 90% whiteness
confidence interval for each of the 10 cows, and for each of the four components of
the residual error auto-covariance function. By this metric, the residual errors for all
cows are approximately white. For the velocity auto-covariance function (not shown
in the table), no point is within the interval for any cow, thus the velocity is very
likely not white. By this test, the ten-cow model successfully fits the data.

Algorithm 5 Synthetic Control Algorithm
Execute Algorithm 3 to obtain a set of optimal parameters for each agent
Set initial conditions for simulated group of robots
loop

for Each robot in the group do
Use the current state of all the robots and Oi obtained from Algorithm 3.
Apply these to the dynamical equations for agent i (7.1) to produce the next
robot state

end for
end loop

168

of Figure 7-11 laid over a schematic showing the fences of the paddock where the

actual cow data were recorded. The trajectories of the simulation are similar to those

of the real cows. Most importantly, the simulated robots track the fence lines, as did

the real cows. This tendency is captured solely through the agent-to-environment

force field (described in Section 7.2.3), as the model has no direct knowledge of where

fence lines may lie. Furthermore, statistics were gathered for the simulated robots

and compared with those from the cow data. Figure 7-12 shows a comparison of

the two sets of statistics. Specifically, the distance between cows over time and the

speed of the cows over time have similar mean and standard deviation for the real and

simulated data. Thus the model preserves global properties of the group, as measured

by these statistics.

One should expect the trajectories of the simulation to be qualitatively similar

to the actual training data, but the question of how similar is not a simple one.

The model we have constructed is a random process, and two different sets of data

generated by the same random process will almost certainly be different. It is also

not informative to look at, for example, the mean distance between points of the

actual and simulated data, since, again, two signals from the same random process

can generate trajectories arbitrarily far from one another. The appropriate test for

model validation is the whiteness test described in Section 7.5.3. We show Figures

7-11 and 7-12 only to indicate that the properties verified with the whiteness test

lead, in practice, to a qualitative match in performance.

It is also important to point out that comparing these simulation results to the cow

data is not the same as testing a learned model on training data, a common pitfall in

machine learning applications. Indeed, the only training data given to the simulation

are the initial positions of the robots. The model recursively generates its own data

points which then become inputs for successive time steps. This is a manifestation

of the fact that system identification takes place in a non-IID setting, so much of the

intuition that applies in typical machine learning problems is not applicable.

This simulation study suggests that our model equations can be used to control

a group of robots to exhibit the behavior of the modeled group. In this way con-

169

Simulated Robot Trajectories

2500 2500

0

0a.

2000 2000

1500 1500
500 1000 1500 2000 500 1000 1500 2000

East Position (m) East Position (m)

Figure 7-11: The left plot shows trajectories of a team of simulated robots controlled
to behave like a group of cows. The robots use dynamical laws generated from the
procedure described in this chapter. Their trajectories are superimposed over the
fence lines of the paddock where the original cow data were collected, though they
have no direct knowledge of fence positions. The right picture shows the actual cow
data over the same time window.

trollers can be automatically synthesized for robots to mimic groups that have some

desirable collective behavior, such as flocking or herding. One can also imagine in-

troducing artificial members of a group without changing the group dynamics (i.e.

without "being noticed") or for the purpose of modifying the group dynamics in a

non-disruptive way, for example to influence collective decision making in natural

groups, as was done in [39].

7.7 Synopsis

In this chapter, we presented a method to generate behavior models of groups of

dynamical agents, such as cow herds, using observations of the agents' positions over

time. We formulated a physically motivated difference equation model, and used Least

Squares system identification to fit the model to data. We demonstrated the method

by learning models for a group of three cows and a group of ten cows using GPS

position data. The position data were collected with specially designed sensor boxes

fitted to the heads of free-ranging cows. An important and surprising contribution

of this chapter is the demonstration that a minimalist approach to modeling group

170

Actual Cow Trajectories

220

10

1 2 3
Cow

0.8

0.6

0.4

Cow

-0.8

0.6

0.4

0.2

OAt1 2 3 1 2 3
Cow Cow

Figure 7-12: The bar charts compare statistics for the actual cow data and the sim-

ulated robots. The top charts show the mean and standard deviation of the distance

from one cow to the other two cows in the group. The bottom charts show the mean

and standard deviation of the speed of each cow.

interactions using only position data leads to meaningful group dynamical models.

Our approach is minimalist in that no information is included in the model about

the geometry and configuration of the environment, nor about any attractive (e.g.

vegetation) or repulsive (e.g. fences) features in the environment. It was shown in

Section 7.6, however, that our method can be used to infer the locations of such

features, since the robots avoided a fence obstacle even though they were given no

prior indication of the fence's existence. An interesting research direction is to inves-

tigate the trade-offs between including additional information about features in the

environment and the quality of the resulting model. More specifically, we can explic-

itly model obstacles in the space as a force field with some free parameters that are

learned from the position data. We can also include dependencies upon weather and

other ambient environmental conditions for which measurements are available. The

question is, does the performance improvement of the learned model justify the extra

complexity and prior information required for such a model? Our preliminary studies

with explicit fence models show that this additional information leads to models that

give similar behavior to those without the explicit obstacle features, but the explicit

171

I L I I

inclusion of the obstacle gives the ability to enforce hard position constraints on the

agents. We generally prefer the minimalist approach described in this chapter in that

it is amenable to situations where no detailed environmental information is available.

Our work has provided some insights into developing a minimalist approach to

modeling group behavior, however many questions remain to be resolved. Learning

models of complex natural and artificial groups is an exercise in balancing tradeoffs

between model fidelity and model complexity. The systems we are interested in

modeling are too sophisticated to characterize their motion in its entirety, but we

have shown in this chapter that a simple model structure with a simple learning

algorithm can give enough prediction power to be practically useful for controlling,

simulating, and interacting with groups of dynamical agents.

172

; ; -' ;;"----;---------------;~~'---L----~~-~i i-- ;; ; ;i;i;;;;- l; --- - -; -;; - E ,

Chapter 8

Conclusions, Lessons Learned, and

Future Work

This thesis considers a method, based on gradient optimization, for controlling groups

of agents to reach a goal configuration. We focus on the problem of deploying robots

over an environment to do sensing, a task called coverage. We show that coverage is

actually of a general enough nature to represent a number of problems not normally

associated with it, for example consensus and herding. We augment the multi-agent

gradient controller with learning to allow for robots to adapt to unknown environmen-

tal conditions. The learning is incorporated with provable performance and stability

guarantees using a Lyapunov proof technique. We implemented the multi-agent learn-

ing controller on a group of 16 mobile robots and performed experiments in which

they had to learn the intensity of light in the environment. We also implemented

a multi-agent coverage controller on a group of flying quad-rotor robots with down-

ward facing cameras. The controller used a realistic model of the camera as a sensor.

Experiments were performed with 3 quad-rotor robots and were shown to provide

multi-robot sensor coverage as predicted. Finally, we used the multi-robot dynamics

to model the motion of cows in a herd. We used system identification techniques to

tune the model parameters using GPS positions from a herd of actual cows.

In the course of this research we learned several lessons concerning the design

and implementation of multi-robot controllers. Firstly, we learned that the coverage

173

optimization can represent many different multi-robot behaviors. This is one of the

main themes of this thesis: the unification of multi-robot control under the umbrella

of a single optimization problem. That optimization problem can be specialized to

specific multi-robot tasks and specific robot capabilities, and a stable controller can

be derived from the gradient of the cost function. We show that this simple formula

for designing multi-robot controllers produces robust, practical controllers that are

feasible on a range of robot platforms.

A second lesson that we learned is that in a multi-robot setting, consensus algo-

rithms can sometimes substitute for centralized knowledge. For example, consensus

was used in our learning algorithm in Chapter 4 to propagate sensor information

around the network. Each robot was able to asymptotically learn the sensory func-

tion as well as if they had direct access to all the robots' sensor measurements. In

deed, it appears that consensus algorithms could be a fundamental and practical

tool for enabling distributed learning in general, and have compelling parallels with

distributed learning mechanisms in biological systems.

Finally, we learned that analysis is only useful up to a point, after which the true

proof of performance is in the implementation of the controller on real robot platforms.

This is a fundamental engineering point of view. No tractable mathematical model

will be able to capture the intricacies of the dynamics, noise, and computational

processes, so the final proof must be an implementation. We have found that the

best policy is to model the systems as simply as possible, derive as many properties

as possible from the simple model, test in simulation to make sure the model makes

sense, then implement on actual robot platforms to verify the analysis. We have

endeavored to follow this policy throughout the research in this thesis.

The research in this thesis also points toward several lines of future work. The

most important immediate work to be done is in finding a suitable way to implement

a controller over a given communication graph. Let the graph induced by a controller

as described in Section 2.4.1 be denoted 9!. Let the communication graph be denoted

c. If the graph induced by the controller is a subgraph of the communication graph,

Gi C !O, then the controller is feasible. Of course it may very well be the case

174

that the controller is not feasible given the communication graph, in which case an

approximation must be used. Two methods are suggested in this thesis: 1) each

robot computes its controller using only the information from neighbors available

to it, and 2) each robot maintains an estimator of the positions of all the robots

required to compute its controller, and makes its computations using these estimates.

In the future the stability and robustness properties of these methods should be

characterized and other methods should be investigated.

Also our recognition that coverage problems stem from nonconvex optimizations

suggests some new research directions. Gradient descent controllers, which are the

most common type in the multi-robot control literature, in general can only be ex-

pected to find local minima of nonconvex cost functions. Therefore it is worth while to

look for special cases of multi-robot cost functions that might allow for global minima

to be reached with gradient controllers. For example, if the cost function has a single

minimum despite being nonconvex, it may be possible to prove convergence to that

minimum with a gradient controller. As another example, if all of the minima are

global (they all take on the same minimal value of 7) then gradient controllers will

find global minima. Alternately, we are motivated to consider other nonconvex opti-

mization methods besides gradient descent that can be implemented in a multi-robot

setting.

Another direction for future work is to move beyond the class of cost functions

considered here. It would be interesting to consider cost function that depend, for ex-

ample, upon the time history of the robots, as in optimal control, or that incorporate

more complicated robot dynamics than the simple integrator dynamics. Cost func-

tions such as the one in this thesis that only depend upon the positions of the robots

lead to behaviors in which the robots move to a configuration and remain fixed. An

expanded class of cost functions would lead to more complex, dynamic muti-robot

behaviors.

In the case of system identification for groups of dynamical agents, an important

problem to address in the future is capturing the modal changes in the dynamics of

groups of agents over long time scales. We collected data at 1Hz continuously over

175

several days for the cows in Chapter 7, but as discussed previously, we only expected

our model to describe the cow group dynamics over an interval of approximately an

hour, during which time the group is in a single behavioral mode. In the future,

we would like to broaden the model class to include switching state-space models.

That is, we would model both the motion of the group while it is in one mode

and the transitions among modes. With such a model structure we expect to be

able to capture the behavior of the cow group over extended periods of time and to

be able to model other natural and artificial groups that exhibit modal properties

(e.g. traffic motion, which is congested during rush hour and less so at other times).

Unfortunately, exact system identification is known to be intractable for switching

state space models [19]. A topic of current research in the system identification

and learning communities is to find approximately optimal parameters using, e.g.

variational approaches [36], or Markov-Chain Monte Carlo (MCMC) methods [69].

We expect that these open questions will motivate new results and new insights

for multi-robot control. We hope that the gradient optimization approach in this

thesis will yield new insights and enable new multi-robot control algorithms. We

also hope that our emphasis on incorporating learning in multi-robot systems will

be a step toward multi-robot technologies that interact flexibly with an uncertain

world, gathering information from their environment to proceed toward a common

goal. The way forward for multi-robot control is to unify the diverse specialized

results which abound in the field, and to work toward a simple policy to create multi-

robot controllers that will help us to monitor and manipulate our environment for

the better.

176

_ _______III___:i~~___ . ~~1~1~

Appendix A

Proofs of Lemmas

Lemma A.1 (Uniform Continuity for Basic Controller) For the basic controller,

V is uniformly continuous.

Proof A.1 We will bound the time derivatives of a number of quantities. A bounded

derivative is sufficient for uniform continuity. Firstly, notice that C 1 , pi E Vi C Q,

so Cv, and pi are bounded, which implies Pi = K(Cv, -pi) is bounded. Consider terms

of the form

d f (q, t) dq (A.1)

where f(q, t) is a bounded function with a bounded time derivative f(q, t). We have

f (q, t) dq dq + f (q,t)nT pydq, (A.2)
d-t f , t d dj=1-pi

where VWi is the boundary of Vi and naov is the outward facing normal of the boundary.

Now is bounded for all j, pj was already shown to be bounded, and f(q, t) is

bounded by assumption, therefore d/dt(fv f(q, t) dq) is bounded.

Notice that C~, is composed of terms of this form, so it is bounded. Therefore

pi = K(Cv, - pi) is bounded, and Pi is uniformly continuous.

177

Now consider

i=1V = Si~l [-(- i7q(q) dqi a iT (A.3)

The first term inside the sum is uniformly continuous since it is the product of two

quantities which were already shown to have bounded time derivatives, namely fv(q -

Pi)Tq(q) dq (an integral of the form (A.2)) and pi. Now consider the second term in

the sum. It is continuous in time since ai is continuous. Expanding it using (4.14)

and (4.13) as

a~f- 1 (Iproj, - I)(F a + 7 (A a - Ai)) (A.4)

shows that it is not differentiable where the matrix Iproj, switches. However, the

switching condition (4.15) is such that &i(t) is not differentiable only at isolated points

on the domain [0, o). Also, at all points where it is differentiable, its time derivative

is uniformly bounded (since ai and the integrands of Ai and Ai are bounded, and F is

composed of the kind of integral terms of the form (A.2)). This implies that &TrF-1

is uniformly continuous. We conclude that V is uniformly continuous.

Lemma A.2 (Uniform Continuity for Consensus Controller) For the consen-

sus controller, V is uniformly continuous.

Proof A.2 We have

i = [- (q- pi)T (q) dqi + Tfr-li] , (A.5)

therefore the reasoning of the proof of Lemma A.1 applies as long as ai can be shown to

be uniformly continuous. But ai only differs from the basic controller in the presence

of the term

n

¢ lij(a - a&). (A.6)
j=1

178

The Voronoi edge length, lij, is a continuous function of pk, k E {1,..., n}. Further-

more, where it is differentiable, it has uniformly bounded derivatives. It was shown

in the proof of Lemma A.1 that p5k is bounded, so similarly to ai, the points at which

lij(pi(t),... ,pn(t)) is not differentiable are isolated points on [O, oc). Therefore lij

is uniformly continuous in time. All other terms in &pre were previously shown to

be uniformly continuous, so &prei is uniformly continuous. As shown in the proof

of Lemma A.1, the projection operation preserves uniform continuity, therefore ai is

uniformly continuous.

179

180

-- ;i i' 'i'~;-'"""-""~ -~-:;-=~'~~--~--~-

Bibliography

[1] D. M. Anderson and S. Urquhart. Using digital pedometers to monitor travel

of cows grazing arid rangeland. Applied Animal Behaviour Science, 16:11-23,
1986.

[2] Dean M. Anderson. Virtual fencing - past, present, and future. The Rangelands

Journal, 29:65-78, 2007.

[3] Dean M. Anderson, J. N. Smith, and C. V. Hulet. Livestock behavior - The

neglected link in understanding the plant/animal interface. In F. Baker and

D. Childs, editors, Proceedings of the Conference on Multispecies Grazing, pages

116-148, International Institute for Agricultural Development, Morrilton, 1985.

[4] A. Arsie and E. Frazzoli. Efficient routing of multiple vehicles with no ex-

plicit communications. International Journal of Robust and Nonlinear Control,
18(2):154-164, January 2007.

[5] I. Barbalat. Systmes d'equations diff6rentielles d'oscillations non lineaires.

Revue de Mathe'matiques Pures et Appliques, 4:267-270, 1959.

[6] M. A. Batalin and G. S. Sukhatme. Sensor coverage using mobile robots and

stationary nodes. In Proceedings of the SPIE Conference on Scalability and

Traffic Control in IP Networks II (Disaster Recovery Networks), pages 269-

276, Boston, MA, August 2002.

[7] C. Belta and V. Kumar. Abstraction and control for groups of robots. IEEE

Transactions on Robotics and Automation, 20(5):865-875, October 2004.

[8] D. Bertsekas, A. Nedid, and A. E. Ozdaglar. Convex Analysis and Optimization.

Athena Scientific, Nashua, NH, 2003.

[9] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:

Numerical Methods. Prentice Hall, 1989.

[10] D. P. Bertsekas and J. N. Tsitsiklis. Comments on "coordination of groups of

mobile autonomous agents using nearest neighbor rules". IEEE Transactions

on Automatic Control, 52(5):968-969, 2007.

181

[11] B. Bethke, M. Valenti, and J. How. Cooperative vision based estimation and
tracking using multiple uav's. In Advances in Cooperative Control and Opti-
mization, volume 369 of Lecture Notes in Control and Information Sciences,
pages 179-189. Springer, Berlin, 2007.

[12] J. Black and T. Ellis. Multi camera image tracking. Image and Vision Com-
puting, (11):1256-1267, 2006.

[13] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis. Convergence
in multiagent coordination, consensus, and flocking. In Proceedings of the Joint
IEEE Conference on Decision and Control and European Control Conference,
pages 2996-3000, Seville, Spain, December 2005.

[14] F. Bullo, J. Cort6s, and S. Martinez. Distributed Control of Robotic
Networks. June 2008. Manuscript preprint. Electronically available at
http://coordinationbook.info.

[15] Z. Butler, P. Corke, R. Peterson, and D. Rus. From robots to animals: Virtual
fences for controlling cows. International Journal of Robotics Research, 25:485-
508, 2006.

[16] Z. J. Butler, A. A. Rizzi, and R. L. Hollis. Complete distributed coverage of
rectilinear environments. In Proceedings of the Workshop on the Algorithmic
Foundations of Robotics, Hanover, NH, March 2000.

[17] Z. J. Butler and D. Rus. Controlling mobile sensors for monitoring events with
coverage constraints. In Proceedings of the IEEE International Conference of
Robotics and Automation, pages 1563 1573, New Orleans, LA, April 2004.

[18] Q. Cai and J. K. Aggarwal. Tracking human motion in structured environments
using a distributed-camera system. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(12):1241-1247, 1999.

[19] C. B. Chang and M. Athens. State estimation for discrete systems with switch-
ing parameters. IEEE Transactions on Aerospace and Electronic Systems,
14(3):418-424, 1978.

[20] H. Choset. Coverage for robotics-A survey of recent results. Annals of Math-
ematics and Artificial Intelligence, 31:113-126, 2001.

[21] R. Collins, A. J. Lipton, H. Fujiyoshi, and T. Kanade. Algorithms for coop-
erative multisensor surveillance. Proceedings of the IEEE, 89(10):1456-1477,
2001.

[22] N. Correll and A. Martinoli. System identification of self-organizing robotic
swarms. In Distributed Autonomous Robotic Systems 7, pages 31-40. Springer
Japan, 2006.

182

[23] N. Correll and A. Martinoli. Towards multi-robot inspection of industrial
machinery - from distributed coverage algorithms to experiments with minia-
ture robotic swarms. IEEE Robotics and Automation Magazine, 16(1):103-112,
March 2009.

[24] J. Cortes. Discontinuous dynamical systems - a tutorial on solutions, nonsmooth
analysis, and stability. IEEE Control Systems Magazine, 28(3):36-73, April
2008.

[25] J. Cortes, S. Martinez, and F. Bullo. Spatially-distributed coverage optimization
and control with limited-range interactions. ESIAM: Control, Optimisation and
Calculus of Variations, 11:691-719, 2005.

[26] J. Cort6s, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243-
255, April 2004.

[27] F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Transactions on
Automatic Control, 52(5):852-862, May 2007.

[28] F. Delmotte, M. Egerstedt, and A. Austin. Data-driven generation of

low-complexity control programs. International Journal of Hybrid Systems,
4(1&2):53-72, March & June 2004.

[29] D. V. Dimarogonas and K. J. Kyriakopoulos. Connectedness preserving dis-

tributed swarm aggregation for multiple kinematic robots. IEEE Transactions
on Robotics, 24(5):1213-1223, October 2008.

[30] Z. Drezner. Facility Location: A Survey of Applications and Methods. Springer
Series in Operations Research. Springer-Verlag, New York, 1995.

[31] F. Farshidi, S. Sirouspour, and T. Kirubarajan. Optimal positioning of multiple
cameras for object recognition using Cramer-Rao lower bound. In Proc. of the
IEEE International Conference on Robotics and Automation, pages 934-939,
Orlando, Florida, 2006.

[32] Harley Flanders. Differentiation under the integral sign. American Mathemat-
ical Monthly, 80(6):615-627, 1973.

[33] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri. Average consensus on networks
with quantized communication. Submitted, 2008.

[34] V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE Transaction on

Automatic Control, 48(4):692-697, April 2003.

[35] V. Gazi and K. M. Passino. A class of repulsion/attraction forces for stable
swarm aggregations. International Journal of Control, 77(18):1567-1579, 2004.

183

[36] Z. Ghahramani and G. Hinton. Variational learning for switching state-space
models. Neural Computation, 12:831-864, 2000.

[37] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York, 2004.

[38] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus.
Energy-efficient autonomous four-rotor flying robot controlled at ikHz. In Proc.
of the 2007 IEEE International Conference on Robotics and Automation, pages
361-366, Rome, Italy, April 2007.

[39] J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tache, I. Said,
V. Durier, S. Canonge, J. M. Ame, C. Detrain, N. Correll, A. Martinoli, F. Mon-
dada, R. Siegwart, and J.L. Deneubourg. Social integration of robots into groups
of cockroaches to control self-organized choices. Science, 318(5853):1155-1158,
2007.

[40] E. Hecht. Optics. Addison Wesley, Reading, MA, 3 edition, 1998.

[41] C. Hernandez, G. Vogiatzis, and R. Cipolla. Multiview photometric stereo.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3):548-
554, 2008.

[42] M. L. Hernandez, T. Kirubarajan, and Y. Bar-Shalom. Multisensor resource de-
ployment using posterior Cramer-Rao bounds. IEEE Transactions on Aerospace
and Electronic Systems, 40(2):399-416, 2004.

[43] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and
Linear Algebra. Academic Press, Inc., Orlando, FL, 1974.

[44] A. Howard, M. J. Matari6, and G. S. Sukhatme. Mobile sensor network deploy-
ment using potential fields: A distributed, scalable solution to the area coverage
problem. In Proceedings of the 6th International Symposium on Distributed Au-
tonomous Robotic Systems (DARS02), Fukuoka, Japan, June 2002.

[45] C. V. Hulet, D. M. Anderson, V. B. Nakamatsu, L. W. Murray, and R. D.
Pieper. Diet selection of cattle and bonded small ruminants grazing arid range-
land. Sheep Research Journal, 8:11-18, 1982.

[46] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48(6):988-1001, June 2003.

[47] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan Peh,
and Daniel Rubenstein. Energy efficient computing for wildlife tracking: Design
and early experiences with ZebraNet. In Proceedings of Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS),
volume 5, pages 96-107, San Jose, CA, October 2002.

184

[48] A. Kashyap, T. Ba.ar, and R. Srikant. Quantized consensus. IEEE Transaction
on Automatic Control, 43(7):1192-1203, July 2007.

[49] H. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, 2002.

[50] S. M. Khan and M. Shah. Consistent labeling of tracked objects in multiple
cameras with overlapping fields of view. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(10):1355-1360, 2003.

[51] C. S. Kong, N. A. Peng, and I. Rekleitis. Distributed coverage with multi-

robot system. In Proceedings of the Interenational Conference of Robotics and

Automation (ICRA 06), pages 2423-2429, Orland, FL, May 2006.

[52] A. Krause and C. Guestrin. Near-optimal observation selection using submod-

ular functions. In Proceedings of 22nd Conference on Artificial Intelligence
(AAAI), Vancouver, Canada, July 2007.

[53] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor

placements: Maximizing information while minimizing communication cost. In

In Proceedings of Information Processing in Sensor Networks (IPSN), Nashville,
TN, April 19-21 2006.

[54] R. Kumar, H. Sawhney, S. Samarasekera, S. Hsu, H. Tao, Y. Guo, K. Hanna

ans A. Pope, R. Wildes, D. Hirvonen, M. Hansen, and P. Burt. Aerial video

surveillance and exploration. Proceedings of the IEEE, 89(10):1518 1539, 2001.

[55] J. LaSalle. Some extensions of liapunov's second method. IRE Transactions on

Circuit Theory, 7(4):520-527, 1960.

[56] D. T. Latimer IV, S. Srinivasa, V.L. Shue, S. Sonne adnd H. Choset, and

A. Hurst. Towards sensor based coverage with robot teams. In Proceedings
of the IEEE International Conference on Robotics and Automation, volume 1,
pages 961-967, May 2002.

[57] W. Li and C. G. Cassandras. Distributed cooperative coverage control of sensor
networks. In Proceedings of the IEEE Conference on Decision ans Control, and

the European Control Conference, Seville, Spain, December 2005.

[58] A. C. Lindberg. Group life. In L. J. Keeling and H. W. Gonyou, editors, Social

Behaviour in Farm Animals, pages 37-58. CABI Publishing, New York, 2001.

[59] L. Ljung. System Identification: Theory for the User. Prentice-Hall, Upper

Saddle River, New Jersey, 1999.

[60] S. P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-

mation Theory, 28(2):129-137, 1982.

[61] H. Logemann and E. P. Ryan. Asymptotic behaviour of nonlinear systems. The

American Mathematical Monthly, 111(10):864-889, December 2004.

185

[62] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman. Decentralized
environmental modeling by mobile sensor networks. IEEE Transactions on
Robotics, 24(3):710-724, June 2008.

[63] S. Martinez, J. Cortes, and F. Bullo. Motion coordination with distributed
information. IEEE Control Systems Magazine, 27(4):75-88, 2007.

[64] J. McLurkin. Stupid robot tricks: A behavior-based distributed algorithm li-
brary for programming swarms of robots. Master's thesis, MIT, 2004.

[65] H. C. Monger. Soil development in the Jornada basin. In K. M. Havstad,
L. F. Huenneke, and W. H. Schlesinger, editors, Structure and Function of a
Chihuahuan Desert Ecosystem, pages 81-106. Oxford University Press, New
York, 2006.

[66] N. Moshtagh and A. Jadbabaie. Distributed geodesic control laws for flock-
ing of nonholonomic agents. Accepted for publication in IEEE Transactions of
Automatic Control, 2006.

[67] K. S. Narendra and A. M. Annaswamy. Stable Adaptive Systems. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[68] P. Ogren, E. Fiorelli, and N. E. Leonard. Cooperative control of mobile sen-
sor networks: Adaptive gradient climbing in a distributed environment. IEEE
Transactions on Automatic Control, 49(8):1292-1302, August 2004.

[69] S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert. Data-driven MCMC for
learning and inference in switching linear dynamic systems. In Proceedings of
20th National Conference on Artificial Intelligence, pages 944-949, Pittsburgh,
USA, 2005. AAAI press.

[70] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Con-
cepts and Applications of Voronoi Diagrams. Wiley Series in Probability and
Statistics. Wiley, Chichester, England, 2 edition, 2000.

[71] R. Olfati-Saber and R. R. Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic
Control, 49(9):1520-1533, September 2004.

[72] S. Orey. A central limit theorem for m-independent random variables. Duke
Mathematics Journal, 25:543-546, 1958.

[73] H. A. Paulsen and F. N. Ares. Grazing values and management of black grama
and tobosa grasslands and associated shrub ranges of the Southwest. Techni-
cal Report 1270, Forrest Service Technical Bulletin, U.S. Government Printing
Office, Washington, 1962.

186

_ ________

[74] V. Pavlovic, J. M. Rehg, and J. MacCormick. Advances in Neural Information
Processing Systems 13 (NIPS*2000), chapter Learning Switching Linear Models
of Human Motion. MIT Press, 2001.

[75] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo. Equitable partitioning policies
for robotic networks. In Proceedings of the International Conference on Robotics
and Automation (ICRA 09), pages 2356-2361, Kobe, Japan, May 12-17 2009.

[76] M. Pavone, S. L. Smith, F. Bullo, and E. Frazzoli. Dynamic multi-vehicle
routing with multiple classes of demands. In Proceedings of American Control
Conference, St. Louis, Missouri, June 2009.

[77] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira. Sensing
and coverage for a network of heterogeneous robots. In Proceedings of the IEEE
Conference on Decision and Control, Cancun, Mexico, December 2008.

[78] L. C. A. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, D. Rus, R. C. Mesquita,
and G. A. S. Pereira. Simultaneous coverage and tracking (SCAT) of moving
targets with robot networks. In Proceedings of the Eighth International Work-
shop on the Algorithmic Foundations of Robotics (WAFR 08), Guanajuato,
Mexico, December 2008.

[79] 0. Pizarro and H. Singh. Toward large area mosaicing for underwater scientific
applications. IEEE Journal of Oceanic Engineering, 28(4):651-672, 2003.

[80] V. M. Popov. Hyperstability of Automatic Control Systems. Springer Verlag,
New York, 1973.

[81] R. Rao, V. Kumar, and C. J. Taylor. Planning and control of mobile robots
in image space from overhead cameras. In IEEE International Conference on
Robotics and Automation, Barcelona, Spain, April 18-22 2005.

[82] I. Rekleitis, G. Dudek, and E. Milios. Mulit-robot collaboration for robust
exploration. Annals of Mathematics and Artificial Intelligence, 31:7-49, 2001.

[83] W. Ren and R. W. Beard. Cooperative surveillance with multiple UAV's. In
Distributed Consensus in Multi-vehicle Cooperative Control, Communications
and Control Engineering, pages 265-277. Springer, London, 2008.

[84] S. M. Rutter, R. A. Champion, and P. D. Penning. An automatic system to
record foraging behaviour in free-ranging ruminants. Applied Animal Behaviour
Science, 54:185-195, 1997.

[85] A. Ryan, M. Zennaro, A. Howell, R. Sengupta, and J. K. Hedrick. An overview
of emerging results in cooperative UAV control. In Proc. of the 43rd IEEE
Conference on Decision and Control, volume 1, pages 602-607, Nassau, 2004.

187

[86] E. P. Ryan. An integral invariance principle for differential inclusions with
applications in adaptive control. SIAM Journal of Control and Optimization,
36(3):960-980, May 1998.

[87] S. Salapaka, A. Khalak, and M. A. Dahleh. Constraints on locational opti-
mization problems. In Proceedings of the Conference on Decision and Control,
volume 2, pages 1430-1435, Maui, Hawaii, USA, December 2003.

[88] R. Sanner and J.J.E. Slotine. Gaussian networks for direct adaptive control.
IEEE Transactions on Neural Networks, 3(6):837-863, 1992.

[89] S. S. Sastry and M. Bodson. Adaptive control: stability, convergence, and ro-
bustness. Prentice-Hall, Inc., Upper Saddle River, NJ, 1989.

[90] M. Schwager, D. M. Anderson, Z. Butler, and D. Rus. Robust classification of
animal tracking data. Computers and Electronics in Agriculture, 56(1):46-59,
March 2007.

[91] M. Schwager, D. M. Anderson, and D. Rus. Data-driven identification of group
dynamics for motion prediction and control. In Proceedings of the Conference
on Field and Service Robotics, Chamonix, France, July 2007.

[92] M. Schwager, F. Bullo, D. Skelly, and D. Rus. A ladybug exploration strategy
for distributed adaptive coverage control. In Proceedings of the International
Conference on Robotics an Automation (ICRA 08), pages 2346-2353, Pasadena,
CA, May 19-23 2008.

[93] M. Schwager, C. Detweiler, I. Vasilescu, D. M. Anderson, and D. Rus. Data-
driven identification of group dynamics for motion prediction and control. Jour-
nal of Field Robotics, 25(6-7):305-324, June-July 2008.

[94] M. Schwager, B. Julian, and D. Rus. Optimal coverage for multiple hover-
ing robots with downward-facing cameras. In Proceedings of the International
Conference on Robotics and Automation (ICRA 09), pages 3515-3522, Kobe,
Japan, May 12-17 2009.

[95] M. Schwager, J. McLurkin, and D. Rus. Distributed coverage control with
sensory feedback for networked robots. In Proceedings of Robotics: Science and
Systems II, pages 49-56, Philadelphia, PA, August 2006.

[96] M. Schwager, J. McLurkin, J. J. E. Slotine, and D. Rus. From theory to
practice: Distributed coverage control experiments with groups of robots. In
O. Khatib, V. Kumar, and G. Pappas, editors, Experimental Robotics: The
Eleventh International Symposium, volume 54 of Springer Tracts in Advanced
Robotics (STAR), pages 127-136, Berlin, 2008. Springer-Verlag.

[97] M. Schwager, D. Rus, and J. J. Slotine. Decentralized, adaptive coverage control
for networked robots. International Journal of Robotics Research, 28(3):357-
375, March 2009.

188

: _~:_~~_X_?~___~___ri~__;_~_~_l_~fl_____ i ____I;~ I~I_____I~1__ilil___iiii_ i_~l; -Ijliiiii-ir;i-jl;l1- :--~I~-~:----

[98] M. Schwager, J. J. Slotine, and D. Rus. Unifying geometric, probabilistic, and
potential field approaches to multi-robot coverage control. In Proceedings of
the 14th International Symposium of Robotics Research (ISRR 09), Lucerne,
Switzerland, Aug. 31-Sept. 3 2009. Accepted.

[99] M. Schwager, J. J. E. Slotine, and D. Rus. Decentralized, adaptive control for
coverage with networked robots. In Proceedings of the International Conference
on Robotics and Automation (ICRA 07), pages 3289-3294, Rome, April 10-14
2007.

[100] M. Schwager, J. J. E. Slotine, and D. Rus. Consensus learning for distributed
coverage control. In Proceedings of the International Conference on Robotics
and Automation (ICRA 08), pages 1042-1048, Pasadena, CA, May 19-23 2008.

[101] J. J. E. Slotine and J. A. Coetsee. Adaptive sliding controller synthesis for
nonlinear systems. International Journal of Control, 43(6):1631-1651, 1986.

[102] J. J. E. Slotine and W. Li. Composite adaptive control of robot manipulators.
Automatica, 25(4):509-519, July 1989.

[103] J. J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall, Upper
Saddle River, NJ, 1991.

[104] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching
networks. IEEE Transactions on Automatic Control, 52(5):863-868, May 2007.

[105] H. G. Tanner, G. J. Pappas, and V. Kumar. Leader-to-formation stability.
IEEE Transactions on Robotics and Automation, 20(3):443-455, June 2004.

[106] G. Ferraru Trecate, A. Buffa, and M. Gati. Analysis of coordination in multi-
agent systems through partial difference equations. IEEE Transactions on Au-
tomatic Control, 51(6):1058-1063, June 2006.

[107] J. N. Tsitsiklis. Problems in Decentralized Decision Making and Computation.
PhD thesis, Department of EECS, MIT, November 1984.

[108] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms. IEEE Transactions
on Automatic Control, 31(9):803-812, 1986.

[109] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and 0. Shochet. Novel type of
phase transition in a system of self-driven particles. Physical Review Letters,
75(6):1226-1229, August 1995.

[110] J. Wainright. Climate and climatological variations in the Jornada Basin. In
K. M. Havstad, L. F. Huenneke, and W. H. Schlesinger, editors, Structure and
Function of a Chihuahuan Desert Ecosystem, pages 44-80. Oxford University
Press, New York, 2006.

189

[111] W. Wang and J. J. E. Slotine. On partial contraction analysis for coupled
nonlinear oscillators. Biological Cybernetics, 23(1):38-53, December 2004.

[112] W. Wang and J. J. E. Slotine. A theoretical study of different leader roles
in networks. IEEE Transactions on Automatic Control, 51(7):1156-1161, July
2006.

[113] Tim Wark, Chris Crossman, Wen Hu, Ying Guo, Philip Valencia, Pavan Sikka,
Peter Corke, Caroline Lee, John Henshall, Kishore Prayaga, Julian O'Grady,
Matt Reed, and Andrew Fisher. The design and evaluation of a mobile sen-
sor/actuator network for autonomous animal control. In IPSN '07: Proceedings
of the 6th international conference on Information processing in sensor net-
works, pages 206-215, New York, NY, USA, 2007. Association for Computing
Machinery.

[114] A. Weber. Theory of the Location of Industries. The University of Chicago
Press, Chicago, IL, 1929. Translated by Carl. J. Friedrich.

[115] M. M. Zavlanos and G. J. Pappas. Controlling connectivity of dynamic graphs.
In Proceedings of the 44th IEEE Conference on Decision and Control, pages
6388-6393, Seville, Spain, December 2005.

[116] M. M. Zavlanos and G. J. Pappas. Potential fields for maintaining connectivity
of mobile networks. IEEE Transactions on Robotics, 23(4):812-816, August
2007.

[117] F. Zhang and N. E. Leonard. Cooperative filters and control for cooperative
exploration. IEEE Transactions on Automatic Control, Submitted, 2008.

190

