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Abstract

Integrated simulations have been used to predict and analyze the integrated behavior of large, complex
product and technology systems throughout their design cycles. During the process of integration,
uncertainties arise from many sources, such as material properties, manufacturing variations,
inaccuracy of models and so on. Concerns about uncertainty and robustness in large-scale integrated
design can be significant, especially under the situations where the system performance is sensitive to
the variations. Probabilistic simulation can be an important tool to enable uncertainty analysis,
sensitivity analysis, risk assessment and reliability-based design in integrated simulation
environments.

Monte Carlo methods have been widely used to resolve probabilistic simulation problems. To achieve
desired estimation accuracy, typically a large number of samples are needed. However, large
integrated simulation systems are often computationally heavy and time-consuming due to their
complexity and large scale, making the conventional Monte Carlo approach computationally
prohibitive. This work focuses on developing an efficient and scalable approach for probabilistic
simulations in integrated simulation environments.

A predictive machine learning and statistical approach is proposed in this thesis. Using random
sampling of the system input distributions and running the integrated simulation for each input state, a
random sample of limited size can be attained for each system output. Based on this limited output
sample, a multilayer, feed-forward neural network is constructed as an estimator for the underlying
cumulative distribution function. A mathematical model for the cumulative probability distribution
function is then derived and used to estimate the underlying probability density function using
differentiation.

Statistically processing the sample used by the neural network is important so as to provide a good
training set to the neural network estimator. Combining the statistical information from the empirical
output distribution and the kernel estimation, a training set containing as much information about the
underlying distribution as possible is attained. A back-propagation algorithm using adaptive learning
rates is implemented to train the neural network estimator. To incorporate a required cumulative
probability distribution function monotonicity hint into the learning process, a novel hint-reinforced
back-propagation approach is created. The neural network estimator trained by empirical and kernel
information (NN-EK estimator) can then finally be attained.

To further improve the estimation, the statistical method of bootstrap aggregating (Bagging) is used.
Multiple versions of the estimator are generated using bootstrap resampling and are aggregated to
improve the estimator. A prototype implementation of the proposed approach is developed and test
results on different models show its advantage over the conventional Monte Carlo approach in
reducing the time by tens of times to achieve the same level of estimation accuracy.
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Committee Members: David C. Gossard, Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Context

1.1.1 Integrated Simulation Environment

Current design of a large product or technology system has evolved to the processes

which cross various domains, and require many groups with diverse expertise in different

locations. Figure 1-1 is showing such a scenario.

Figure 1-1 Design of a large product or technology system

The benefits of predicting and analyzing the integrated behavior of product and

technology systems throughout their definition cycle can't be over-emphasized. However,
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it is often found impossible for people to capture the whole structure of the objective

system due to the complexity and evolutionary nature of the system, and due to the

bounded capability of human intelligence. Also, the analysis is required to be flexible and

respond fast to design modifications, error corrections and market changes. However, it is

estimated that 30% or more of a design engineer's time is spent in meetings to gather or

exchange information about interrelated aspects of a product(Christian 1996), yet

researchers at Ford Motor Company estimate they spend hundreds of million dollars per

year on integration rework after building complete prototypes(Wallace). In contrast,

studies at Ford (Abrahamson 2000) and at Polaroid (Abrahamson 1999) show that

integrated assessments requiring weeks or months in a traditional design environment can

be understood in seconds using integrated simulations. Integrated simulations finally

come into the place to analyze the behavior of large product and technology systems. As

such, a number of researchers and companies have attempted to develop integrated

simulation environments(Toye 1994; Molina 1995; Bliznakov 1996; Case 1996;

Cutkosky 1996; Dabke 1998; Kim 1998), some of which are now used in practice. In

order to manage the complexity of building simulations for large, complex systems, an

emergent and decentralized model integration approach has also been developed(Pahng

1997; Pahng 1998; Wallace 2000; Senin 2003). This approach helps to mitigate

integration difficulties due to scale, complexity, rate-of-change, heterogeneity and

proprietary barriers.

1.1.2 Uncertainties in Integrated Design



Any complex product or technology system is not deterministic. Uncertainties arise from

many aspects during an integrated design process. Some general sources contribute the

uncertainties:

1) Physical dimensions of parts

2) Material properties

3) Error of measurements

4) Manufacturing variations

5) Environmental or operating conditions

6) Market variations

7) Model accuracy and so on

Current integrated simulation environments are working well with deterministic

simulations which don't take any uncertainty into consider and don't have the ability to

handle any uncertainty. However, when integrating multidisciplinary subsystems to

represent large, complex products, concerns about uncertainty and robustness can be very

significant. In such an integrated scenario, uncertainties in one discipline will propagate

to another discipline through the linked variables. As a result, many variables which are

deterministic in their own disciplines may become probabilistic ones, and the final output

form the integrated systems will be probabilistic. Figure 1-2 is showing such a scenario.



Model 1 Model 3
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Figure 1-2 Uncertainty propagation in integration

1.2 Research Motivation

To do an integrated design under uncertainties, people have to consider the impact of

variations on the performance of the product or technology system to be designed,

especially under the situations that the system performance is sensitive to the variations.

Probabilistic simulation ability is the premise to enable uncertainty analysis, sensitivity

analysis, risk assessment, reliability-based design and robust design in an integrated

simulation environment. There is a widely recognized need to incorporate probabilistic

modeling and simulation within integrated design processes(Haugen 1980; Siddall 1983;

Kowal 1998). My research motivation is to develop a generic probabilistic simulation
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approach for integrated simulation environments, including the emergent and

decentralized integration environment.

Integrated simulation systems are often complex and large-scale since they are

involved with various domains and disciplines. As a result, they are usually

computationally heavy and time-consuming. Especially in an integrated simulation

environment which is emergent and decentralized, the simulation system can be easily

growing whenever a new model is emergent. On the other hand, most probabilistic

simulation approaches are sample-based. If a large number of samples are needed for the

approach, it will be computationally prohibitive. My research focuses on developing an

efficient and scalable approach for probabilistic simulations in integrated simulation

environments.

1.3 Thesis Outline

Chapter 1 provides an introduction to the context and the importance of probabilistic

simulation ability for integrated design environments.

Chapter 2 introduces the background on probabilistic simulations, including the

definition and common steps of a probabilistic simulation, representation of uncertainties

in probabilistic simulations, the conventional Monte Carlo method and its limitation in

integrated simulations.

Chapter 3 describes a new machine learning approach for probabilistic simulations in

an integrated simulation environment. The machine learning based density estimation is

discussed, compared with the traditional parametric and nonparametric density estimation

methods in the field of statistics.



Chapter 4 is dedicated to discuss how to construct the neural network density

estimator, including building an appropriate architecture and choosing a suitable

activation function. It also covers creating the mathematical models for the neural

network CDF estimator and PDF estimator.

Chapter 5 discusses how to learn from sample for our neural network estimator. The

back-propagation learning and its implementation on our neural network estimator are

discussed, as well as how to process the random sample by statistical means in order to

get a learning set containing as much statistical information as possible. Two versions of

neural network estimators, the NN-E estimator and the NN-EK estimator, are described.

Chapter 6 discusses how our neural network estimator can learn from hints, including

how the monotonicity hint can be incorporated into the back-propagation learning and

how a hint-reinforced training set can be created.

In Chapter 7, the statistical method Bagging is discussed. It covers how to generate

multiple versions of our neural network estimator by bootstrap method and aggregate

them to gain a further improved estimator.

Chapter 8 gives some case studies to evaluate the proposed approach. Concluding

remarks is given in Chapter 9.



Chapter 2

Probabilistic Simulation

2.1 Steps of Probabilistic Simulation

In a deterministic simulation, the input parameters for the simulation system are

represented by deterministic values. The simulation is to analyze and predict the behavior

of the integrated system by attaining the deterministic output values, i.e., by propagation

of deterministic values through the whole system. However, a probabilistic simulation is

to predict the system behavior under uncertainties by capturing probabilistic

characteristics of final outputs of the system which are caused by uncertainties of the

system inputs. In a probabilistic simulation, a lot of efforts are put on analyzing how the

system propagates the uncertainties or variations and what is the risk or variation of the

predicted system performance. Usually a probabilistic simulation is composed of the

following steps:

1) Estimate and quantitatively represent uncertainties in system inputs, i.e. design

parameters or variables. This is also called characterization of input

uncertainties(Isukapalli 1999).

2) Propagate input uncertainties through the whole integrated simulation system by

using an appropriate and feasible method.



3) Quantitatively represent accumulative uncertainties in system outputs which are

caused by individual input uncertainties. This also called characterization of

output uncertainties.

2.2 Representation of Uncertainties

In simulation-based environment, uncertainties are usually characterized by probabilities.

Probability can be defined as "frequency of occurrence" of an event, or in another word,

it can be considered as a numerical measure of the likelihood of occurrence of an event

relative to all possible events(Ang 1975).

For a design parameter or variable with uncertainty, its value can be any one in some

certain range with randomness. That is to say, the actual outcome is unpredictable to

some extent. For example, the dimension of a part from a manufacturing process is

always a range of values due to manufacturing variations. All possible values can be

looked as a sample space. Each individual value is called a sample point. An event then is

composed of one or more than one sample points within the sample space. In the

terminology of set theory, the sample space is a set including all possibilities and an event

is a subset of the sample space. Actually the sample space itself is an event called certain

event. A sample space may be discrete or continuous. In a discrete sample space, there

are countable sample points whose number can be either finite or infinite. In a continuous

sample space, the number of sample points is always infinite. In simulation-based

environments, most of sample spaces are continuous.



Probabilities are always associated with specific events. Each event has a probability

to happen. Different events may have different probabilities. That means some events

may occur more frequently than others.

A system input or output with uncertainty can be represented as a random variable

since most of the uncertainties are caused by the natural processes or phenomena which

are inherently random. For those caused by lack of knowledge about the process or

phenomenon, it's also reasonable to treat it as a random variable because the outcome is

unpredictable and random under existing knowledge. Random variables make the design

parameters or variables with uncertainties to be represented more quantitatively by

assigning each possible event a probability. A random variable can be represented either

by a probability distribution or by probabilistic characteristics.

2.2.1 Probability Distribution

Different values (or value ranges) of a random variable correspond to different events.

Then there is a mapping between the value of a random variable and the probability (or

probability measure) of the event since each event has an associated probability (or

probability measure). A probability distribution is to describe the probability measures

over all the values of a random variable. A probability distribution can always be

expressed in cumulative distribution function (CDF) for a random variable, either discrete

or continuous, which is

Fx (x) = P(X < x) (2.1)

Here X and x denote a random variable and its value respectively. For a discrete random

variable, its cumulative distribution function is a step function which is nondifferentiable.



In addition to cumulative distribution function, probability mass function (PMF) and

probability density function (PDF) are also used to describe probability distribution. PMF

is for a discrete random variable which is simply the probabilities of discrete x, i.e. P(x).

For a continuous random variable, PDF is used. The probability of each single value is

always zero since the sample space is infinite. As a result, probability density is defined

for each value as another probability measure. Mathematically, CDF is the integral of

PDF, and PDF is the derivative of CDF, which are,

Fx(x) S= f(x)dx (2.2)

dFx (x)
f(x) dF(x) (2.3)

dx

According to the axioms of probability, distribution functions must satisfied some

certain properties.

Theorem 2.1 The function F(x) is a CDF if and only if the following three conditions

hold:

(a) limx,- F(x)= 0 and limx,, F(x)= 1.

(b) F(x) is a nondecreasing function ofx.

(c) F(x) is right-continuous; that is, for every number xo, limx4 xo F(x) = F(xo)

Theorem 2.2 A function fx (x) is a PDF(or PMF) of a random variable X if and only

if

(a) fx (x) 2 0 for all x.

(b) fx (x) = (PMF) or fx(x)dx = 1 (PDF).



2.2.2 Probabilistic Characteristics

Once the distribution function of a random variable is known, either cumulative

distribution function or probability density function, all of its probabilistic characteristics

are known. Of all the probabilistic characteristics, central value, dispersion measure, and

skewness measure are most important ones. These characteristics convey very useful

statistical information of a random variable, and can be used to describe the random

variable in the situation where the distribution function is unknown.

One of the central values is mean or the expected value. It is the weighted average of

a random variable by probabilities, which gives us a typical or expected value of an

observation of the random variable. It is usually denoted by E(x), which is

E(x) = xiP(xi) (2.4)
i=1

for a discrete random variable, and

E(x)= fx(x)dx (2.5)

for a continuous random variable. The mean is also denoted by/ x . The other two

measures of the central value are median and mode. Median is the value of a random

variable which makes the probability of the values blow it is equal to the probability of

the values above it. Mode is the value of a random variable which has largest probability

(discrete) or probability density (continuous).

Variance and standard deviation are the measures of dispersion of a random variable.

They show how variable a random variable is around its mean. The larger variance means

more widely the values are spread. For a discrete random variable, the variance is



Var(X)= (xi - x ) zP(xi) (2.6)
i=1

and for a continuous random variable, it is

Var(X) = (x- x)2f (X)d x  (2.7)

The standard deviation is simply the square root of the variance; that is

c X = Var(X) (2.8)

Skewness measure is to show if the distribution of a random variable is symmetry or

asymmetry, and what is the asymmetry extent. The third moment is the most often used

skewness measure, which is

n

E(X - x)3 = -(x - x)3 P(x) (2.9)
i=1

for a discrete random variable, and

E(X-x)3= (x -)3 f(x)dx (2.10)

for a continuous random variable.

Table 2-1 is showing some common continuous distributions and their probabilistic

characteristics:

Table 2-1 Common continuous distributions
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2.3 Represented by Probability Density

In probabilistic simulation, probability density is thought as the best representation of a

probabilistic output. There are two main reasons for it.

Firstly, it is because probability density is the most complete description of a

random variable. Once the density finction is attained, all the statistical characteristics of

the random variable can be derived. By using the statistical information provided by the



density function, various further analysis and design activities can be carried on, such as

risk assessment, sensitivity analysis, reliability-based design and so on.

The second reason is that, probability density can give important indication of the

features such as multimodality and skewness. These features are very valuable in a

complex and large-scale integrated simulation which can yield a system output with an

arbitrary probability distribution. An example is given in Figure 2-1. The curve shown in

this figure is constructed from the data generated by the simulation of a rod

manufacturing process. It is clear from the figure that this is a multimodal distribution. It

has a small proportion of density of a higher mode which is usually undesired. Thus this

density curve provides a clue to address the potential problem in the manufacturing

process.

-o 0

0 L
8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

Rod length in centimeters

Figure 2-1 Probability density constructed from the rod manufacturing simulation

Another example is shown in Figure 2-2 (Silverman 1998). It is constructed from the

data collected in an engineering experiment described by Bowyer (Bowyer 1980). The



height of a steel surface was measured at about 15000 points. Then the density curve was

constructed based on these observations. The density curve is clearly showing that the

height has a skew distribution with a long lower tail. This is an important indication

because the lower tail represents hollows where fatigue cracks can start and also where

lubricant might gather. From the curve, it is clear that the Gaussian models are not

appropriate to model these surfaces.
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Figure 2-2 Density constructed from observations of the height of a steel surface

2.4 Monte Carlo Methods

A Monte Carlo method is a very general concept and the way it is used varies from field

to field. Monte Carlo methods can be loosely defined as simulation methods which solve

the problems by using random sampling and statistically computation. They are usually

used under such situations where an analytic result can't be achieved or it is impossible to

get the result by deterministic simulations. The applications of Monte Carlo methods are

found in diverse fields, including complex simulations in aerospace engineering,



statistical mechanics, computational physics and chemistry, operation research, finance,

biology statistics and so on (Rubinstein 1981; Kalos 1986; Fishman 1996; Gentle 2003;

Robert 2004).

Monte Carlo methods are also widely used to resolve probabilistic simulation

problems. Usually, they have the following steps:

1) Random sampling from the probability distributions of the simulation system

inputs.

2) Perform the deterministic simulation on each set of input sample points.

3) Statistically aggregate the results of individual simulations to get the final

probabilistic results.

In Monte Carlo based probabilistic simulations, the final probabilistic results

representing the system outputs are histograms, which are one kind of estimations for

probability density functions. For example, Figure 2-3 shows the histogram of 200

sample points resulting from the sum of two independent normal distributions which are

N(1,1) and N(2,1) respectively.
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Figure 2-3 Histogram of sum of N(1,1) and N(2,1) by Monte Carlo

To get desired estimation accuracy, hundreds of thousands of iterations are usually

needed in the conventional Monte Carlo approach. Figure 2-4 is showing the approach.

Figure 2-4 Conventional Monte Carlo approach

However, the integrated simulation is usually time-consuming due to its complexity

and large scale. As a result, computation time makes it prohibitive to directly apply

conventional Monte Carlo methods to large-scale integrated simulations since the

traditional Monte Carlo method needs to run the integrated simulation a large number of

times to get desired accurate results, and the total time then becomes unaffordable. On the

other hand, conventional Monte Carlo methods put no effort into exploring more

information on the underlying distribution from the data generated by the probabilistic

simulation except for representing the result by a histogram. And we will see in section

3.3.1 that, there are various drawbacks to represent probability density by a histogram.

In this context, the significant challenge is how to make Monte Carlo-like

probabilistic simulations more feasible in large-scale integrated simulations. The

computational expense needs to be reduced greatly so that the emergent integrated

simulation system using Monte Carlo methods can be scalable and practical in

probabilistic design fields.



2.5 Advanced Monte Carlo Methods

There are some advanced Monte Carlo methods which have been developed with

different goals. Simply speaking, these advanced Monte Carlo methods can be divided

into two categories.

For those in the first category, the efforts are aimed at improving the quality of

sampling. For example, stratified sampling can yield a sample more consistent to the

underlying distribution than that from the traditional Monte Carlo sampling, by

partitioning the sample space into some strata with even probabilities (Fishman 1996).

Tong developed some refinement strategies for stratified sampling methods in (Tong

2006). Blasone carried on sampling using an adaptive Markov Chain Monte Carlo

scheme (the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm) to improve

the computational efficiency in (Blasone 2008). Tari's refined descriptive sampling (Tari

2006) provides a good approach to reduce the sampling bias and eliminate the problem of

descriptive sampling related to the sample size. There is no doubt that all these methods

can improve sampling of the system inputs in probabilistic simulations. However, just

like the conventional Monte Carlo methods, they do little work on exploring the

underlying distributions from the simulation results for the system outputs.

The second category is composed of the advanced Monte Carlo methods which are

usually developed for the specific applications and to solve the specific problems. And

most of them have to use the information inside the model as much as possible to achieve

the improvement. Pradlwarter developed an advanced Monte Carlo simulation approach

to analyze the stochastic structural dynamics (Pradlwarter 1997). This approach was

exclusively developed to lead the generated samples towards the low probability range of



the system response which was the focus of the study. A suitable criterion was created for

indicating the desired realizations by using the mathematical relationships inside the

model. Thunnissen's method named Subset Simulation was developed for quantifying

uncertainties in conceptual-level design (Thunnissen 2007). This advanced method was

focused on estimating the extreme tail values like 99.99 percentile by using Markov

Chain Monte Carlo simulation. Obviously these advanced methods were not developed

for generic probabilistic simulations. Also, in integrated simulations, most models are

black-boxes from user's aspect of view. The information inside the models can not be

used easily for probabilistic simulations in a generic way.

2.6 Predictive Machine Learning Approach

For a computationally intensive integrated simulation system, only a limited number of

simulations can be performed to meet the requirement of design cycle. A random sample

of limited size can be attained for each probabilistic system input by (advanced) Monte

Carlo sampling. Running the integrated simulation for each input state, a random sample

of limited size can be attained for a system output to be studied. This sample can be

looked as a random sample from an underlying probability distribution which is exactly

what we are investigating. Instead of running more simulations to get more sample points

to represent the underlying distribution, an effort is put on discovering the statistical

information hidden in the sample data we already have, to estimate the underlying

probability distribution.

Machine learning is to design and develop some algorithms and techniques so that a

computer can learn from samples, data or experiences. It is widely applied to extract



pattern, logic and knowledge from data, by using different computational and statistical

methods. In the process of learning, the computer can keep improving its inductive or

deductive performance by studying the samples and data repeatedly. Its applications

range from handwriting and speech recognition to a vehicle driving learning(Mitchell

1997).

In my thesis, a predictive machine learning approach is created to explore the

underlying probability distribution, which is simply described in Figure 2-5. Its purpose

is to learn the output probability distribution of an integrated simulation system from the

sample of limited size which hides the statistical information inside. In this approach, the

Monte Carlo methods are only used in sampling, like a pre-processing. Most work is

focused on predictive machine learning, more like a post-processing. Details of this

approach will be discussed in the next chapter.

(Advanced) Monte
Carlo sampling

Sample of fr (Y)

{X(11, X12, X1 Xln} limited size n Predictive{x11, X22, ..., X2n, _re' Y°}V-P Integrated {Y1 Y2 ... yn}
{X21, X22, X2n simulation Machine

f 2(x) 6 system Learning

Figure 2-5 Predictive Machine Learning approach



Chapter 3

Machine Learning based Density Estimation

3.1 Density Estimation

In probabilistic simulations, what people are most interested in are the probability

distributions of the system outputs. A probability distribution is a complete description

for a random variable. Once a distribution function is known, all the statistical

characteristics of the random variable can be derived. By using the statistical information

provided by the distribution functions, further analysis and design activities can be

carried on, such as risk assessment, sensitivity analysis, reliability-based design and so

on.

In an integrated simulation system, the distribution of a system output is determined

by the distributions of system inputs and the mathematical relationships inside the

simulation system. In most cases, the individual simulation models inside the integrated

simulation system are black boxes to a designer of system level. Their internal structures,

mechanisms and mathematical relationships are unknown by a system designer since

those individual simulation models are usually developed by individual model designers

from various domains and disciplines. As a result, it is impossible to apply analytical

methods to derive the distribution of a system output from the distributions of system

inputs. Actually, even if every mathematical relationship inside an integrated system is



known, it's usually intractable to derive the output distributions due to the complexity

and large scale of the whole simulation system.

By random sampling on the probabilistic system inputs for an affordable size and

running the integrated simulation on each one, a random sample of a limited size can be

achieved for each system output. Random sampling from inputs is to encode the

distribution information into the samples. Doing integrated simulation for individual

iterations is to propagate the probabilistic information. The random sample finally got for

a system output encodes the underlying distribution information.

Suppose that we have got a set of observations or a random

sample {x,,x 2 ,...,xi,...,xN) on a system outputX by steps above. The next work is to

deduce or construct an estimate for the probability density function based on the

observations. In statistics, this problem is referred to density estimation. Traditional

density estimation methods are divided into two categories, which are parametric density

estimation and nonparametric density estimation.

3.2 Parametric Density Estimation

In parametric density estimation, it is assumed that the form of the underlying probability

density function is known, for example, a Gaussian distribution. Then what is needed to

do is to optimally estimate the parameters of the density function by fitting the assumed

distribution model to the observed random sample. For a Gaussian distribution, it is to

estimate p, and o .



Suppose the density function form of a system output X is already known as

f (x 9) which depends on a vector of parameters 9 = {O,..., , } . The random sample

on X has been got as x = {x,, x2,..., xi ,..., x } which are independently coming from the

same distribution fx(x 8). According to the probability theory, the joint probability

density of the random sample is

N

p(x 10) = f(x 10) (3.1)
i=1

A likelihood function is then defined by (Casella 2002)

L(90 x) = p(x 0) = fx(xi 10) (3.2)
i=1

Now the estimators for the parameters 0 = {f ,..., } are needed to be derived.

Maximum Likelihood estimator is the most popular one in all existing methods. It is

achieved by making L(9 I x)attain a maximum as a function of 0= {90,..., 0,} while

x = {x,,x2 ... x,...,x, } is fixed. To get a maximum, a common way is to let the gradient

of the likelihood function equal to zero:

aL( I x)= 0, i=1,...,m (3.3)

By solving the equations above, the estimates for the parameters can be derived as

A A A

0(x) = {01(x),..., 9, (x)}. However, the first derivative is equal to 0 is not sufficient for a

maximum. It can also happen for a minimum. To verify if it is a maximum, the second

derivative is to be checked to see if

2 L( x) | < 0, i= 1,..., m (3.4)
o09 9=i(X)



Once MLE (Maximum Likelihood Estimate) is derived for each parameter, the

parametric density estimation can be easily got by inserting the parameter estimates into

the assumed density function, which is,

A A A A (

fx (x 10) = f (x 0(x)) = f (x 0(),..., (x)) (3.5)

Parametric density estimation can get a very good result in the situations where the

forms of the underlying density functions are known based on some prior knowledge.

However, in practice, especially in an integrated simulation environment, it is usually

impossible to know the density function form of a system output due to the complexity

and large scale of the integrated system. It can be an arbitrary distribution form which

depends on the distributions of system inputs and the complicated unknown mathematical

relationships inside the simulation system. In addition, most of the commonly used

parametric densities are unimodal, while many practical densities are multimodal and can

be arbitrary forms which have been never seen before. As a result, those parametric forms

are not always good choices for the densities actually encountered in practice. A very bad

result will be got if the assumed density function form doesn't match the true one.

3.3 Nonparametric Density Estimation

Nonparametric density estimation is to construct a density estimator only based on the

random sample x = {x,x 2,...,x,...,x } without any assumption about the functional

form of the underlying density distribution. The simplest nonparametric approach is the

histogram and the most popular method is kernel density estimation. They will be

discussed in the following sections respectively.



3.3.1 Histogram Estimation

A histogram can be constructed by the following steps (Hirdle 2004):

1) Decide an origin point and create bins with a width h along the real line:

bj = [xo +(j-1)h,xo + jh), jeZ (3.6)

2) For each bin, count the outcomes in it. Denote the number of observations that are

located in bin j by nj.

3) For each bin, convert the frequency count into the relative frequency, the sample

analog of probability, by dividing the count by the sample size n, and by the bin

width h in order to make the total area under the histogram equal to one:

n.

fj =- (3.7)nh

4) The histogram estimation can be expressed as

A 1

f(x)- = (x cbj)I(xeb j) (3.8)
nhi=1 j

where

I(x, :bj)= x bj
0 otherwise

Then an estimate of f for all x is given by formula (3.8) as well as its corresponding

graph, the histogram. Denoting by m1 the center of the binbj., formula (3.8) is telling us

A

that the histogram gives the same estimate for f , namely fh (mj) , for

h h
anyxinb, = [m 2,m + -)

2 2



The total area of a histogram can prove to be equal to one without doubt, which is a

desired property for any reasonable estimator of a probability density function.

By looking at formula (3.8), it can be found that the histogram estimation depends on

the choice of width h. The following two plots are showing different choices for width

for a random sample from N (0,1):

50

45

40

35

30

25

20

15

10

5

-4 -3

I I I I I

2 -1 0
h = 0.1

1 2 3 4

Figure 3-1 Histogram with bin width h = 0.1
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Figure 3-2 Histogram with bin width h = 0.5

Clearly, if we increase h, the histogram appears to be smoother, but some reasonable

criterion is needed to say which bin width provides the "optimal" degree of smoothness.

By minimizing mean integrated squared error (MISE), which is defined as

A A

MJSE(fh)= E[ {.f (x)- f(x)}2 dx] (3.9)

we can get an optimal bin width, which is

ho = ni n - 1/
3 (3.10)

n 11 f' 112

But we can find that there is a problem to calculate II f' II since f is unknown. A

solution will be discussed in the next section. For now, a rule-of-thumb optimal bin width

is given as(Scott 1992)
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ho  3.5n - 1/3 (3.11)

The histogram is a very simple and straightforward estimation, but it has various

drawbacks:

* The final shape of the density estimate depends on the starting point of the bins

and the bin width. Optimal bin width is not easy to get.

* The histogram estimation is not continuous. Its discontinuities are located at the

boundaries of the bins, where the histogram function is not differentiable.

However, it has zero derivatives elsewhere. It is obviously undesirable if we want

to estimate a smooth, continuous PDF.

* The discontinuities of the estimate are not due to the underlying density, they are

only an artifact of the chosen bin locations. These discontinuities make it very

difficult, without experience, to grasp the structure of the data.

3.3.2 Kernel Density Estimation

Kernel density estimation is the most widely used nonparametric method. The basic

intuition behind kernel density estimation is that each sample point xi in the random

sample x = {,x2, ,..., xi,..., x,, } provides evidence for non-zero probability density at that

point. A simple way to harness this intuition is to place an "atom" of mass at that point,

just like what is shown in Figure 3-3. Moreover, making the assumption that the

underlying probability density is smooth, we let the atoms have a non-zero "width".

Superimposing n such atoms, one per sample point, we obtain a density estimate.



Construction of Kernal Density
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Figure 3-3 An example of kernel density estimation

More formally, let K(u) be a kernel function - a nonnegative function integrating to

x-x
one. Then Kh (- ) will be the atom resulted from applying the kernel function to

h

each sample point. The argument xi determines the location of the kernel function; kernels

are generally symmetric about x,. The parameter h is a general "smoothing" parameter

that determines the width of the kernel functions and thus the smoothness of the resulting

density estimate. Superimposing n such kernel functions, and dividing by n, we obtain a

probability density:

^ 1 x-x
f,(x)= n KhX i) (3.12)

n i=1 h

The commonly used kernel functions in practice are listed in Table 3-1(Hardle 2004).

39
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Table 3-1 Common kernel functions

Name Function form

Uniform -1I(u | 1)
2

Triangle (1-I u 1)I( u |1 1)

Epanechnikov -(1 u2

4

15
Quartic (Biweight) (1-u 2)2 1( u _ 1)

16

35
Triweight -(1-u 2 ) 3 J(1U 1)

32

1 1
Gaussian exp(--u 2)

2 z 2

Cosine -cos(- u)I(| u 1)
4 2

It has been known for some time that although the Epanechnikov kernel minimizes

the optimal asymptotic MISE with toK, MISE is quite insensitive to the shape of the

kernel. As a result, for practical purposes the choice of the kernel function is almost

irrelevant for the efficiency of the estimate (Hirdle 2004). For simplicity, a Gaussian

kernel is usually used.

Similar to the histogram, h controls the smoothness of the estimate and the choice of

h is a crucial problem. The Figure 3-4 and Figure 3-5 are showing kernel density

estimation based on a random sample from N(0,1) with different choices of the width h.

The Gaussian kernel function is used in the estimation.
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Kernel Density Estimation for N(0,1) with bigger h
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Figure 3-5 Kernel density estimates with large width
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MSE(f) = MSE{fh(x)}dx

1 h4  1
= - Ki 1 I f(x)dx+- {p2 (K)}2 f{f'(x)}2dx+o( )+o(h4)

nh 4 nh

1 h4  1
= - -11 {2 (K)}2  112 +0( )+ o(h 4 ) (3.13)

nh 4 nh

Here we denote P2 (K)= Js2K(s)ds and IK11i= K2(s)ds. Ignoring higher order

terms an approximate formula for the MISE, called AMISE, can be given as

AMSE(fh)=-IIK 2 + {-i2 (K)} 2 f" | (3.14)
nh 4

Differentiating the AMISE with respect to h and solving the first-order condition for

h yields the AMISE optimal width

1 1121/5

hop||( K 1/n -'/5  (3.15)
h II f " 112 {p2(K)} 2 n - (3.15)

But, here we find the problem of solving unknown term, which isI f" 112 . This is the same

problem we met in histogram estimation. Two most frequently used methods to solve this

problem are the plug-in method and the method of cross-validation.

Generally speaking, plug-in methods derive their name from their underlying

principle: if you have an expression involving an unknown parameter, replace the

unknown parameter with an estimate. For the cross-validation method, the basic

algorithm involves removing a single value, say x,, from the sample, computing the

appropriate density estimate at that xi from the remaining n -1 sample points, denoted by

A A

fh,i(xi), and then optimizing some given criterion involving all fh,i(x 1) to get h. For



details about the plug-in method and the cross-validation method, refer to (Hardle 1991;

Park 1992)

Kernel density estimation is very sensitive to the choice of the widthh. Choosing a

smaller width makes the density curve bumpier, and choosing a larger width yields

smoother curve but may lose density details and precisions. Although we have the plug-in

method and the cross-validation method to get an "optimal" width, there is no one best

method existing.

3.4 Machine Learning based Estimator

The core of the predictive machine learning approach in this thesis is to create a machine

learning based estimator for the probability density function underlying the random

sample coming out from an integrated simulation. In the field of machine learning, the

neural network technique is the best candidate for function approximations since the

neural networks with an appropriate structure can map any complex function. In our

approach, this technique is used to construct the density estimator.

There have been some methods to use neural networks for density estimation.

However, most of the approaches inevitably have the limitations of the parametric

approaches discussed earlier since they're based on parametric models. For example, a

mixture model of Gaussian distributions is assumed in the approaches of (Bishop 1995;

Husmeier D. and Taylor 1998), where a multilayer network is used to estimate the mean

and variance. Williams's approach(Williams 1996) is similar with the above except that it

is for the multidimensional estimation. The mixture of Gaussian density estimations is

used in Traven's approach(Traven May 1991) and Cwik and Koronacki's method(Cwik



1996). Roth and Baram(Roth 1996), and Miller and Horn(Miller 1998) trained the neural

networks to maximize the entropy of the outputs. Van Hulle(Hulle 1996) developed a

self-organizing approach by which the density of the weight vectors is an estimate of the

unknown density with the algorithm converging to a solution. Schioler and Kulczyki's

method(Schioler 1997) is based on the kernel estimation method. Weigend and

Srivastava's approach(Weigend 1995) uses the method of fractional binning for time

series prediction. It first partitions the input space into different bins, and then creates an

output neuron for each bin, and finally gets the network trained on the fraction of data in

each different bin. Zeevi and Meir(Zeevi 1997) proposed an approach to use convex

combinations of various density estimators. Smyth and Wolpert(Smyth 1998) also

brought out a method to combine the estimates of different density estimators such as

different kernel estimators. Neural networks have also been developed for estimating

discrete distributions in the approaches of Thathachar and Arvind(Thathachar 1999), and

Adali et al.(Adali 1997).

The approach proposed in this thesis can be looked as a nonparametric approach since

it is not assuming a certain functional form for the distribution to be estimated. An

arbitrary function can be represented by the weights of the networks which are attained

by learning from the sample. Unlike the kernel density estimation, this approach does not

trap you into how to determine an optimal width. Also, some research(Hornik 1990;

Hornik 1994) has been done to show that the ability of neural networks to approximate a

function does not decay with the dimensions increasing, that is a problem for the kernel

methods. The approach developed here is to construct a multilayer neural network and

train it by sample data to get a neural network estimator for the cumulative distribution



function, and then the probability density estimator can be derived simply by

differentiation. There are two main reasons to estimate the cumulative distribution

function first. The first reason is that the cumulative distribution function is very

important in practice to give a quantile or do the reliability assessment. Secondly,

estimation of the cumulative distribution function is less sensitive than that of the

probability density function to statistical fluctuations since the integral does the work of

regularization(Magdon-Ismail 2002). Figure 3-6 shows the histograms of 4 random

samples drawn from the same random variable which reflect the statistical fluctuations.
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The approach to create a neural network estimator is described in the Figure 3-7:

Probabilistic simulation on
the integrated system for an

affordable size

A random sample of the
system output to be estimated.

Statistically process the
sample data to get the training

set for CDF

Construct a multilayer neural
network and do training on it

CDF estimator

PDF estimator by
differentiation

Figure 3-7 Approach to create a neural network estimator



Chapter 4

Construction of Neural Network Estimator

4.1 Neural Network Construction for CDF Estimator

4.1.1 Neural Network Architecture

A neural network is designed to simulate the behavior of nervous systems of humans to

learn from experiences and make generalizations(Haykin 1999). Just like the human brain

which is a nonlinear and parallel information-processing system, a neural network is

composed of many neurons linked together by weighted connections called synapses.

Each neuron is a computing or information-processing unit. A neuron model is described

in Figure 4-1.

Wil

wi2
X2 - Ip Y U

Summation Activation
function

Wir

Figure 4-1 A neuron model



In this neuron model, the subscript i means it is the ith neuron in the neural network.

{x,,..., xm } denotes the input signals external to the network or the responses from other

neurons which are connected to the ith neuron. The sum of the input signals weighted by

wj of the synapses is calculated first. The bias bi of the neuron is also added in. It is used

to adjust the net input of the activation function. We can write the following equation for

the summation:

u = wrx (4.1)
j=0

where wio = bi and x0 = 1. This can be equivalently looked as there is a new input

signal with a weight wi0 = b whose value is fixed to 1.

The neuron produces a response by applying an activation function to the sum of its

input signals. The activation function, also called the transfer function, is usually

nonlinear. The response can be expressed as:

Yi = O(Ug) (4.2)

Neurons are the fundamental blocks of a neural network. According to the way they

are connected by the weighted synapses, architectures of neural networks can be grouped

into three categories: single-layer feedforward architecture, multilayer feedforward

architecture and recurrent architecture(Haykin 1999).

Single-Layer Feedforward Architecture

If a neural network organizes its neurons layer by layer, it is called a layered neural

network. When we count the layers of a neural network, the input layer is not included

since it does not do any computation, but only pass the input signals to the next layer. As



a result, a single-layer network is composed of the input layer and the output layer. All

computing and information-processing work is done by the output layer. The word

feedforward means the signals are processed and passed layer by layer, starting from the

input layer and ending at the output layer. There is no feedback loop existing in the

network, and there is no connection between any two neurons in the same layer. A

single-layer feedforward network has the simplest architecture and its application is

limited.

Multilayer Feedforward Architecture

A multilayer feedforward network organizes its neurons in the same way with a

single-layer one. The difference lies in that it has one or more hidden layers. The internal

layers between the input layer and the output layer are called hidden layers. The hidden

layers endow more power to a neural network for high-order computation. The input

signals are passed to the first hidden layer, then the computed response from the first

hidden layer are continuously fed to the second hidden layer, and so on until the response

from the output layer are achieved.

Recurrent Architecture

If a neural network has at least one feedback loop or closed path, it is called a recurrent

neural network. A feedback loop means that, the response from a neuron can be passed

back directly or indirectly to the input of that neuron. A direct feedback is called

self-feedback. A recurrent neural network can organize its neurons in any way by means



of feedback loops. Figure 4-2 is showing a recurrent neural network with self-feedback

and hidden neurons.

Figure 4-2 A recurrent neural network

Construct the CDF Estimator as a Multilayer Feedforward Neural

Network

The neural network estimator for CDF is to estimate the cumulative distribution function:

y = Fx (x)

The input to the estimator is any value x from a random variable, and the output is the

estimated cumulative probability y corresponding to x. The cumulative probability should

never have an influence on the sample value x. That is to say, there should be no



feedback loops in the network. As a result, feedforward architecture is to be used. In this

thesis, the focus is on the individual distributions of the outputs of an integrated system,

not the joint distributions between the outputs. Then it is actually a univariate estimation

problem. In nature, this is a one-dimension function approximation problem. The network

is composed of the input layer with one neuron, the output layer with one neuron, and

some hidden layers.

The next step is to decide how many hidden layers are needed for our estimation. The

universal approximation theorem is stated as(Haykin 1999):

Theorem 4.1 Let (p(.) be a nonconstant, bounded, and monotone-increasing continuous

function. Let Imo denote the mo -dimensional unit hypercube [0, 1]"' . The space of

continuous functions on Imo is denoted by C(Im) . Then, given any function

f E C(Imo) andE> 0, there exist an integer M and sets of real constants a i , biandwo,

where i = 1,..., m, andj = 1,..., mo such that we may define

F(xl,...,xmo)= =cipjwx +bj (4.3)

as an approximate realization of the function f(-); that is,

I F(x,,..., xmo)- f(x,..., Xmo) I<

for allx1, x2,..., Xmo that lie in the input space.

By applying the universal approximation theorem to multilayer feedforward neural

networks, we can get a conclusion, that is, by choosing an activation function which is

satisfying the conditions in the theorem, a multilayer feedforward neural network with

one hidden layer can approximate an arbitrary continuous function f(x,,...,xmo ). As to



our CDF estimator, it is a univariate case of the theorem. We can say that, a multilayer

feedforward neural network, composed of one-dimensional input layer, one-dimensional

output layer and one hidden layer with m neurons, can approximate an arbitrary

cumulative distribution functionF x (x). Finally, the neural network estimator for CDF is

constructed like what is shown in Figure 4-3. The superscripts on the weights indicate the

linked layers. A weight with 'IH' means the synapse connects an input neuron to a hidden

neuron. A weight with 'HO' means the synapse connects a hidden neuron to an output

neuron.

HO

y = Fx(x)

IHwm HOw,

Input Layer Hidden Layer Output Layer

Figure 4-3 Structure of CDF estimator



4.1.2 Choose an Activation Function

A neuron in the network generates its response or output by applying an activation

function on its net input. The common activation functions in use with neural networks

are listed in the following:

Threshold Function

This function is also called step function or

input is above some threshold value which

threshold value.

p(u) 0

1

Heaviside function. The output is 1 if the

is 0 here, and 0 if the input is below the

ifu 0

ifu<0
(4.4)

-3 -2 -1 0 1 2 3

Figure 4-4 Threshold function

Linear Function

Another name for a linear function is identity function since the

to the input.

output is always identical

(4.5)



Figure 4-5 Linear function

Ramp Function

The ramp function, also named Piecewise-Linear function, is a combination of the

threshold function and the linear function. It has two threshold values T and T2 ( <T 2 ).

It fires 0 when the input is below T and 1 when the input is above T. It is a linear

function for the inputs lying between T and T2 . In Figure 4-6, T = -0.5 and T2 = 0.5.

1,

<,(u) = u + 0.5,

0,

u > 0.5

-0.5 < u < 0.5

u < -0.5

-1.5 -1 -0.5 0 0.5 1

Figure 4-6 Ramp function

(4.6)

1-

.8

.6

.4

.2

0
1.5 2



Sigmoid Function

The sigmoid function is an s-shaped function. It is monotonically increasing ranging from

0 to 1 continuously. The sigmoid function, showing a good balance between linear and

nonlinear behavior, is the most commonly used activation function in construction of a

neural network(Haykin 1999). A sigmoid function is defined by

P(u) = 1 (4.7)
1+ e-"

where the parameter c is a measure of slope. Figure 4-7 is showing a sigmoid function

with c= 1.

0.8

0.6

0.4

0.2

-6 -4 -2 0 2 4 6

Figure 4-7 Sigmoid function

Hyperbolic Tangent Function

The hyperbolic tangent function has the similar features with the sigmoid function. It is

ranging from -1 to 1, which is different from the sigmoid function. The function is

defined by

e - e
p(u) = tanh(u) = - (4.8)

e" + e
- u



0.5

-0.5

-1

-4 -3 -2 -1 0 1 2 3 4

Figure 4-8 Tanh function

Choosing Sigmoid Function

The sigmoid function is chosen as the activation function for our neural network

estimator, considering three things in the following.

The first consideration is that the activation function has to be differentiable. There

are two reasons for that. One is the way by which the PDF estimator is derived. The CDF

estimator is finally represented by the trained neural network (The training set and

training algorithm will be discussed in the next chapters). Although a neural network is

composed of neurons and synapses, in nature it can be expressed by an analytic

mathematical model whose fundamental elements are the activation functions and the

weights. The PDF estimator is attained by differentiating the mathematical model

standing for the CDF estimator, which requires the activation function be differentiable.

The other reason is involved with the training algorithm. The error back-propagation

algorithm, the most popular training algorithm for multilayer feedforward neural

networks, is used in this thesis. The back-propagation algorithm achieved its goal by

using differentiation, which needs the activation function to be differentiable. Of the



common activation functions, the linear function, the sigmoid function and the tanh

function have good differentiability.

In the universal approximation theorem which is described in theorem 4.1, the

activation is required to be a nonconstant, bounded, and monotone-increasing continuous

function to enable a neural network to approximate any continuous function. This is a

must for the CDF estimator since the distribution to be estimated in an integrated

simulation environment can be an arbitrary functional form. As a result, the linear

function is excluded here. This is also understandable if we think about it in another way.

The CDF estimator needs nonlinearity since the cumulative distribution functions are

usually nonlinear. However, a linear function of linear functions is again a linear

function.

The last reason is that, the range of the sigmoid function is exactly the same with that

of a cumulative distribution function, which is always from 0 to 1. By using the sigmoid

function, especially in the output layer, no extra scaling work needs to do. This will make

less overhead work, especially for the back-propagation algorithm.

4.2 Derive PDF Estimator

Once we have the neural network estimator for CDF, the PDF estimator can be derived

from the CDF estimator by differentiation.

Firstly, the mathematical model of the CDF estimator needs to be derived, based on

the structure described in Figure 4-3. The net input to the hidden neuron is,

u,= xw + bj (4.9)j



Then the response of the hidden neuron is,

v1 = P(u, )

where qo(-) denotes the activation function. The net input to the output neuron is,

u = HO +b

j=1

where m is the neuron number in the hidden layer. The final output of the CDF estimator

is,

y = (u) (4.12)

If we put everything in (4.9) - (4.12) together, we can get,

(4.13)y= lo xw H +b w HO

1
where o(u) = _ , the sigmoid function.

+e- u

Now we have the mathematical model for the CDF estimator. By differentiating it in

an inverse order, the PDF estimator can be derived. The differentiation starts from the

output layer:

y (x) = o (u)u'(x) (4.14)

where p'(u) = 2 Then we have,
(1 + e-")2

(4.15)y (x)= + "u'(X)
(1+e-)2

According to the formula (4.11), we get,

u'(x)= Ywo,(x)
j=1

(4.16)

(4.10)

(4.11)



Continue to differentiate backward, vj (x) can be got from the formula (4.10) as,

(4.17)
-UJ

vj(x) = ((u).u - (x)= + e - j 2 u (x)
(1 + eU )2 U1 (x)

From the formula (4.9), u (x) can be got as,

U; (X) =w (4.18)

Putting (4.16) - (4.18) together, we have the mathematical model for the PDF estimator,

which is,

S(x)= e Oy (1 + e-u ) 2 =1 W

-Uj

(1 + e--)2 /
(4.19)

where u can be got from (4.11) anduj can be got from (4.9)



Chapter 5

Learning from Sample

5.1 Learning Algorithm

5.1.1 Supervised Learning

In chapter 4, the neural network estimator for CDF has been created (The PDF estimator

is derived from the CDF estimator by differentiation). By learning from the random

sample of the integrated system output which is a random variable in nature, the CDF

estimator can finally estimate the underlying cumulative distribution function. So the task

here is to learn a continuous function, or approximate a continuous function, from the

sample. Apparently, this falls into the learning paradigm of supervised learning. The

other two major types are unsupervised learning and reinforcement learning.

Unsupervised learning is usually used in classification, pattern recognition, and clustering.

Reinforcement learning has its main applications in controlling and sequential decision

making.

Supervised learning, also called learning with a teacher, is to provide a training set,

or training sample, to the neural network which is to be trained. The training set includes

a set of input examples (or patterns) and a set of output examples which are desired

responses corresponding to the input signals. By using a learning algorithm, the weights

of the synapses and the biases in the neural network are adjusted in order to minimize the



difference between the actual responses and the anticipated responses. This process is

repeated example by example until some criterion is reached finally.

So far, what we have as the training set is the random sample which is only the

training data for input. In order to get the desired responses for the CDF estimator, i.e.,

the anticipated cumulative probabilities for each sample point, some statistical work

needs to be done. The next sections are focused on discussing how to get the training set

for the output of the neural network CDF estimator. For now, let's assuming we have

attained the output examples, which are denoted by {dl,d 2,...,di,...,d,}. The training set

for the input is denoted by {x , x2,...,xi,...,x}.>

5.1.2 Back-propagation Learning

The back-propagation learning(Rumelhart 1986) is the most popular algorithm of

supervised learning to train the multilayer feedforward neural network. It is also used in

this thesis to train the CDF estimator. The back-propagation learning is composed of two

processes for each training example(Haykin 1999). The first one is called forward

process. In this process, a sample value in {x,,x,,...,x i,...,x,} is presented to the CDF

estimator. Then it is fed forward layer by layer. During this process, all the weights keep

unchanged to calculate the responses layer by layer until the output of the CDF estimator

is produced, which is the cumulative probability estimate for the current sample point. Of

course, the current estimate is not the final one since the CDF estimator is still in learning.

The actual output is compared with the desired response in {d,d 2 , ...,di,..., d,}, and an

error is calculated by applying some defined error function. Then it goes into the second

process, backward process. In this process, the error is propagated backward layer by



layer, starting from the output layer. The weights are modified according to some rule in

order to minimize the error so that the actual response from the network is getting closer

to the anticipated one. The whole process of back-propagation learning is described in

Figure 5-1.

Training data for input Training data for output

{ X, 2 ,..., 5x,...,x } { d , dl 2, ..., d,,..., d, }
CDF Estimator

SH HO

H * O Error
i ' Function

I I

Input Hidden Output I
layer layer layer

-: Forward Process - --- : Backward Process

Figure 5-1 Back-propagation learning for CDF estimator

Error Function

The error function is also called the cost function or the objective function(Reed 1999). It

is a measure of the difference between the actual output and the desired output. So it is



also a performance measure of the neural network. The network with a better

performance makes the error smaller. A perfectly trained network has a zero error,

although it can hardly be achieved in practice.

The most common error functions in training neural networks are sum of squared

error (SSE) and mean squared error (MSE), which are defined respectively as,

n k

EssE di - yi ) (5.1)
i=1 l=1

1 Ink
re is EMSEe output EsSE = (d yi) 2  (5.2)

where k is the neuron number in the output layer and n is the sample size. The sum of

squared error is used for our CDF estimator. As there is only one output neuron in the

estimator, the error function can be simplified as,

n "1
EssE=E E =  l (d, -y) 2  (5.3)

i=1i= =1 2

The factor is used for the convenience of differentiation in the error back-propagation

process.

Optimize the Weights

Back-propagation learning is a non-linear optimization problem. The purpose is to find a

set of weights for the neural network which minimize the error function, by adjusting the

weights repeatedly in learning. In the optimization process, the error function is a

function of the weights with the training data as the parameters. For our CDF estimator, it

can be described as, (The biases can be looked as the special weights)

ESE= EsSE(W ,w I xi, di) (5.4)



The back-propagation learning uses the way of gradient descent with respect to the

weights to find the directions to change the weights so as to decrease the value of the

error function. The first step is to calculate the partial derivatives of the error with respect

to the weights. For the weights of the synapses connected the output layer in the CDF

estimator (See Figure 4-3), we have,

SS , °= E (5.5)
&WHO 

HO

The overall error is the sum of the independent individual errors for each training pattern

so is the derivative. For simplicity, we are focusing on how to get the partial derivates on

a single pattern. In the following, the i index for the pattern is omitted. E is denoted by E .

dE 8E Bu
WHO u wHO =v (5.6)

J i

Here S is the local gradient of the output neuron and v, is the response of the jth neuron

in the hidden layer.

aF aE ayE = . = (y - d) -o (pu) (5.7)
au 0y Cu

where ( (u) = for the sigmoid activation function.
(1+ e-)2

For the weights connecting the input layer to the hidden layer, we have,

8E 8E au,
w -H -= = S. .x (5.8)

I aIH

and,

cE 8E HO v.'
=6 U = &v uj =. .'(u ) (5.9)a u 8v Bu I



where p' (u1 ) = for the sigmoid activation function.
(1 + e- )2

Once we have the derivatives calculated, the weights can be updated. If the derivative

is positive, the weight is decreased to make the error decreasing. If the derivative is

negative, the weight is increased to keep the error decreasing. By applying this rule, the

weight adjustment is given by

Aw = -7 and AwH = -77w (5.10)1 =wHO ad1H

where77is called the learning rate, which is usually a small positive number. A larger

learning rate makes a faster learning, but may cause the network oscillatory. A smaller

learning rate generates a more stable network, but makes the learning slower. The typical

range for the learning rate is0.05 < q< 0.75(Reed 1999). Usually a momentum term is

also added in order to increase the stability by considering the previous weight change.

Now the formula is updated to,

oAw (t) = -7 HOE + aAw7o(t -1) and Aw/H(t) = - , aAw H(t-1) (5.11)

Learning Modes

There are two common learning modes in practice, named the on-line mode and the batch

mode. Before discussing these two modes, some definitions are necessary. An iteration is

defined as the forward process and the backward process for an individual training

pattern. An epoch is defined as one complete presentation of the entire training

set(Haykin 1999).



The batch mode is to update the weights per epoch. In each iteration, the supposed

weight change for each synapse on the current pattern is calculated and saved, but not

applied to the weight right away. After an epoch is done, the sum of the weight changes

for all patterns is applied to each weight.

The on-line mode, also called sequential mode or pattern mode, is to adjust the

weights during each iteration. Unlike the batch mode, the on-line mode is not an exact

implementation of the gradient descent way. However, in practice, the final effect is

almost the same due to a large amount of epochs in the learning. In addition, the on-line

mode has some advantages over the batch mode. The first one is that the on-line mode

does nupdates in the time the batch mode makes only one. This makes the on-line

learning more stochastic and less likely to be trapped in a local minimum. The second

one is that the on-line mode can make better use of the redundant data in the training set

by updating the weights for each pattern.

In this thesis, the on-line mode is implemented considering the advantages described

above, especially in order to take the second advantage because in Chapter 7 the training

set for Bagging may have some redundant data.

Figure 5-2 is describing the back-propagation learning algorithm for our CDF

estimator.



Figure 5-2 Back-propagation learning algorithm

5.2 Empirical CDF Training



So far, the structure of the CDF estimator has been built up and the learning algorithm

has been designed. The next important work is to prepare the training data. If we look the

CDF estimator as a CDF machine and the learning algorithm as the control program, the

training data can be looked as the appropriate material so that the product, the CDF

estimate, can be manufactured.

5.2.1 Empirical CDF

Suppose we have a random sample {x, x2,..., xi,..., x,, } from the integrated simulation and

the sample has been sorted so that it is in ascending order: x1, x 2 ... i x, ... x,. Then

the empirical distribution function is defined as,

0, x <x,
F, (x) = i / n, xi : x < x,,, (5.12)

1, x > x,

The empirical distribution function is a consistent unbiased estimator of the

cumulative distribution function. In another word, F (x) converges to the underlying

CDF Fx (x) with n increasing. From the definition, it is obvious that an empirical CDF

is a staircase function. Figure 5-3 is the empirical CDF derived from a N(0,1) sample of

size 100.



Empirical CDF with sample of size 100 from N(0,1)
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Figure 5-3 The empirical CDF based on a N(0,1) sample

5.2.2 NN-E Estimator

Although the empirical CDF is a consistent estimator of the underlying CDF, a PDF

estimator can not be derived from it. This is because the empirical CDF is not

differentiable. Also, it is not convincible that all x, between x, and x, , always have the

same cumulative probabilities. Despite those problems, the empirical CDF definitely

provides very important statistical information on the cumulative probabilities for the

sample points. And those cumulative probabilities can be used as the training set for the

output of our neural network CDF estimator. Following the definition of the empirical

distribution function, we can get the desired outputs for the sample points, as what Figure

5-4 is describing.
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Figure 5-4 The training set derived from the empirical CDF

By back-propagation learning from the training set {X1 ,x 2 ,..., xi,...,x,

and {YE1 YE2*...Ei'* ... YE (see Figure 5-1 and 5-2), the first version of neural network

estimator for CDF can be attained. In this thesis, it is called NN-E estimator which means

the Neural Network estimator trained by the Empirical cumulative probabilities. The

NN-E estimator for PDF can be derived by differentiation which is described in Section

4.2. The trained NN-E estimator for CDF can give the estimate for the underlying CDF

by producing the cumulative probability estimate for any given x. It has the mathematical

model described in the formula (4.13). It is the same with the NN-E estimator for PDF. It

can give the estimate for the underlying PDF by producing the probability density

estimate for any given x. It has the mathematical model described in the formula (4.19).

Figure 5-5 is showing the CDF estimate given by the NN-E estimator for CDF which is

trained by the sample of size 100 from N(0,1). Figure 5-6 is showing the corresponding

PDF estimate given by the NN-E estimator for PDF.

f1 1 17 i7fv ,



Neural Networks CDF Estimation Learning from Empirical Cumulative Probability of 100 sample points

Figure 5-5 The NN-E estimate for CDF based on the sample from N(0,1)

Comparison of different Density Estimations with sample of size 100 from N(0,1)
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Figure 5-6 The NN-E estimate for PDF based on the sample from N(0,1)

In Figure 5-5, the kernel density estimation based on the same sample is also given

for comparison. It can be seen that the NN-E estimate is closer to the true CDF. The

estimation error is given in Table 5-1, from which we can see that the NN-E estimation

gives smaller error than kernel density estimation.

Table 5-1 PDF estimation errors

L1I Error L2 Error

Kernel method 0.011900 2.831513e-004

NN-E estimation 0.010887 2.087665e-004

5.3 Combination of Statistical Information

5.3.1 Limitation of NN-E Estimator

Once the structure of the neural network estimator is created and the learning algorithm is

developed, how well the trained neural network estimates the underlying CDF (and PDF)

will be determined by how good the training set is. The more statistical information the

training set is exposing, the better estimate the trained neural network estimator will

finally make. It is found that the training set attained by the empirical CDF has some

limitations.

Suppose we have a random sample coming from a probabilistic integrated simulation.

It is called a random sample because the sample of each time is different, although all of

those random samples are coming from the same underlying distribution. Then the

situation, described in Figure 5-7, is coming up.
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Figure 5-7 Different random samples yield the same set of empirical

cumulative probabilities

In Figure 5-7, the different random samples are all sorted and in ascending order.(We

assume this for the rest of the thesis.) By the definition of the empirical CDF, they always

yield the same training set for the output of the neural network CDF estimator, which is

the set of desired cumulative probabilities for the sample points. In another word, all the

ith sample points in the different random samples, which are usually different values,

always have the same cumulative probabilities. Apparently, this is not reasonable and can

be improved.

The other issue with the training set attained by the empirical CDF is that, the

maximum point in the sample always has cumulative probability 100%, which means it is

also the maximum value of the random variable X , but this is not true obviously.

5.3.2 NN-EK Estimator

The kernel density estimation is a widely used nonparametric method in traditional

statistics, despite the difficulty of finding an optimal bandwidth. It discovers the

~I



statistical information, hidden in the random sample, on the underlying distribution in a

different way from the empirical CDF. Both the empirical CDF and the kernel density

estimation expose the useful statistical information from the different aspects. To some

extent, the statistical information discovered by these two different approaches is

complementary. By combining the statistical information from the empirical CDF and the

kernel density estimation, an improved training set can be attained.

The kernel density estimation based on the sample {x, x2, ..., x,..., x, is given in the

formula (3.12) as,

A 1 x-x

fh (x) = - ( Kh i

In this thesis, Gaussian function is used as the kernel function. The optimal

bandwidth h is determined by the plug-in method(Wand 1995).

By integral we can calculate the cumulative probability for each sample point:

Ki = F(xi)= fh()dx= K h  )dx (5.13)

Then we have the training set {YK1 YK2,"', YKi'" YKn from the kernel method. We do a

combination by averaging the training sets got by the empirical CDF and the kernel

density estimation, and get an improved training set:

{YEKI'YEK2'"... YEKi'"" YEKn

(YE1 +YK1) (YE2 +YK2) (YEi +YKi) (YEn +YKn) (5.14)
2 2 2 2

The new training set {YEK1 YEK2 .. YEKi, .. YEKn ) shows its power immediately by getting

rid of the limitations described in previous section. Now for a different random sample, a



different {YEK1 , YEK21 *,... YEi,..., EKn } can be attained since the kernel estimation has

different value for the different sample point. And yEK,, is not equal to 1 any more.

By back-propagation learning from the training set {xj ,,x 2 ., Xi... , X

and {yEK, YEK2'*... YEKi' , YEK,} (see Figure 5-1 and 5-2), the neural network estimator for

CDF can be attained. In this thesis, it is called NN-EK estimator which means the Neural

Network estimator trained by the Empirical and Kernel cumulative probabilities. The

NN-EK estimator for PDF can be derived by differentiation which is described in Section

4.2. The NN-EK estimators for CDF and PDF have the mathematical models described in

the formula (4.13) and (4.19) respectively. Figure 5-8 is showing the CDF estimate given

by the NN-EK estimator for CDF which is trained by the sample of size 100 from N(0,1).

Figure 5-9 is showing the corresponding PDF estimate given by the NN-EK estimator for

PDF.

Comparison of different CDF Estimations with sample of size 100 from N(O, 1)
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Figure 5-8 The NN-EK estimate for CDF based on the sample from N(0,1)
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Figure 5-9 The NN-EK estimate for PDF based on the sample from N(0,1)

In Figure 5-5, the kernel density estimation and the NN-E estimation based on the

same sample is also given for comparison. It can be seen that the NN-EK estimate is

closer to the true CDF than those given by the kernel method with an optimal bandwidth

and the NN-E estimator. This is because the training set used by the NN-EK estimator

contains more statistical information than that of either the NN-E estimator or the kernel

density estimation. The estimation error is given in Table 5-2, from which we can see that

the NN-E estimation gives smaller error than kernel density estimation.

Table 5-2 PDF estimation errors

L1 Error L2 Error

Kernel method 0.011900 2.831513e-004
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NN-E estimation 0.010887 2.087665e-004

NN-EK estimation 0.009938 1.579242e-004



Chapter 6

Learning from Hints

6.1 Hints

In the field of machine learning, a function learning or approximation is usually

accomplished by learning from a set of input-output examples. Hints here mean prior

knowledge of certain facts about the unknown function, in addition to the set of

examples(Abu-Mostafa 1993). Hints are usually known as the properties of the target

function which are independent of the training examples(Abu-Mostafa 1995). It is very

important to incorporate hints into the learning process because of a few benefits. The

first one is to get a more accurate function estimation. The more information used in the

learning, the closer to the true function the estimation is. The learning benefits the most

from hints in the situation where the training examples are limited due to intensive

computation. This is exactly our case. The second benefit to integrate hints into learning

is to improve the learning efficiency. With the guideline of hints, the learning can go a

shorter way to the goal.

There are different types of hints in leaning a function(Abu-Mostafa 1990;

Abu-Mostafa 1993; Abu-Mostafa 1995). For example, for an odd function hint, we have:

f (-xg) = -f (x)

for each sample point. The invariance hint asserts



f(xi)= f(xi)

for certain pairs of x i and xj. The approximation hint asserts for certain points x, that

f(x,) e [a,b] .

There are different ways to incorporate hints:

(1) Reprocess the training examples in order to contain the hint, for example, add

some virtual examples to the original training examples.

(2) Customize the learning model so as to reflect the hint, for example, make a

neural network of a particular structure

(3) Change the learning algorithm to follow the guideline of the hint.

The implementation depends on the hint and the learning process.

6.2 Hints in Distribution Estimation

The purpose of distribution estimation is to learn the cumulative distribution function and

the probability density function from the sample. For the cumulative distribution function,

it has the monotonicity hint since the function is always monotonically nondecreasing,

just like the example in Figure 6-1. And for the probability density function, it has the

nonnegative hint, like the example showing in Figure 6-2. Accomplishment of either of

these two hints always guarantees the other one since the PDF is just the differentiation

of the CDF. In this thesis, the monotonicity hint is incorporated into the CDF learning

process. Then the PDF estimation derived from the CDF estimation automatically

satisfies the nonnegative hint.
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Figure 6-1 Monotonicity hint for CDF

Figure 6-2 Nonnegative hint for PDF

6.3 Incorporation of Monotonicity Hint

6.3.1 Monotonicity Hint Penalty Term

Suppose we have a random sample{.V,x 2,..., ,...,x,} which is already sorted and in

ascending order. {d, d2,...,d~,...,d,} is the training set for the output of the neural

Now



network CDF estimator. For NN-E estimator,

{YEI 'YE2'"YEi'''"YEn,}. And for NN-EK estimator, it is {YEKI'YEK2...'YEKi'...'YEKn }

Both of these two training sets satisfy d d2 < ... d, < ... d according to the

description of the training set generation in Chapter 5. Suppose the actual outputs of the

neural network estimator for the sample points are

{y, Y2z, i ...i,,yn ,= { y(x,w),y(x 2 ,w),...,y(xi,w),...,y(x, , w)}. If the neural network is

perfectly trained, that means the error between {dl,d2,...,d,...,d,} and

{Y,Yz , Yi, ... IY, is minimized to zero, the monotonicity hint is automatically

implemented. However, this is impossible for most cases in practice. Then incorporation

of the monotonicity hint basically means that the actual outputs should satisfy

Y1 yY2 -... < i <... < yn

Recall the error function defined in the formula (5.3) for the back-propagation

learning,

1
EsSE = E, = -(d, -y) 2

i=1 i=1 2

To integrate the monotonicity hint into the back-propagation learning, a penalty term is

added into the error function, which becomes,

1 1
E, = -(di - y(xi,w)) 2 + U(y(xi, w)- y(xil, w)) .- (y(x, w) -y(Xi, w)) 2  (6.1)

2 2

where the unit step function is defined as

{i y(x I,w)-y(x,w)>0O

U(y(xi, w ) - y(xi+, w)) = y(x, w) - Y(Xi, w) > 0 (6.2)
0 y(x,, w) - y(x,4, w) < 0

{d, d2,..., d,,..., d,} becomes



Basically this can be explained as the following. If y(xi, w) - y(x,,, w) > 0, which is

1 2
against the monotonicity hint, the penalty term (y(x,, w)- y(xi,,, w))2 shows up in the

2

error function. This term is minimized in back-propagation learning until

y(xi, w) - y(x, , w) O0. In this way, the monotonicity hint is implemented by achieving

Y1 < Y2 "" - Yi <... < Yn

6.3.2 Hint-reinforced Training Set

Although y,1 y2 ... YO ... y,n only guarantees the monotonicity on the sample

points, it usually can attain the monotonicity on the whole domain in practice. However,

for some cases, it is not very satisfactory. The Figure 6-3 is the CDF estimate based on

the random sample from a distribution which is the mixture of a normal distribution and a

log normal distribution, shown in Figure 6-2. It is the NN-EK estimation, with the

monotonicity hint incorporated in the way described above. It can be seen that the circled

part is not monotonically nondecreasing. As a result, the derived PDF estimate has a

negative part, which is shown in Figure 6-4.
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Figure 6-4 PDF estimate with a negative part

The reason is that the penalty term in the error function (6.1) only guarantees the

monnotonicity on the sample points. This is not enough for the distribution in Figure 6-2.

Actually, this usually happens to a distribution with multiple modes which has a low

probability area between the modes. If a sample from the distribution has a limited size,

there is usually no sample point from that area, just like the area indicated by a circle in

Figure 6-3. Such a part is usually a big gap between the two adjacent sample points. The

monotonicity can not be implemented on the whole part only by implementing the

monotonicity on the two adjacent sample points.

The way to solve this problem is to regenerate a hint-reinforced training set based on

the original training set {x ,,x 2 ,...,xi,...,x,} and {d, d 2,...,di,...,d,} . First we add m

hint-only sample points into the original sample. These virtual sample points can be

picked up evenly from the problem area. Their desired outputs are zeros and are only

used to indicate in the learning process that they are hint-only sample points. Then sort

the sample again and the new hint-reinforced training set for the input can be got as

{ , 2 i,...,xi,..., x,,...,n+m}. The corresponding training set for the output is

{d,, d2,..., d,..., d,..., d,,, } which contains zeros for the hint-only sample points.

In back-propagation learning, a sample point is detected as a virtual sample point if

its desired output is found to be zero, and the error function is given as,

E, = U (y(xi,w))- y(xi+, w)) .I(Y(Xi,w)- Y(Xi+l,w))2 (6.3)
2

Otherwise, it is an original sample point, and the error function is given as the same with

the formula (6.1),



2 2

The Figure 6-5 is the CDF estimate based on the random sample from a distribution

which is the mixture of a normal distribution and a log normal distribution, shown in

Figure 6-2. It is the NN-EK estimation, incorporating the monotonicity hint by using the

hint-reinforced training set. It can be seen that the problem part in Figure 6-3 is now

monotonically nondecreasing. The red dots in Figure 6-5 are those hint-only sample

points added to the original sample points. As a result, the derived PDF estimate is

nonnegative over the whole domain, which is shown in Figure 6-6.

CDF

x

Figure 6-5 CDF estimate by learning from the hint-reinforced training set
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Chapter 7

Bagging Estimators

This chapter is discussing how to use the statistical method named Bagging to gain more

improvement on our neural network estimator. Bagging, the abbreviation of "bootstrap

aggregating", generates multiple versions of an estimator and aggregates them to get a

new estimator(Breiman 1996). The multiple versions are attained by using bootstrap

resampling technique to generate a bootstrap samples from the original sample for each

version and using it as new training set.

7.1 Bootstrap

The bootstrap is a resampling method for statistical inference(Efron 1979; Efron 1993;

Davison 1997; Chernick 1999). Suppose we have an original random

sample {x, x 2 , ... , xi,...,x}. The bootstrap is resampling of these n sample points x,. It

generates a new sample of size n by random sampling of the original sample. During the

sampling, the probability that a sample point is picked is considered as 1/n. The sample

points in the new bootstrap sample are drawn from the original sample at random with

replacement. As a result, a sample point in the original sample may appear more than one

time or not at all in the new bootstrap sample.



The underlying statistical motivation for the bootstrap can be explained in the

following way:

1) The underlying distribution function Fx (x) for the sample

i n

{x,,x 2,...,xi,...,xn) is unknown and the empirical CDFF,(x)= - I(x x) is

used for the estimate of Fx (x).

2) Use F, (x) as the original distribution Fx (x).

3) Sampling from F, (x) is equivalent to sampling with replacement from the

original sample {x , ,x 2 ,...,xi,... ,x .

The bootstrap is often used to get standard error and confidence intervals for the

parameter estimates. In bagging, the bootstrap is applied to generate multiple training sets

so that multiple versions of the neural network estimator can be attained.

7.2 Bagging NN-EK Estimators

Suppose we have a sample So of size n, i.e. consisting of n sample points. Based on this

sample, we have some estimator (x, So) by which we estimate y for the input x.

Suppose we are given more samples, denoted by a sequence {Sk }. In this sequence, each

sample is from the same distribution with So and has a sizen. With the sequence {Sk},

we want to get a better estimator than p(x, So). The most straightforward way is to form

A

an estimator p(x, S j)on each sample, and then aggregate these estimators by averaging

over k to get a new estimator(Breiman 1996):



A 1 k

(x) = ((x, Sj) (7.1)
j=1

However, usually, it is hard to attain the sample sequence {Sk } due to the limitation

of sample acquirement. In our probabilistic simulation for the integrated system, usually

there is only one sample So = {x,,x2,...,xi,...,x,} is available due to the cost of

computation time. Under such a situation, the bootstrap can make an imitation of the

process above. By the bootstrap resampling ofS0 = {x ,, x2, ...,x,...,x n}, we can get a

sequence of bootstrap samples {S I}. Each bootstrap sampleSB in the sequence, i.e.

{x ,x ,...,x,..., x }, is the input training set for our NN-EK estimator. By the means

discussed in Chapter 5, we can derive the output training set for the NN-EK estimator,

which is D = {Y. K1 YK2"Y YKn }. By back-propagation learning from S and

A A

D, we can attain the NN-EK CDF estimator Fj(x). By differentiation ofFj(x), the

A

NN-EK PDF estimator f (x) can be derived. Finally, we can have the bagging CDF

estimator and the bagging PDF estimator by aggregation respectively,

A 1 k

FB(x) =- F (x) (7.2)
k j=1

A 1 k A

fB(x>= k fj(x) (7.3)
j=1

For distribution estimation, k = 30 - 50 is thought reasonable(Breiman 1996). Figure 7-1

is showing the whole process of bagging NN-EK estimators.



Empirical set: {yj,, y 2,y' ji",y j
Kernel set: {yi:, y 2 i,., J y

Combination set:

YEK, YEK2,'", YEKi,"', YEKn}

Back-propagation learning
Figure 5-2

NN-EK CDF estimatorj: Fj (x)

NN-EK PDF estimatorj: fj(x)

No:j =j + 1
j = = k?

Yes

Bagging CDF estimator:

FB(x) = - Fj (x)
k j=

Bagging PDF estimator:
A 1k A

f B (x)=- f (x)
kj=1

Figure 7-1 Bagging NN-EK estimators

Original sample:

{XlX2,.,Xi,...,Xn}

Bootstrap sample:

{x 1, IX2,, /..., x



It has been proved by Breiman(Breiman 1996) that bagging method can gain obvious

improvement on those procedures involved with neural nets, classification and regression

trees. Figure 7-2 is showing the CDF estimate for the distribution N(0,1), given by

bagging NN-EK estimators based on the sample of size 100. Compared with the single

NN-EK estimator, the bagging estimator can give more accurate estimate. The estimation

errors are given in Table 7-1. Figure 7-3 and Table 7-2 are PDF estimation results.

Comparison of different CDF Estimations with sample of size 100 from N(O, 1)

x

Figure 7-2 The bagging NN-EK CDF estimate based on the sample from N(0,1)

Table 7-1 Estimation errors

L1 Error L2 Error

NN-EK estimation 0.010228 1.539430e-004

Bagging NN-EK estimation 0.007525 1.122562e-004



Comparison of different Density Estimations with sample of size 100 from N(0,1)
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Figure 7-3 The bagging NN-EK PDF estimate based on the sample from N(0,1)

Table 7-2 Estimation errors

L1 Error L2 Error

NN-EK estimation 0.009938 1.579242e-004

Bagging NN-EK estimation 0.008312 1.208977e-004
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Chapter 8

Case Studies

8.1 Case Study 1: Skew Model

8.1.1 Model Description

Skewness in output distributions can often be found in integrated probabilistic

simulations. So firstly we had our approach tested on skew models. The skew model

tested here has a logarithmic normal distribution, which is shown in Figure 8-1.
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Figure 8-1 Lognormal(1.0, 0.3) model



8.1.2 Estimation by Different Methods

All estimations are based on the random sample of size 100.

1. NN-E Estimation

The NN-E estimate for PDF of lognormal(1.0, 0.3) model is shown in Figure 8-2.

0.7

0.6
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Comparison of different estimations from sample of size 100

Figure 8-2 NN-E estimate for PDF of lognormal(1.0, 0.3) model

In Figure 8-2, the kernel estimate with an optimal bandwidth is also shown for the

purpose of comparison. We can see that the NN-E estimation is obviously better than the

optimal kernel estimation. The PDF estimation errors are given in Table 8-1.

Table 8-1 PDF estimation errors for lognormal(1.0, 0.3) model

L1 Error RMSE

Kernel estimation 0.011363 0.02014

NN-E estimation 0.010410 0.01729



2. NN-EK Estimation

The NN-EK estimate for PDF of lognormal(1.0, 0.3) model compared with the kernel

estimate and NN-E estimate is shown in Figure 8-3.

Comparison of different estimations from sample of size 100

Figure 8-3 NN-EK estimate for PDF of lognormal(1.0, 0.3) model

In Figure 8-3, we can see that the NN-EK estimation is obviously better than the

NN-E estimation. The PDF estimation errors are given in Table 8-2.

Table 8-2 estimation errors for lognormal(1.0, 0.3) model

L1 Error RMSE

Kernel estimation 0.011363 0.02014

NN-E estimation 0.010410 0.01729

NN-EK estimation 0.009084 0.01502
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3. Bagging NN-EK Estimation

In Bagging NN-EK estimation, 30 bootstrap replicates are used. Figure 8-4 is showing

the Bagging NN-EK estimate for PDF of lognormal(1.0, 0.3) model. The PDF estimation

errors are given in Table 8-3. It can be seen that the Bagging NN-EK estimation gains

obvious improvement on the single NN-EK estimation and achieves 40.99%(L1 error)

and 31.23%(RMSE) on the optimal kernel estimation.

U
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Comparison of different estimations from sample of size 100

x

Figure 8-4 Bagging NN-EK estimate for PDF of lognormal(1.0, 0.3) model

Table 8-3 PDF estimation errors for lognormal(1.0, 0.3) model

L1 Error RMSE

Kernel estimation 0.011363 0.02014

NN-E estimation 0.010410 0.01729

NN-EK estimation 0.009084 0.01502

Bagging NN-EK estimation 0.006705 0.01385

Improvement 40.99% 31.23%

r - ------ ~



8.2 Case Study 2: Multimodal Model

8.2.1 Model Description

Multimodality in output distributions can also be found a lot in integrated probabilistic

simulations. So we also had our approach tested on multimodal models. The multimodal

model tested here is a mixture model of two normal distributions which are N(5.0, 1.0)

and N(8.5, 1.2) with the weights as 0.6 and 0.4 respectively. The true PDF is shown in

Figure 8-5.
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Figure 8-5 The multimodal model

8.2.2 Estimation by Different Methods

All estimations are based on the random sample of size 200.



1. NN-E Estimation

The NN-E estimate for PDF of the multimodal model is shown in Figure 8-6.

Comparison of different estimations from sample of size 200

0 5 10 15

x

Figure 8-6 NN-E estimate for PDF of the multimodal model

In Figure 8-6, the kernel estimate with an optimal bandwidth is also shown for the

purpose of comparison. We can see that the NN-E estimation is obviously better than the

optimal kernel estimation. The PDF estimation errors are given in Table 8-4.

Table 8-4 PDF estimation errors for the multimodal model

L1 Error RMSE

Kernel estimation 0.009316 0.01371
NN-E estimation 0.008891 0.01310
NN-E estimation 0.008891 0.01310

2. NN-EK Estimation



The NN-EK estimate for PDF of the multimodal model compared with the kernel

estimate and NN-E estimate is shown in Figure 8-7.

Comparison of different estimations from sample of size 200

x

Figure 8-7 NN-EK estimate for PDF of the multimodal model

In Figure 8-7, we can see that the NN-EK estimation is obviously better than the

NN-E estimation. The PDF estimation errors are given in Table 8-5.

Table 8-5 PDF estimation errors for the multimodal model

L1 Error RMSE

Kernel estimation 0.009316 0.01371

NN-E estimation 0.008891 0.01310

NN-EK estimation 0.006032 0.00945

3. Bagging NN-EK Estimation

In Bagging NN-EK estimation, 30 bootstrap replicates are used. Figure 8-8 is showing

the Bagging NN-EK estimate for PDF of the multimodal model. The PDF estimation

100



errors are given in Table 8-6. It can be seen that the Bagging NN-EK estimation gains

obvious improvement on the single NN-EK estimation and achieves 40.95%(L1 error)

and 42.67%(RMSE) on the optimal kernel estimation.

Comparison of different estimations from sample of size 200

Figure 8-8 Bagging NN-EK estimate for PDF of the multimodal model

Table 8-6 PDF estimation errors for the multimodal model

L1 Error RMSE

Kernel estimation 0.009316 0.01371

NN-E estimation 0.008891 0.01310

NN-EK estimation 0.006032 0.00945

Bagging NN-EK estimation 0.005501 0.00786

Improvement 40.95% 42.67%

8.3 Case Study 3: Piston Model
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8.3.1 Model Description

This model, shown in Figure 8-9, is used for the design of a piston assembly. The piston

displacement needs to be analyzed and designed to meet customer requirements. Three

separate components, the crank length, connecting rod length, and piston height

determine the piston displacement. Each of the three parts has a target value. However,

the actual lengths of these piston assembly parts are not produced at exactly the target

values. Each length has a different degree of uncertainty. Then these lengths are defined

as random variables with the appropriate probability distributions (see Table 8-7). a is a

constant. In this case, it is 60 degree. As a result, the piston displacement is also a random

variable with an unknown distribution, which is what we are going to estimate.

Piston

Displacement
Distance S

Connecting Rod

Crank
a

Table 8-7

Random Variable

Figure 8-9 Piston model

Random variables for piston parts (unit: mm)

Name Distribution
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L connecting rod length N(7.9, 0.6)

r crank length N(2.6, 0.3)

h piston height Gamma(2.0, 1.0)

8.3.2 Estimation by Different Methods

All estimations are based on the random sample of size 100, which is attained from the

probabilistic simulation of the piston model.

1. NN-E Estimation

The NN-EK estimate for PDF of the piston model compared with the kernel estimate and

NN-E estimate is shown in Figure 8-10.

Comparison of different estimations from sample of size 200
0.35

- True
- - Optimal Kernel
------- NN-E

0.3

0.25

0.15 /
0. /

Figure 8-10 The NN-E estimate for PDF of the piston model
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In Figure 8-10, the kernel estimate with an optimal bandwidth is also shown for the

purpose of comparison. We can see that the NN-E estimation is obviously better than the

optimal kernel estimation. The PDF estimation errors are given in Table 8-8.

Table 8-8 PDF estimation errors for the piston model

L1 Error RMSE

Kernel estimation 0.009343 0.01558

NN-E estimation 0.007406 0.01045

2. NN-EK Estimation

The NN-EK estimate for PDF of the piston model compared with the kernel estimate and

NN-E estimate is shown in Figure 8-11.

Comparison of different estimations from sample of size 200
0.35

True
- - Optimal Kemrnel

N------- NN-E
0.3 - - - NN-EK

0.25 -

0.2

0.15 1

o. /

0.05

6 8 10 12 14 16 18 20

Figure 8-11 NN-EK estimate for PDF of the piston model

In Figure 8-11, we can see that the NN-EK estimation is obviously better than the

NN-E estimation. The PDF estimation errors are given in Table 8-9.
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Table 8-9 8-9 PDF estimation errors for the piston model

L Error RMSE

Kernel estimation 0.009316 0.01371

NN-E estimation 0.008891 0.01310

NN-EK estimation 0.006032 0.00945

3. Bagging NN-EK Estimation

In the Bagging NN-EK estimation, 30 bootstrap replicates are used. Figure 8-12 is

showing the Bagging NN-EK estimate for PDF of the piston model. The PDF estimation

errors are given in Table 8-10. It can be seen that the Bagging NN-EK estimation gains

obvious improvement on the single NN-EK estimation and achieves 50.58%(L1 error)

and 54.81%(RMSE) on the optimal kernel estimation.

Comparison of different estimations from sample of size 200

X

Figure 8-12 Bagging NN-EK estimate for PDF of the piston model

Table 8-10 PDF estimation errors for the piston model
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8.3.3 Comparison with Monte Carlo Method

Mode is a very important feature of a probability density curve. It is the value with the

highest probability density around which most outcomes are gathering. Mode is thought

as the target value in most engineering applications. Here the mode estimation by

Bagging NN-EK approach is compared with that by the conventional Monte Carlo

method. The estimation results based on sample size 200 are given in Table 8-11 (The

true value is 10.851cm). Obviously, the Bagging NN-EK estimation is much more

accurate than the conventional Monte Carlo estimation.

Table 8-11 Mode estimation for the piston model

Mode(cm) Error(cm)

Bagging NN-EK estimation 10.973 0.122

Conventional Monte Carlo 11.227 0.376

By increasing sample size, both Bagging NN-EK approach and the conventional

Monte Carlo method can attain more accurate estimations. However, Bagging NN-EK

approach converges to the true value much faster than the conventional Monte Carlo

method. Table 8-12 is showing sample size comparison in order to achieve equivalent

accuracy.
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L1 Error RMSE

Kernel estimation 0.009343 0.01558

NN-E estimation 0.007406 0.01045

NN-EK estimation 0.006642 0.00981

Bagging NN-EK estimation 0.004617 0.00704

Improvement 50.58% 54.81%



Table 8-12 Sample size to achieve equivalent accuracy

Error(cm) N1(Bagging NN-EK) N2(Monte Carlo) N2 /N1

0.122 200 12800 64

0.061 900 140200 156

0.03 4200 1602400 381

0.02 9800 6086000 621

0.01 43000 60840000 1414

From Table 8-12, we can see that, the conventional Monte Carlo method needs 64

times more sample points than Bagging NN-EK approach so as to achieve the accuracy

attained by Bagging NN-EK approach from sample of size 200. To reduce the estimation

error from 0.122cm to 0.061cm, Bagging NN-EK approach needs sample size to be 900,

and the conventional Monte Carlo method needs 140200 sample points which are 156

times more than what are needed by Bagging NN-EK approach. Apparently, Bagging

NN-EK approach converges to the true value with a much higher rate than the

conventional Monte Carlo method.

In a summary, compared to the conventional Monte Carlo method, our approach

minimally requires an order of magnitude fewer model evaluations to achieve the same

level of estimation accuracy.
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Chapter 9

Concluding Remarks

In this thesis, a new machine learning based approach is proposed for scalable

probabilistic simulation in an integrated design environment since the conventional

Monte Carlo method is computationally prohibitive to large-scale integrated simulations

due to its need for a large number of sample points. This approach is using machine

learning techniques and statistical means to estimate the underlying distribution from the

random sample attained by the integrated simulation within the affordable time.

The neural network CDF estimator is first constructed with a feedforward multilayer

architecture and a suitable activation function. The mathematical model for the neural

network CDF estimator is derived. And the neural network PDF estimator can be derived

by differentiation of CDF estimator. The back-propagation learning is implemented on

our neural network estimator so that it can learn from the sample and make the estimate.

Many efforts are then put on statistically processing the random sample to gain a training

set containing as much statistical information as possible. By learning from the training

set based on the empirical cumulative probabilities, the NN-E estimator is attained. By

learning from the training set combining the information from empirical CDF and kernel

estimation, the NN-EK estimator can be attained. The NN-EK estimator can give a better

estimate than the NN-E estimator according to our experiments.
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How to learn from hints is also studied in order to improve the performance of our

neural network estimator. A novel way is created to incorporate the monotonicity hint

into the back-propagation learning by creating a hint-reinforced training set.

To further improve the performance of our neural network estimator, the statistical

method Bagging is used. Multiple versions of our neural network estimator are generated

by bootstrap method and aggregated to a final estimator.

Our experiments show that the proposed approach gets better results compared with

those traditional density estimation methods and has a big advantage over the

conventional Monte Carlo method in computation cost. This work improves PDF

estimation accuracy by 30%-50% compared with kernel estimation. Compared to the

conventional Monte Carlo method, this work minimally requires an order of magnitude

fewer model evaluations to achieve the same level of estimation accuracy.
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