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1. Introduction

The question whether and in what sense 3-dimensional gravity with a negative cosmological

constant makes sense as a unitary quantum theory has a long history. Since there are

no propagating bulk degrees of freedom the dynamics appears to be entirely contained

in the boundary degrees of freedom. This was made precise in the re-formulation of 3-

dimensional gravity as a pair of Chern-Simons Lagrangians [1, 2] which was subsequently

reduced to a Liouville theory on the boundary of AdS3 [3, 4]. A neccessary condition for the

viability of any quantum theory of AdS3 gravity is the requirement that the semiclassical

properties of the 3-dimensional BTZ-black holes [5] are correctly encoded in the microscopic

theory. While the semi-classical Hawking radiation [6] is successfully reproduced in this

formulation [7, 8], Liouville theory fails to reproduce the entropy of the 3-dimensional BTZ-

black holes [9]. This inconsistency can be removed by embedding AdS3-gravity into super

string theory on AdS3 × S3 ×M4 [10] which is dual to Q5 D5 - and Q1 D1 brane system

on M4 × S1. This is a large N duality in the sense that the supergravity approximation is

valid for gs→0, N=
√
Q1Q5→∞. Apart from enlarging the field content of AdS3-gravity

to the full supergravity multiplet, one is faced with the question of the validity of this

duality at finite N ≫ 1.

It was already noticed in [11] that the retarded 2-pt function in a BTZ black hole

background decays exponentially in time whereas at finite N the dual CFT is Poincaré-

recurrent [12]. A possible resolution may be to replace the SUGRA background by a

weighted sum over all asymptoically AdS geometries as in [13]. However, unless the con-

tributions from geometries with horizon has zero measure, Poincaré recurrence cannot

possibly be reproduced on the gravity side [12]. Another logical possibility is to replace

the SUGRA background by a sum over micro-state geometries as suggested in [14]. The

BTZ horizon should then appear as a result of corse graining.
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Recently, arguments were given in [15] in favor of a duality between pure gravity

on AdS3 and a holomorphically factorized CFT. Now holomorphic factorization implies

Poincaré recurrence trivially. On the other hand, asymptotically AdS geometries with a

horizon contribute to the partition function of the dual CFT. Since pure Einstein gravity

with a negative cosmological constant has no propagating degrees of freedom the presence

of a horizon does not need to contradict holomorphic factorization. Of course, a scalar

field does propagate on the black hole back ground and the corresponding quasi-normal

modes imply exponential decay of the real-time correlator. But a scalar field is not a

degree of freedom in pure gravity. On the other hand, Einstein gravity in 3-dimensions can

be supplemented with a gravitational Chern-Simon term [16]. In that case [15] produces

evidence that for integer values of the cosmological constant this theory may be dual

to a pair of left/right CFT’s with different central charges. The difference is that the

topologically massive theory obtained in this way has a propagating graviton so that we

expect generically that the presence of a horizon will spoil holomorphic factorization of the

dual CFT at finite temperature.

In the present paper we analyse the structure of gravitational quasi-normal modes for

topologically massive gravity. We find a infinite set of quasi-normal modes in the BTZ-

backgroud for generic values of the CS-coupling thus indicating the exponential decay of the

retarded correlation function of the energy-momentum tensor in the ”dual CFT”. The case

of chiral gravity is special. Although there is a BTZ-black hole in chiral topological gravity

there is no gravitational quasi-normal mode associated with it. This is then consistent

with the proposal that this theory is dual to chiral CFT on the boundary. For generic

values of the CS-coupling, however it appears that the only way we can possibly recover

Poincaré recurrence on the gravity side is by summing over a continuum of non-geometrical

configurations, possibly by treating the spin-connection and the 3-bein as independent

variables, in such a way that the geometric contributions with horizon have zero measure.

2. Preliminaries

We take as the starting point the action

S = − 1

κ2

∫ (

R+
2

l2

)

+
1

4mκ2

∫ (

ǫµναRµνabω
ab
,α +

2

3
ωa

b,µω
b
c,νω

c
a,α

)

(2.1)

where κ2 = 16πG. The parameter l sets the AdS scale, in what follows we will use units

with l = 1.

The parameter m is related to the levels kL/R in the Chern-Simons formulation of

3d gravity [15] through m=(kR + kL)/(kR − kL). In particular, if one assumes that the

quantization condition for k in CS-theory applies, thenm is a rational number with |m| ≥ 1.

The action (2.1) leads to the equation of motion

(1)µν + (2)µν = 0 , (2.2)
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where

(1)µν = Rµν − 1

2
gµνR− gµν (2.3)

(2)µν =
1

m
ǫ αλ
µ ∇α

(

Rλν − 1

4
gλνR

)

Notice, that the solution to these equations is space-time with constant scalar curvature,

R = −6. The equation for the linear metric perturbations is then given by the variation of

the equation of motion. This gives

δ(1)µν =
1

2
∇κ∇ν h

κ
µ +

1

2
∇κ∇µ h

κ
ν − 1

2
∇2hµν − 1

2
∇µ∇ν h

κ
κ + 2hµν

−1

2
gµν∇κ∇γ hκγ +

1

2
gµν∇2hκ

κ − gµνh
κ
κ (2.4)

δ(2)µν =
1

4m

[

ǫ αλ
µ ∇αhλν + ǫ αλ

ν ∇αhλµ

]

+
1

4m

[

ǫ αλ
µ ∇α∇κ∇νh

κ
λ + ǫ αλ

ν ∇α∇κ∇µh
κ
λ

]

− 1

4m

[

ǫ αλ
µ ∇α∇2hλν + ǫ αλ

ν ∇α∇2hλµ

]

To continue we need to fix the gauge. We impose

∇µhµν = 0 , gµνhµν = 0 . (2.5)

With this choice the equations

δ(1)µν + δ(2)µν = 0

for the linear perturbations on the background of locally AdS metric with the Riemann

curvature Rµν
αβ = −(δµ

αδν
β − δµ

βδ
ν
α), take a simple form

(∇2 + 2)hµν +
1

m
ǫ αβ
µ ∇α(∇2 + 2)hβν = 0 (2.6)

or equivalently, since the two differential operators in (2.6) commute,

(∇2 + 2)
[

ǫ αβ
µ ∇αhβν +mhµν

]

= 0 . (2.7)

The equations of motion for the linear perturbations thus split on two equations: the

equation for a massless graviton (∇2+2)hµν = 0 which does not have propagating solutions

and the first order equation for a massive graviton

(ǫ αβ
µ ∇αhβν +m)hµν = 0 . (2.8)

Notice that the gauge conditions (2.5) follow automatically from (2.8) which thus contains

information about both the field equations and the gauge. The parameter m introduced as

coupling in the gravitational action (2.1) thus has the meaning of the mass of the graviton.

It is interesting that the originally higher derivative equations of motion reduce to a first

order in derivative equation (2.8). This fact seems to be rather general [17] and is valid for

any massive field of spin s ≥ 1 in three-fimensional AdS background.
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Squaring the equation (2.8) produces the second order equation

(∇2 + 3 −m2)hµν = 0 . (2.9)

In what follows we will, however, work directly with the first order equation (2.8) in order

to avoid ambiguities with the sign of m present in (2.9).

In the AdS/CFT correspondence the bulk theory of topologically massive gravity is

equivalent to a conformal field theory with brocken local Lorentz invariance. This theory

is characterized by different left and right central charges [18, 19]

cL =
3

2G

(

1 +
1

m

)

, cR =
3

2G

(

1 − 1

m

)

. (2.10)

The values m = 1 and m = −1 are special in that one of the central charges vanishes and

the dual CFT contains only one chiral sector.

The change in the Riemann tensor produced by the metric perturbation (over AdS

background) that satisfies equation (2.9) is

δRµν
αβ =

(1 −m2)

2
(hµ

αδ
ν
β + hν

βδ
µ
α − hµ

βδ
ν
α − hν

αδ
µ
β) (2.11)

so that the perturbation with m2 = 1 produces no change in the curvature and thus, locally,

is a pure gauge (see also [20 – 22] and [23] for a related discussion).

3. Quasi-normal modes

3.1 Local SL(2, R) × SL(2, R) algebra of Killing vector fields

The black hole solutions of Einstein Gravity with a negative cosmological constant are also

solutions in topologically massive gravity. Here we consider the non-rotating1 black hole

with unit mass given by the metric

ds2 = − sinh2(ρ)dτ2 + cosh2(ρ)dφ2 + dρ2 . (3.1)

In what follows we will work in light cone coordinates u = τ + φ, v = τ − φ, in which

g =







1
4 −1

4 cosh(2ρ) 0

−1
4 cosh(2ρ) 1

4 0

0 0 1






. (3.2)

The black hole metric (3.2) admits two sets of the Killing vector fields, Lk and L̄k, k =

0,−1, 1 defined as

L0 = −∂u

L−1 = e−u

(

−cosh(2ρ)

sinh(2ρ)
∂u − 1

sinh(2ρ)
∂v −

1

2
∂ρ

)

(3.3)

L1 = eu
(

−cosh(2ρ)

sinh(2ρ)
∂u − 1

sinh(2ρ)
∂v +

1

2
∂ρ

)

1Rotation can be included by a suitable change of coordinates.

– 4 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
3

and similarly for L̄0, L̄1, L̄−1 defined as (3.3) by substituting u → v and v → u. Locally

they form a basis of the Lie algebra SL(2, R),

[L0, L±1] = ∓L±1 , [L1, L−1] = 2L0 . (3.4)

Note that these vector fields cannot be integrated to generate global symmetries of the black

hole background since they do not commute with the (hyperbolic) elements of SL(2, R)

which provide the discrete identifications of points in AdS3 required to produce the black

hole (3.2). In particular, they do not preserve the boundary conditions when acting on

functions defined on the black hole manifold. Nevertheless they turn out to be quite useful

since, as we will now show, they generate the whole tower of quasi normal modes.

The vector fields Lk and L̄k satisfy the usual Killing equation ∇µLν + ∇νLµ = 0.

In three dimensional locally AdS spacetime chacterised by the Riemann tensor Rα
βµν =

−(δα
µgβν−δα

ν gβµ) the Killing vectors satisfy in addition the following second order equations

∇(µ∇ν)Lα = gµνLα − 1

2
(Lµgνα + Lνgµα) , (3.5)

∇[µ∇ν]Lα =
1

2
(Lµgνα − Lνgµα) . (3.6)

Using these equations one shows that the Lie derivatives with respect to the Killing vectors

Lk are compatible with the zero trace, transversality condition (2.5) on hµν , i.e. (2.5) implies

gµν(Lkhµν) = 0 , ∇µ(Lkhµν) = 0 , k = 0,−1, 1 . (3.7)

Similarly the equation of motion (2.8) implies

(ǫ αβ
µ ∇αhβν +m)Lkhµν = 0 . (3.8)

3.2 Scalar modes

Before constructing the gravitational quasi-normal modes, as a warm-up we will reproduce

the scalar quasi-normal modes [24, 25] in the BTZ background using the algebra of the

Killing fields (3.4). The scalar field equation can be written in the form

(−∇2 +m2
s)ϕ =

[

2(L2 + L̄2) +m2
s

]

ϕ = 0 , (3.9)

where L2 = 1
2(L1L−1 + L−1L1) − L2

0 is the Casimir operator of SL(2, R). In the process

we will uncover a new structure present in the set of quasi-normal modes. In particular

we will see that rather similar to the ”highest weight” solutions in AdS3 found in [26],

the quasi-normal modes are descendents of a solution to a first order differential equation.

The difference, however, is that only a half of the “highest weight” conditions should be

imposed.

To see this we make the Ansatz

Φ = e−ip+u−ip
−

vF (ρ) (3.10)

so that L0Φ = ip+Φ and L̄0Φ = ip−Φ, note that ω = p+ + p− and k = p+ − p− are

respectively the energy and the φ-momentum. Following [26] one could impose the “highest
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weight” conditions L1Φ = L̄1Φ = 0 reflecting the fact that there are two SL(2, R) algebras

locally present in the geometry. These conditions are perfectly suited to reproduce the

so-called “normalizable modes” in anti-de Sitter space-time studied in [27] but they appear

to be too strong in the black hole background because the descendents of such highest

weight modes have imaginary φ-momentum.

This problem can be avoided, however, by imposing a weaker condition which allows

for real φ-momentum, namely

L1Φ = 0 . (3.11)

This is exactly a half of the “highest weight” condition. Therefore, we call it a “chiral

highest weight” condition. This condition then implies a first order equation for F (ρ)

(2ip+ cosh(2ρ) + 2ip− + sinh(2ρ)∂ρ)F (ρ) = 0 . (3.12)

If one were to impose in addition L̄1φ = 0, then it is clear from (3.4) that the the wave

equation (3.9) reduces to an algebraic equation for p±. It is not obvious that this should

still hold when imposing just one condition L1Φ = 0. However, it turns out that this is

indeed the case. The key observation is that

L̄1L̄−1Φ = (p2
+ − p2

− + i(p+ + p−))Φ . (3.13)

With this the scalar wave equation (3.9) reduces to the algebraic equation

4p2
+ + 4ip+ +m2

s = 0 . (3.14)

Notice that only p+ but not p− appears in (3.14). Thus

p+ = −ihL(ms) , hL(ms) =
1 +

√

1 +m2
s

2
. (3.15)

If the BTZ black hole is interpreted as part of the gravitational dual to the N = (4, 4)

superconformal field theory on the boundary, then h(ms) is the (left moving) conformal

weight of the dual operator in the CFT on the boundary [25]. Reality of the φ-momentum

then requires p+ − p− = k, where k is real but otherwise unconstraint. If the direction

along the coordinate φ is compact as it is for the BTZ case the momentum k along this

direction should be integer. The solution is then given by

Φ = e−2hL(ms)τ+ik(τ−φ)F (ρ) (3.16)

F (ρ) = (sinh(ρ))−2hL(ms)(tanh(ρ))ik . (3.17)

This solution is ingoing at the horizon, falls off in time as well as at infinity. The corre-

sponding frequency

ωL = −k − 2ihL(ms) (3.18)

is the lowest quasi-normal mode in the left-moving sector. Note that we define the left-

and right-moving sectors from the boundary CFT point of view.

– 6 –
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The quasi-normal mode (3.16) determines the location of the pole, in the lower half

plane, nearest to the real axis, of the retarded correlation function of a left-moving chiral

operator, VhL
(τ + φ), in the boundary CFT with conformal weight hL(m) [25]. Note that

the bulk quasi-normal mode corresponding to this pole is right moving.

For negative m2
s such that −1 ≤ m2

s < 0 there exists second solution to the equa-

tion (3.4) corresponding to the conformal weight hL =
1−
√

1+m2
s

2 that would produce a

second set of quasi-normal modes. This is consistent with the observation made in [25].

Furthermore, provided hL(ms) 6= 0 then, acting by L−1L̄−1 on (3.16) produces again a

quasi-normal mode with the same asymptotic fall-off behaviour as (3.16) but with Im ω →
Im ω− 2. Thus, the condition L1Φ = 0 together with an algebraic condition on p+ and p−
leads to an infinite tower of quasi normal scalar modes

Φ(n) = (L−1L̄−1)
nΦ (3.19)

that are descendents of the mode Φ. In particular, the asymptotic fall-off behavior of Φ(n)

for large ρ is uniquely determined by hL(ms) and is independent of n.

The corresponding frequencies

ωL
n = −k − 2i(hL(ms) + n) , n ∈ Z (3.20)

are exactly the quasi-normal frequences in this chiral sector found in [25, 24]. For hL(ms) =

0 solution (3.16) is not a quasi-normal mode since it does not satisfy the quasi-normal

boundary condition.

If instead of (3.11) we impose L̄1Φ = 0 this leads to the first order equation for F (ρ)

(2ip− cosh(2ρ) + 2ip+ + sinh(2ρ)∂ρ)F (ρ) = 0 . (3.21)

Imposing the field equation the gives

p− = −ihR(ms) , (3.22)

where hR(ms) = hL(ms) for a scalar perturbation. The corresponding quasi-normal modes

can be obtained form the previous one by the substitution p+ ↔ p− which results in τ−φ→
τ+φ in (3.17) and thus reproduces the right-moving copy of the infinite tower (3.20). Again,

repeated action by L−1L̄−1 produces the whole tower of right moving quasi-normal modes,

ωR
n = k − 2i(hR(ms) + n) , n ∈ Z (3.23)

in complete agreement with [25].

To summarize, we find that the complete set of scalar quasi normal modes in the

BTZ background [25] is generated starting from the ”chiral highest weight” conditions

L1Φ = 0 or L̄1Φ = 0 . The remaining possibilities L̄−1Φ = 0 and L−1Φ = 0 do not lead to

quasi-normal modes since the solutions to this equation have outgoing flux at the horizon.
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3.3 Tensor modes

Let us now turn to the gravitational quasi-normal modes for topologically massive gravity.

As explained in section 2, in the gauge (2.5) the equation for the massive graviton satisfies

a first order equation of motion (2.8),

(ǫ αβ
µ ∇αhβν +m)hµν = 0 . (3.24)

We make the Ansatz [20] (in u, v, ρ coordinates)

hµν = e−ip+u−ip
−

vψµν(ρ) , p+ + p− = ω , p+ − p− = k (3.25)

for the metric perturbation where

ψµν = F (ρ)







1 0 2
sinh(2ρ)

0 0 0
2

sinh(2ρ) 0 4
sinh2(2ρ)






. (3.26)

The dominant component of hµν at infinity is huu. The transversality condition ∇µh
µ
ν = 0

then implies

(2ip+ + 2ip− cosh(2ρ) + sinh(2ρ)∂ρ)F (ρ) = 0 . (3.27)

A slightly tedious, but straight forward calculation shows that for our Ansatz the transver-

sality condition is, in fact, equivalent to the “chiral highest weight” condition2

L̄1hµν = 0 . (3.28)

In particular, equation (3.27) takes the form of the equation L̄1F = 0 for scalar field F .

In addition we need to satisfy the first order equation of motion (2.8). Using ǫρuv =
1√
−g

= 4
sinh 2ρ we get from (2.8) for µ = ν = ρ that

p− = −ihR(m) , hR(m) = −1

2
− m

2
(3.29)

where now hR(m) is the right-moving conformal weight (for negative m). For m = −1,

the weight hR(m) vanishes. If condition (3.29) is satisfied then the remaining equations

in (2.8) reduce to the transversality condition (2.5). It is clear that (2.8) implies (2.5) for

any symmetric tensor. What we have just shown is that the converse holds true for the

Ansatz (3.25) provided (3.29) is satisfied. The momentum in φ-direction k = p+ − p−
should be integer if φ is compact. We thus get

hµν = e−2hR(m)τ−ik(τ+φ)ψµν(ρ) . (3.30)

The solution (3.27) is then given by

F (ρ) = (sinh(ρ))−2hR(m)(tanh(ρ))−ik (3.31)

2For a generic symmetric tensor tµν the transversality condition (3.27) can, of course, not be equivalent

to L̄1tµν = 0 since the latter impose six constraint rather than three in (3.27).
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and thus the solution is completely determined. For m < −1 this solution is ingoing at

the horizon and falls off at infinity as well as in time. It is thus a genuine quasi-normal

mode. The Ansatz (3.25) for the metric perturbation together with the asymptotic behavior

of (3.31) has the right asymptotic form in order to couple to the right moving component

of a two-index tensor Tvv in the boundary CFT since the vρ and the ρρ components are

subdominant at infinity. In what follows we will require this asymptotic structure for

quasi-normal mode solutions.

In analogy with scalar modes we can act on the “chiral highest weight” quasi-normal

mode with L−1L̄−1. The effect of this will be to replace Im ω → Im ω − 2 in (3.30). As

was discussed in section 3.1,

h(n)
µν = (L−1L̄−1)

nhµν

is transverse and traceless. Furthermore, L−1L̄−1 commutes with the equation of mo-

tion (2.8). Thus h
(n)
µν is again a solution of the equation of motion with the same asymptotic

fall-off behavior as (3.30). Consequently, the complete tower of right-moving gravitational

quasi-normal modes is generated in this way from the basic solution (3.30). The corre-

sponding quasinormal frequencies are given by

ωR
n = k − 2i(hR(m) + n) , n ∈ Z (3.32)

For chiral gravity m = −1 the solution (3.30) has constant amplitude (in ρ and t) and

is thus not quasi-normal.

We can obtain a second solution by choosing

ψµν = F (ρ)







0 0 0

0 1 2
sinh(2ρ)

0 2
sinh(2ρ)

4
sinh2(2ρ)






. (3.33)

In this case we have

∇µh
µ
ν = 0 =⇒ (2ip− + 2ip+ cosh(2ρ) + sinh(2ρ)∂ρ)F (ρ) = 0 (3.34)

which, in turn, is equivalent to L1hµν = 0. Furthermore, the Ansatz (3.25) satisfies the

first order equation of motion (2.8) provided

p+ = −ihL(m) , hL(m) =
m

2
− 1

2
. (3.35)

Since p+ − p− = k we then get

hµν = e−2hL(m)τ+ik(τ−φ)ψµν(ρ) (3.36)

and

F (ρ) = (sinh(ρ))−2hL(m)(tanh(ρ))ik . (3.37)

This is the basic quasi-normal mode for m > 1. It couples to the left-moving components

Tuu of a 2-tensor. The higher quasi-normal modes are again obtained by acting with

L−1L̄−1. The corresponding frequencies are

ωL
n = −k − 2i(hL(m) + n) , n ∈ Z (3.38)
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For chiral gravity m = 1 the quasi-normal mode is absent. In analogy with the scalar modes

the conditions L−1hµν = 0 and L̄−1hµν = 0 lead to unphysical solutions with outgoing flux

at the horizon.

4. Conclusion

In this paper we have found the quasi-normal mode spectrum for black holes in topolog-

ically massive gravity. We found that the quasi-normal modes satisfy a first order chiral

highest weight equation. While the presence of a first order equation for gravitons can be

understood from the form of the action, the fact that this equation agrees with a highest

weight condition of the SL(2, R) algebra suggests that the highest weight condition should

be understood as the implementation of the chirality condition on the gravitational exci-

tations, ie. up to the exponential decay in time they only depend on u or v. Since the

gravitational excitations are chiral as consequence of the CS-term the equation of motion

and the highest weight condition should coincide. That the same structure appears for the

scalar QNM’s is less obvious since they satisfy a second order differential equation.

We should also mention that for a given sign of m there are only quasi-normal modes

with definite chirality. Form the gravitational point of view it is clear that this has to be

so because the CS-term in the action is odd under the exchange of u and v. Thus given

a solution hµν(τ, v) the corresponding function hµν(τ, u) is then necessarily a solution of

the equation of motion of the action with the opposite sign of m. On the CFT side this

leads to the interesting prediction that for m < 0 the retarded Green function of the right

moving primary Tuu, if it exists, has no poles in the lower half complex frequency plane

which should then imply that the real-time Green function is quasi-periodic even at finite

temperature. Similarly for Tvv and m > 0.

For chiral gravity (m = 1 or m = −1) we did not find any quasi-normal modes. This

may not be surprising since for these values of m the tensor perturbations (3.24) satisfy the

wave equation for massless gravitons which are known not to propagate. It should be noted

that we only analysed solutions to the first order equation (2.8). There may be however

solutions to the third order in derivative equation (2.7) that are not solutions to (2.8) or the

massless graviton equation. In recent work [22] it was found that for m2 = 1 equation (2.7)

has a non-trivial solution which grows at the boundary. This solution, however, is not a

quasi normal mode since it does not satisfy the QNM boundary conditions and grows in

time.3
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