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ABSTRACT

The project work presented in this thesis has proposed solutions related to the control of
production and work-in-process inventory in a multi-item multi-stage manufacturing system. A
suitable base-stock inventory control policy is recommended to ensure that the desired service
levels are maintained between production stages and for the final customers. Concept of coupling
the production lines though coupling-stock under suitable assumptions is then introduced to
reduce the stock levels at certain consecutive production stages. A framework for demand
seasonality and characteristic analysis is also established to enable the inventory control policy to
respond to seasonal variations.

Monte Carlo simulation was performed on a model of chain of production stages controlled
under base-stock policy for the verification of results and to study the effects of stock-outs on
base-stock levels. The results of simulation study showed that overall system performance is
satisfactory and desired service levels were achieved. Simulation work was also carried out to
validate the line coupling concept and its performance under certain conditions.

A novel Kanban based visual management system design, which is aligned with the requirements
of inventory control policy, along with the material transfer batch sizes between production
stages is proposed to facilitate the implementation of inventory control policy. Furthermore,
capacitated shipment planning approach is proposed and implemented in form of a
spreadsheet-based interface to aid planning personnel in shipment planning under the constraints
provided by the inventory control policy.

Key words: Multi-item multi-stage manufacturing system, Base-stock inventory control policy,
Monte Carlo simulation, Kanban system design, Capacitated shipment planning
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CHAPTER ONE: INTRODUCTION

Increasing industrialization and fierce competition in the markets requires manufacturing

business firms to maintain an edge and competitiveness that depends not only on the

technological advancements acquisition but also on how they conduct their business. Great

products can bring great opportunities but sustainable growth is significantly dependent on how

these products are manufactured and how the operations are managed. Manufacturing companies

are actively looking at improving their operations efficiency by getting 'Lean', which primarily

focus on optimizing the inventory levels and improving the production control system. This

thesis is a result of internship work by four MIT MEng-Manufacturing students at the PDA

Singapore, as part of their lean production initiative. This chapter briefly introduces RP

Electronics Singapore Pte Ltd and its subsidiary company PDA Singapore, including company

background, products classification, manufacturing process flow and demand management

process.

1.1 Company background
Headquartered in Europe, RP Electronics is one of the leading consumer electronics appliance

companies in the world and sells over two hundred products in Asian, European and American

markets. RP Electronics Singapore started operations in 1951 and is considered one of the

pioneers in Singapore industry.

This work took place at one of the RP Electronics Singapore subsidiary companies, PDA

Singapore, which is the global distribution and R&D center for RP Electronics irons. RP

Electronics global management has initiated the implementation of an operations management

system analogous to Toyota Production System and encourages the facilities to operate in a Lean

environment. PDA Singapore is among the few chosen factories around the globe that are

included in the pilot implementation project. Factory management is committed to lean

production and has set goals for reduction of wasteful activities and work-in-process inventory

blocked along the production lines that causes increased material flow lead-times and increased



operations budget. The management has therefore focused on controlling the inventory and lead

times to establish a lean production environment.

1.2 Products classification
PDA Singapore factory is dedicated to production of a component named Sole Plate (SP)

assembly that is used in irons. All the SPs manufactured in this facility can be classified on the

basis of their product target market and technical specifications, broadly as Dry Iron Sole Plate

or Steam Iron Sole Plate. There are three product lines in dry irons SP class and six product

families with a total of eleven product lines in steam irons SP class. Each product line has

further variants and thus PDA product portfolio has over fifty stock keeping units (SKU) at

finished goods level. The product classification tree is shown in Figure 1-1.

Dry
irons

Steam
Irons

Figure 1.1: Product class

Superior Azur

Excel

Complete Elance

LESI

Low End Easy Speed
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Basic Power Life
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System Shanai
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1.3 Production process flow
Dry iron SPs and steam iron SPs share two production processes initially in their manufacturing

process plans and are processed on shared production stages i.e. Heating Element (HE) and Die

Cast (DC). Dry iron SPs are routed to their dedicated Part-A (PA) stage, which is the final

process for some dry SKUs but some of them are directed towards Auto Coat (AC) for further

Mirage

D13



processing. The finished SPs are stored in Finished Goods Store (FGS). This generic flow for

dry irons SPs is depicted in Figure 1-2.

AC

Figure 1-2: Dry iron SPs production flow diagram

All the steam iron SPs require additional processing at Steam Promoter (ST) after DC, which is a

shared stage before they are directed towards respective Part-A (PA) stages dedicated on the

basis of steam iron SKU families. Two of the six steam irons family's SPs are sent directly to

their dedicated Riveting & Sealing (R&S) stage and rest of them require processing at AC, also a

shared stage, before they are processed at their dedicated R&S stages. One of the four steam

irons family's SPs processed at AC requires additional processing at Solgel (SG). SG also

processes a common part named Iron Plate for steam iron SPs, classified on the SKU family

basis, and is fed directly to their R&S stages. The finished sole plates from R&S lines are taken

to be stored in FGS. The generic steam iron SPs flow on the production floor is depicted in

Figure 1-3.

Figure 1-3: Steam irons SPs production flow diagram



1.4 Demand management
PDA produces SP assembly for an assembly plant in Batam, Indonesia and some satellite

factories in Europe and China where the irons are assembled. Demand from assembly plant is

met through daily shipments where as satellite factories demand is fulfilled by weekly shipments.

1.4.1 SP assembly demand management
National Sales Organization (NSO) using Advanced Planning Optimization (APO) tool and

collaboration with Logistics Management Team (LMT) provides monthly demand forecast for

coming year by November of current year. This monthly forecast is revised on monthly basis

with a horizon from next month up till end of the year. It also provides weekly demand

orientation values for next 52 weeks with rough estimates for weeks beyond current year. The

demand management process is described as a sequence of activities which are explained in

point 1 to point 6 below.

1) Monthly production schedule (MPS). Factory planner prepares the MPS by the end of 3 d week

of current month for rest of the months in current year at finished goods level, based on the

monthly forecast. Factory planner considers the actual demand and only the final process

capacity while preparing the MPS. The factory planner tries to maintain the quarterly production

contribution to the annual demand based on her judgment of historic demand data and input from

the factory planner at assembly plant in Indonesia. The first version of the MPS serves as the

basis for a manufacturing manager who is responsible for developing stock building plan as

explained in section 2.1.1. The successive MPS revisions are finalized with assessment from

production planner based on his analysis of the comparison between MPS and stock building

plan.

2) Monthly demand constraints. MPS is provided to the commercial planner to communicate

monthly production constraints for each product model, which assist him to confirm the orders.

Some products models have variants and commercial planner is given the flexibility to change

the monthly demand of variants within aggregate production constraints for the corresponding

product model.



3) Weekly constraint list. Production planner provides a weekly constraint list to factory planner

based on his anticipated stock values for the coming week to constraint the factory planner

weekly production schedule (WPS) values for next week.

4) The constraints set in step 3 are sent to the commercial planner as a reference for next weeks

order placement.

5) Weekly order placement. Commercial planner places finished goods order every week for next

18 weeks among which 1-week order is confirmed while 17-weeks are tentative, considering the

constraints provided by the production planner.

6) Weekly production schedule. Factory planner converts the orders placed by the commercial

planner in step 5 into confirmed WPS for next week and tentative WPS for week following next

week. Hence the confirmed order for next week serves as the basis for WPS and Shipment Plan

(with a 2 days lead to WPS) at finished goods level for production planner.

Production planner takes into account the next week WPS, first two days order of the following

week for assembly plant and weekly satellite factories requirement to develop the daily

production plan for different production stages in the factory. He has to do some production

leveling on his experience to match demand with capacity while ensuring on-time deliveries. He

considers the leveled finished goods requirements, quoted lead-times of upstream stages, and

individual stages work-in-process and finished inventory levels to develop the daily production

plan for all the stages excluding ST. The entire demand management process flow is depicted in

figure 1-4.



Figure 1-4: Demand management process flow chart

During the high demand season, the production requirements are decoupled from the shipment

schedules because the factory builds up stock for the high runners towards the end low demand

season. Production planner usually tends to run larger lots of every model in sequence to save on

changeover times. However, the low runners are not stocked during the low demand season, so

they have to be planned following the six steps described above.

1.4.2 Semi Knocked Down (SKD) parts demand management

This factory also supplies some Semi Knocked down (SKD) parts (some components that are

added at R&S stage and procured from suppliers and SP work-in-process) to satellite factories in

Europe and China. A manager responsible for managing SKD demand receives forecast and

confirmed orders directly from the satellite factories. The shipments to satellite factories are

made on weekly basis and these planned requirements are given to production planner so that he

can plan accordingly.



CHAPTER TWO: PROBLEM STATEMENT

This chapter describes the main problems unveiled about the current PDA production system and

objectives of our project.

2.1 Demand seasonality and stock building
PDA Singapore experiences peak demand around the third quarter of each year during July to

October, when assembly plant and satellite factories in anticipation of the Christmas sale, place

advanced orders. This demand is higher than the effective capacity of the factory. The low

season starts from November, and continues through January to June in the following year. The

factory plans to satisfy all demand at the current operating level without extra investment to

expand the capacity, as the added capacity can incur extra operating costs in addition to the

initial investment. The company tackles the problem by employing a stock building policy that

helps it to utilize its capacity in the low demand season. The extra units produced in advance are

kept at the factory and shipped to assembly plant and satellite factories when the Singapore

factory capacity alone cannot cope with the demand.

The stock building plan is of paramount importance as the production requirements are extracted

from it during the production ramp-up period rather than the daily shipment requirements. The

capacity of the last production stage is examined to determine if the monthly demands, as

projected in Monthly Production Schedules serving as shipment plans, can be satisfied with

monthly production. Any excess demand is shifted backwards to earlier months. These adjusted

demand values for the last stage in earlier months become demand for the previous stage and the

sequence follows till the first production stage. The production resources are exposed to

requirements based on this plan. Hence it would serve as the input source for us to perform

production requirements seasonality and characteristics analysis and calculations.

However, this stock building practice only ensures the satisfaction of the demand, without taking

into account the inventory costs incurred. The tradeoff between the extent of stocking and the



associated inventory cost is not assessed. Furthermore, this scheme's heavy reliance on human

intervention makes it vulnerable to mistakes and forecast errors. It should also be noted that this

plan is only on aggregate demand level for SKUs and it would be the job of production planner

to stock high runner variants based on these monthly target. A more efficient and accurate way

of making a stock building plan may need to be explored. It is known that a student from senior

batch of MEng in Manufacturing program solved this problem but management couldn't pursue

the implementation as the person mentoring and supervising the student, left the company and

the spreadsheet that had embedded logic of proposed linear program is not available anymore.

2.2 Production control
The daily production planning carried out by the production planner serves as the benchmark for

production stages during rest of the week. It is found that this plan only controls five out of the

seven production stages in the factory, namely HE, DC, AC (same for PA), SG (for sole plates

only) and R&S while ST department supervisor has to control production based on his judgment

of the upstream work-in-process level, stock level and the capacity. Production planner conducts

a daily meeting with the production supervisors to follow up on production targets and shipments.

This process is shown in Figure 2-1 where the block horizontal arrows represents the material

flow, the line arrows represents the planning signal sent from production planner to the

individual departments, and the self-directed arrow represents self-planning of ST department.

The current production control mechanism results in problems such as unnecessarily high

inter-stage WIP levels and stock-outs between stages. Moreover it does not provide ST stage any

production plan, which leaves the whole production decision of this station to subjective human

judgments, and often results in unreasonable ST inventory structure and varying inter-stage

customer service level. The process involves a great deal of human interaction that leads to

arguments and confusion during the actual production.

It is evident that current production control mechanism has issues that cannot support the

management goal of establishing a lean production environment. It was worth to investigate what

actually goes wrong and what causes problems for the planner and supervisors and eventually

influences them to have large inter-stage work-in-process.



Figure 2-1: Current production control mechanism

2.3 Production scheduling and inventory control
This production system has a mix of dedicated and shared resources as already explained in the

production process flow description in 1.3. Moreover the large SP variety with distinct process

requirements adds to the complexity. The resource sharing observed in this system can be

characterized in two forms; the first form is that one single production line is shared by more

than one downstream production line for instance; ST is a single line and supplies to five PA

lines and requires changeovers. The second form is that multiple SPs from same product family

share one dedicated resource that also requires changeovers. These shared resources are

subjected to simultaneous demand of multiple SPs that needs to be processed on downstream

resources. The aggregate downstream requirements can be more or less than the resource

capacity and thus it causes delays in first case and overproduction in later as supervisor's

performance is judged on resource utilization.

The supervisors tend to follow the shipment plan finalized in the morning meeting, which is

conducted to monitor the finished goods level and expedite production to meet the targets.

Supervisors schedule their production relying on their experience resulting in unsynchronized

schedules of individual stages. If there is a difficulty in executing the plan (e.g. shortage of raw

materials or work-in-process from upstream), they tend to keep the lines running on any other

available SP work-in-process to maximize the machine utilization, even if the downstream lines

do not require those SPs and thus causing over production resulting in unnecessary inventories



and deviations from the original production plan. Furthermore uncertain work-in-process levels

and unsynchronized schedules can cause either the deviation of downstream stages from their

plans and schedules or over production. As all the supervisors adapt this practice, it causes

abnormal day-to-day non-uniformity of the work-in-process levels and the production stage

lead-times for the released materials. The production stage lead-times are assumed as 1 day for

planning purpose without any consideration of the interplay between demand variations and

capacity. It can be concluded that discrepancy between planning assumptions and actual

production practice leads to huge wastes and confusion in operation.

The careful investigation of all this leads us to the conclusion that this erratic system behavior is

the result of unsynchronized production execution and inventory control between production

stages. Hence, a production planning and inventory control approach is needed to control the

inventory levels along the line. This approach should also help individual production stages to

set sound production targets within their capacity constraints.

2.4 Project motivation
The production system at PDA factory is a complicated system. Although all the machines at

each production stage can be considered as multi-part-type machine in some context, they are

relatively different for several reasons. The difference stems from the SPs physical flow

requirements along the machines, which actually merge and split at certain production stages

according to the process requirements. In order to study the production system in a more efficient

way, our internship team was divided into two groups each comprising of two students. Each

group will focus on distinct parts of the PDA production system. For Xiaoyu Zhou [1] and author

of this thesis, the focus is on the PA, AC, SG and R&S stages; while second group (i.e. Youqun

Dong [2] and Yuan Zhong [3]) is working on upstream production stage i.e. ST.

AC is a single-flow line shared by all SPs that need to go through this process. The sharing of the

line causes changeovers that usually take more than half an hour and make up a significant

capacity loss. Since AC is a chemical coating process, various SP variants can be processed

together based on their coating requirements. This allows AC supervisor to utilize the

opportunity and schedule the production so that changeover time loss is minimum. AC is

24



subjected to supply two R&S lines and serves as a final process for some dry iron SPs, and thus

faces simultaneous demand from downstream, which is a challenging task to deal with. As

already described in the problem statement part, production execution and inventory control is

based on supervisor's judgment and thus causes problems like over-production and downstream

line starvation.

PA and R&S are two similar processes and the SP flow between them can be characterized as

'Direct Flow' and 'Routed Flow' based on the SP process requirements. Some PA and R&S lines

have a direct flow of SPs between them and have close production rates. It provides an

opportunity to couple PA with R&S that means simultaneous production of same SP on the

coupled-line. It will enable supervisor to easily schedule production of different SPs and higher

work-in-process between the two lines can be avoided. Routed flow, which is through AC and

SG, can be controlled by keeping stock of SPs between production stages to meet simultaneous

downstream requirements and suitable inventory control approach needs to be proposed.

2.4 Project objectives
The main objective of this thesis is to develop an adequate production planning and inventory

control framework for the PDA factory. The specific objectives are:

1. Evaluate the whole production system and propose a suitable inventory control policy.

The policy is to ensure smooth production and material flow through the whole

production line and to improve inter-stage and customer service level. The results from

inventory control policy should be verified through reliable means such as simulation and

implementation.

2. Propose an approach to set up daily production targets at each production stage that is

consistent with the chosen inventory control policy.

3. Design an appropriate visual management system at the factory for to facilitate

implementation of the proposed solutions.



4. Propose an approach to integrate shipment planning with the proposed inventory control

policy with consideration of capacity and stock constraints.

The overall objectives resulted in some collaborative as well as individual work for group

members. The proposal of inventory control policy and the design of visual management system

is completed in collaboration with Xiaoyu Zhou [1], Youqun Dong [2] and Yuan Zhong [3]. The

author of this thesis has individual focus on the verification inventory control policy results and

an investigation of the effects of stock-outs on inventory levels. Moreover, the author has also

proposed an approach and implemented in a spreadsheet interface for integration of shipment

planning activity with proposed solutions. Xiaoyu Zhou [1] has focused on production leveling

to reduce stock levels. Youqun Dong [2] has proposed a modified approach for long-term

capacity planning and Yuan Zhong [3] has proposed the use of statistical analysis using ANOVA

for demand seasonality.



CHAPTER THREE: LITERATURE REVIEW

This chapter comprises of theoretical background of basic concepts related to manufacturing

systems and inventory control policies that will make the basis for problem analysis and

calculations procedure.

3.1 Manufacturing systems

3.1.1 Push production system
A push production system builds up its inventory according to long-term forecasts [4]. This

system is simple to set up and manage. It works well when the demand is steady and predictable,

during ramp-up phase, or for predictable seasonal demand [5]. However, due to the innate

forecast errors, such a system is prone to product shortages and overproduction when the demand

fluctuates. To buffer against such risks, large inventories are typically kept, especially towards

the upstream of the production line. The large inventory buffer renders the system highly

inflexible in face of uncertainty.

3.1.2 Pull production system
In essence, a pull production system only produces what the demand asks for, without relying on

forecasts to guide its operation. Ideally, production is identical to demand, eliminating the risk of

over production. In a pull system, the material flow and information flow travel in opposite

directions. There are generally three typical ways of realizing pull production in a factory,

namely:

(1) Supermarket pull system

(2) Sequential pull system

(3) Mixed supermarket and sequential pull system [6]



In a supermarket pull system, a safety stock is kept for each product, from which the downstream

processes could directly pull. The process upstream of supermarket is only responsible for

replenishing whatever is withdrawn from the supermarket. This arrangement enables short

production lead-time when demand arrives. The inventories in the supermarket could also be

used to help level the production.

A sequential pull system converts customer orders into a "sequence list" which directs all

processes to complete the orders. The production schedule is placed at the first stage of the

production line. Then each process works sequentially on the items delivered to it by the

previous process. As a result, there is no need for large system inventories. Yet, this may lead to

longer production lead-time and requires high system stability to perform well.

A mixed system of the above two could be applied to reap their distinct advantages. In a mixed

system, the supermarket pull system and sequential pull system could operate in parallel on

different products.

3.1.3 Push-pull system
In practice, pure pull system may not always be possible. In some occasions, a combined

push-pull system is constructed to exploit the benefits of both. Usually, push is adopted at the

back end of the system to cut production lead-time, while the front end is operated by a pull

strategy to limit inventory levels.

3.1.4 Customer service level
Customer service level is a crucial measure of production system performance. It measures the

system's ability to satisfy the demand delivered to the system in a timely manner. Although its

actual definition may vary, two definitions are commonly used [7].

Type I: 1-Probability of stock-out when there is an order.

Type II (fill rate): Percentage of demand met from inventory.



3.2 Inventory control policies
To implement lean concepts in this factory, one of the most important topics is the

implementation of a right inventory control policy. There has been extensive work done

regarding inventory control policies. MIT lecture material of course 15.763 [7] introduces two

basic inventory control policies for stochastic demand in general, one is continuous review

policy (Q-R policy) and the other is periodic review policy (base stock policy).

3.2.1 Q-R policy
The main concept for this policy is to set a reorder point and a reorder quantity. Once the

inventory level hits the reorder point, a fixed reorder quantity will be released to the factory floor,

and the inventory level is under continuous review. This policy is suitable for dedicated high

volume production line. Basic equations and parameters for this policy are shown below.

Reorder Point R,

R L 7L+zLl/2 =expected lead - time demand [] safety stock

Average inventory level throughout the time window E[I],

IEi]o E[I]O 2 zUL/ 2  cycle stock [ safety stock
2 2

Q: Re-order quantity

L : Demand rate

r: Review period in days

z: Safety factor

o : Standard deviation of demand

L: Lead-time for replenishment

3.2.2 Base-stock policy
The main concept of this policy is to set a base-stock level and a fixed review period. Inventory

level will be reviewed every fixed review period. If it is lower than the predetermined base-stock



level, production order will be released to the factory floor to replenish the inventory level to the

base-stock level. This policy is suitable for shared resource line with multiple products. Basic

equations and parameters are shown below.

Base-stock B,

B=7D LR] zaj[J] LQ 2

Average inventory level throughout the time window E[I],

I [-] L- - EI II- L
E ] [li2 [0- E[IOI r za [1 Ld2 =cycle stock [ safety stock

2 2

Where the parameters are same as in Q-R policy except 'r' is the fixed review period.

3.2.3 Limitations of the conventional inventory control policies

The Q-R policy is suitable for dedicated resources whereas the production system studied in this

thesis has production resources that are shared by multiple downstream resources. This can cause

simultaneous replenishment signals from downstream resources and eventually prioritization will

affect the performance of the policy. Base-stock policy may be a better choice for this case

where replenishment of individual model inventories can be carried out in different review

periods but there are also some limitations of the same.

Conventional base-stock policy assumes that a production stage can be operated under a fixed

and deterministic lead-time. This can be a good approximation for single product processed on

such a resource. Since the production lead times are predetermined and fixed, there are no

interactions between the production decisions and inventory levels of different products

processed on the shared resource. It implies that the base-stock planning is carried out in

isolation for each product but setting up individual review periods would still be subjective as

there is no systematic approach that considers the resource capacity constraints. Moreover, fixing

a lead-time of a production resource implies that it is completely flexible in context of its ability



to change production rate but it doesn't explicitly take into account the trade-off between

flexibility and base-stock levels.

3.2.4 Base-stock policy for multi-item line

Base-stock model proposed by Dr. Stephen Graves [8] deals with the limitations of conventional

base-stocky policy for shared resources. This model takes the capacity constraint of the

production line into account and works well in smoothing daily production of a multi-item

machine using a linear production rule and determines each model's individual inventory level

(Bi). Some of the key calculations and parameters of the model are listed as follows:

a) Proposed lead-time by considering machine flexibility to expedite production and demand

variations

n=(k 2U
2  Z 2 ) / 2Z2

k: Parameter associated with customer service level

a : Aggregate standard deviation of demand

X : Excess capacity relative to aggregate average demand

b) Daily aggregate production target

Pt 0 Wt Dt -I -

n n n

t: Time period index (Day)

P: Daily production quantity

D: Daily demand quantity

W: WIP at the production stage

The daily production target for individual products can simply be expressed as,

Pit
= W it

n



c) Individual model(s) 'i' raw material released exactly equal to its demand on day 't'

Rit [] Dit

R: Material release quantity

d) Base-Stock for individual model

Bi [] E it[] Eit ]i [] k no i / [ n-l 2

j : Average demand of item i

Oi: Standard deviation of demand of item i

3.3 Visual management
Swain [9] defined visual management as "a method of creating an information-rich environment

by the use of visually stimulating signals, symbols and objects". In actual implementation, visual

management could take the form of signs, lights, notice board, painted equipment and graphic

displays. Whatever the form is, it serves the ultimate purpose of drawing people's attention and

communicating important information during operation [9].

In lean manufacturing, the goal of visual management is simply generating meaningful signals,

and facilitates people in factory to access information about what their tasks quickly and

accurately, especially for those who do not hold any knowledge of the logic behind the process.

High Tech solutions are not necessary to bring about visual management, the rule is "the simpler

the better", simple tools such as photos, painted symbols, bold print and informative colors are

usually more robust.

As lean manufacturing system is to be easily understood and continuously monitored, an

appropriate associated visual management system is really critical to the successes of all lean

operations. Nowadays the most developed and widely used visual management tool in factories

is called the Kanban system, which has all the features noticed above.



CHAPTER FOUR: METHODOLOGY

4.1 Project Roadmap
As shown in Figure 4-1, the project roadmap shows the sequence of stages as with the specific

activities involved at those stages. Rectangles represent project stages and ovals represent

detailed activities of corresponding project stages, and the arrows represent the sequence.

Problem Identification

Detailed Data Collection & Analysis

Model/Framework Building

Implementation & Verification

Preliminary Data Collection,
Lines Investigations,

Interviews

Material Flow Mapping &
Classification, Capacity Data & Line

Parameters, Production Requirements
Characteristics & Seasonality Analysis

Inventory Control Policy selection,
Feasibility Analysis, Detailed Calculations

Visual Management System Design, Material
Transfer Practice, Integrated Shipment Planning,

Inventory policy Simulation

Figure 4-1: Project roadmap

4.2 Problem identification
We started the project work with the problem identification stage. We were initially briefed on

what the management was intending to achieve in the future and we focused in depth on the

production floor issues that were the biggest potential obstacles. We went on to understand the

production process of the SP assemblies at PDA and conducted interviews with the production



planner and supervisors. It helped us in identifying the issues that these people were facing. We

looked at the inventory profiles from history and collected some real time data for comparison.

The major issues identified have already been discussed in details in chapter 2.

4.3 Detailed data collection and analysis
Data relevant to the project was differentiated into two categories, structural data and

quantitative data. Structural data includes material flow mapping, product categories, factory

layout, and the value stream map of the factory. Quantitative data includes line performance

parameters, historical demand data, demand forecast data and planned production data.

4.3.1 Production requirements seasonality analysis
As mentioned in 1.1, there are two product categories of this factory, dry iron SPs and steam iron

SPs. Dry iron demand makes up about 30% where as steam irons demand is about 70% of the

total annual demand. Since steam irons are mostly sold in America and Europe, Christmas have

heavy impacts on the demand of steam irons SP product, which forms a distinct high demand

pattern every year. Dry irons are sold mostly where the holiday effect is not so influential, so the

demand for dry iron SPs is stable and consistent throughout the year comparatively.

As explained in section 2.1, PDA employs a stock building policy to cater this high demand peak

during 3rd quarter of every year. The stock is build up in two forms, work-in-process at the

bottleneck production stages and finished goods. The two product classes shares some

production lines such as HE, DC and AC so their aggregate demand was taken into consideration

for analysis. Moreover, the current year was an exception because some productions lines were

to be shifted to another location during 3rd quarter of year. This required PDA to shut down the

production lines and start stocking comparatively earlier.

This project work proposes implementation of a base-stock policy, as explained in section 4.5, to

establish inventory levels between the production stages as a solution to the problems explained

in Chapter 2. These inventory levels are much dependent on the demand characteristics. Since

the finished goods demand at PDA has a pattern that suggests seasonality, PDA production



contains the requirements with some seasonality as well. The seasonality of the production

requirements should be identified as a combination of seasons with distinct characteristics so that

corresponding inventory levels can be established for each production season. It will also provide

PDA management an insight into the change of inventory requirements during a transition from

one season to another and they can make operational decisions accordingly.

Analysis of Variance (ANOVA) is a statistical procedure based on hypothesis testing that

quantifies the significance of group means difference. ANOVA was used to investigate the

production requirements seasonality. Since stock building plan has monthly planned values, they

can be plotted on time axis and eyeballing of the curve can give an intuition about the production

seasons as expected for the current year. The approach was to compare various monthly

groupings to form seasons and perform ANOVA. The grouping combination with highest mean

difference significance as suggested by highest 'F' and lowest 'P' value in ANOVA table was

selected.

4.3.2 Production requirements characteristics analysis

Once the production seasonality analysis identified the distinct production seasons, the daily

production requirements characteristics i.e. mean and standard deviation were calculated for all

SKUs in respective seasons. The source data of this data is the stock building plan as it is the best

available estimate of planned production figures in current year. Since this plan is developed in

previous year's December, it has aggregate planned weekly values on product family (and some

models) basis. As already described in section 1.1, product models have various SKUs (final

goods form of SPs). These model SKUs can have similar manufacturing sequence and are

processed on same production resources but they can have distinct process requirements usually

at later production stages resulting in different work-in-process. The following procedure was

used to prepare demand data for analysis and calculations on SKU level for a particular season.

The first assumption is that the total annual demand of any SKU will not differ much from

previous year to current year. Suitable estimates are made if there is any substitute product

introduction or a product is terminated. The shipment data from previous year was analyzed for

thus purpose and the SKU(s) demand contribution were estimated using the following formula,



Sum of SKU Shipments in year 2008
SKU Demand Contribution =

Sum of all SKUs shipments in year 2008

It is to be noted that solution approach in this thesis is to deal with high runner SKUs production

and controlling their work-in-process while providing room for low runner SKUs production

control with existing approach because high runners SKUs chosen with the help of production

planner, accounts for 97-98% of PDA production and thus it is appropriate to plan inventories

for them only. Hence it required estimating requirement characteristics of individual high runner

SKUs where as an aggregated estimate for low runner SKUs was needed. The following formula

was used to extract the planned aggregate production requirements for high runner SKUs from

given planned production requirements for product family (or model) on weekly level.

High-Runner SKUs Planned AggregateWeekly Production Quantity = Sum of Family/Model High-Runner SKUs Demand Contribution

x Family/Model Planned Aggregate Weekly Production Quantity

This high runner SKUs planned aggregate weekly production quantity can be divided into

individual high runner SKU planned weekly production quantity(s) using the following formula,

SKU Demand Contribution
SKU Planned Weekly Production Quantity = Sum of Family/Model High-Runner SKUs Demand Contribution x

Sum of Family/Model High-Runner SKUs Demand Contribution
High-Runner SKUs Planned AggregateWeekly Production Quantity

Now the individual SKU requirements mean in the particular season can be determined as

follows,

Sum of SKU Planned Weekly Production Quantity in Season
SKU Daily Mean (LsKUv) =

Total Production Days in Season

The daily production requirements are assumed to be independent and identically distributed

(IID) thus aggregate weekly requirements standard deviation of high runner SKUs can be

transformed to daily standard deviation using the following formula,



Family/Model High-Runner SKUs Aggregate Daily Standard Deviation (oA )

Standard Deviation of High-Runner SKUs Planned Aggregate Weekly Production Quantity in Season

]Production Days in a Week for particular Season

Since this estimate would be a pooled estimated of individual high runner SKUs, individual

SKU's daily requirements standard deviation was needed and the production requirements of

individual SKUs were assumed as independent and identically distributed. It suggests that the

sum of variance of 'N' individual SKUs should be equal to aggregate variance i.e.,

.2 E SKU- 1  SKU2 El..GSKUN

Since the individual SKU means are different within family (or model) because of different

demand contribution factors, assuming same standard deviation would not be proper because the

SKU means can differ by magnitudes of scale. Assuming a same coefficient of variance within

family (or model) sounds suitable and the calculations proceed as follows,

A [] (CVSKU- 1 X SKU2 (CVSKU- 2 X ISKU-2 2 ........... (CVSKU-N X ISKU-N)
2

CVFamilylModel CVSKU-1 CVSKU- 2  ....... CVSKU-N

A V2mM KU-1 O C 2 SKU-2 ......... KU-N)

I 2

CVFamilIModel 2 2 A
_SKU-1 0SKU-2 ........ V SKU-N)

This common coefficient of variance along with individual SKU daily means can compute the

individual SKU daily standard deviation using the following formula,

USKU E CVFa,ily/,Model X 17SKU



4.4 Sole plate flow classification
Xiaoyu Zhou [1] and the author were assigned the work to deal with problems in the last four

downstream stages i.e. Part A (PA), Auto Coat (AC), Sol Gel (SG) and Riveting & Sealing (R&S)

in the production of sole plates (S). The problem identification section has covered in details our

judgment of the problems with production and inventory control in general. This section will

explain the approach of classifying the SP flow on production floor and form the basis of

proposed solutions for two flow classes.

Figure 4-2 depicts the actual SPs flow within the last four production stages i.e. PA, AC, SG and

R&S. Part-A (PA) stage has six SKU family specific production lines that are given the names as

shown. For instance, PA-Dry is the dedicated line for dry SP processing. PA-PL/S can process

SP for Basic and System families but System SPs can also be processed on PA-M, which is a

manual line. AC is a single coating line and SG is a special coating line for Iron Plates (IP) and

some SPs. Riveting & Sealing (R&S) stage has four SKU family-specific production lines and is

usually the end process for most of SPs. All these lines are shared either by SPs of one or

multiple SKU families depending upon the processing requirements and production line

flexibility. A double arrow in the figure 4-4 represents multiple SP (either belonging to one

family or more) flow from a production stage to another where as a single arrow represents

family-specific IP flow from SG to corresponding dedicated R&S line.

Our task was to solve problems related to SP flow because IP flow from SG is controlled through

a Kanban based inventory supermarket. SP flow in Figure 4-4 can be classified into two classes,

and we named them as Direct Flow and Routed Flow. Although the two flow classes are

different but the proposed solutions share some part in both situations. Later sections discuss the

features of the two flow classes, potential differences in flow conditions and guidelines for

solution.
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4.4.1 Direct flow
A glimpse over figure 4-2 will identify a kind of flow, which appears direct between PA and

R&S production stages and is named as 'Direct Flow' in this thesis and can be schematically

drawn as in figure 4-3. It can be observed between PA-S to R&S-S and PA-C to R&S-C

representing flow of Superior and Complete family SP flows respectively, which don't require

any coating process neither at AC nor SG. Although there can be a simultaneous demand of

more than one SPs that are processed on these lines, they operate on the same production

schedule. For instance Azur 441, Azur 44NI, Azur 461 and Azur 46NI are high runner SPs and

are shipped to assembly plant on daily basis but their production sequence on PA-S and R&S-S

can be kept similar since these lines can operate on single SKU configuration at a time.

Moreover there are some SPs that are differentiated only at the R&S stage and thus shares

work-in-process with other SKU SPs between these lines. The only difference between PA-S to

R&S-S lines and PA-C to R&S-C lines is the capacity balance. PA-S is slower than R&S-S

where as PA-C runs at equal pace with R&S-C.

Up-stream Down-stream
Production , Production

Line Line

Figure 4-3: Direct flow of multiple SPs between two production lines

4.4.2 Routed flow
Further observation of figure 4-2 reveals another kind of SP flow on the production floor and is

named here as 'Routed Flow', schematically depicted in figure 4-3. This kind of flow can be

observed between various production stages for instance, SPs routed from multiple PA lines to

AC and later directed either towards respective R&S lines or SG. There can be situations when

multiple SPs demands are received from downstream production stages and there is a possibility

of their starvation because the upstream production stage doesn't have work-in-process and is

busy in processing other SPs or serving other lines. There are other issues as yield at SG and SP

running sequence constraints that restricts processing of SP quantities lesser than certain batch

sizes. It is impossible to run such shared lines on downstream production schedules and

simultaneous requirements must be met for smooth operation.



Single/Multiple Single Single/Multiple
upstream .intermediate Down-stream
Production | iProduction l"i Production
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Figure 4-3: Routed flow of multiple SPs

4.5 Model building
A common model is proposed for controlling inventories of production stages in routed flow and

with slight modification for production stages in direct flow. The model is first introduced and

parameters are explained followed by explanation of control structure for routed flow (chain of

production stages) and direct flow (coupled-line). Sub-sections will also cover explanation of

capacity reserved for low-runner SKU SPs and a calculation procedure named as 'requirements

pooling.

4.5.1 Model introduction
Dr. Stephen Graves [8] proposed a base-stock policy in, which is proposed for all production

stages except Part A with direct flow. This policy specifies control rules and calculation of the

inventory levels for each product manufactured on the same multi-item line.

Although this policy is able to govern multi-item lines and can be extended to multi-stage

manufacturing system, one production stage that processes multiple products under this policy is

chosen to explain how it works. Here is the list of important parameters that is used for the

calculation:

* D: Demand

* R: Release of raw material

* P: Production quantity

* B: Base-stock level

* C: Line capacity



* W: Intra-stage inventory (inventory for raw material for the stage)

* I: Inter-stage inventory (finished goods inventory for the stage)

* t: Time period index

* i: Individual model

* n: Planned lead time

* Z : Excess capacity that is normally available at the production stage

* I: Average aggregate demand

* a : Aggregate standard deviation of demand

* k : Safety factor

It and Wt are aggregate inter-stage and aggregate intra-stage inventory; they can also be

translated as finished goods inventory and raw material inventory at certain production stage. Pt

and Rt are aggregate production and aggregate release quantities. Similarly the variables lit, Wit,

Pit, Rit are entities for individual model quantities. For example: It= Z lit, where lit is the

inter-stage inventory for product I at the start of time period t.

1) The balance equations for aggregated entities are:

Wt 0 Wt_1 , R t -Pt-, Eq. 4-1

It [] It_ [] Pt-1 - Dt Eq. 4-2

The release rule is:

Rt=Dt Eq. 4-3

2) Eq. 4-1 to 4-3 can be easily extended to individual product types:

Wit 0 Wit_ 1 0 Rit -Pit- Eq. 4-4

lit 0 Iit-I 0 Pit-1 - Dit Eq. 4-5

The release rule then becomes:

Rit 0 Dit Eq. 4-6



3) X and n are calculated by:

Z[] C-7 Eq. 4-7

n= R22 o2 22 2  Eq. 4- 8n=I_ O E1 2X2 Eq. 4-8

Assumption: Z < ka

Otherwise n=l.

4) The production decision for individual model 'i' is given by:

Pit 0 W it  Eq. 4-9
n

5) The expected inventory values for individual model i are given by:

Bi [ E[Vit [ Eit 0] n]i 0 k noi /[n- 1n2] Eq. 4-10

For later calculation, E[Wit] and E[Iit] will be obtained for every high-runner SKU SPs at each

production stage with consideration of reasonable requirements pooling.

4.5.2 Model control structure for routed flow
The base-stock inventory control approach described in previous section is adopted for all the

involved production stages in routed flow i.e. PA, AC, SG and R&S and is schematically drawn

in figure 4-4 to show the inventory control structure of production stages chain operation. A

production stage is represented by a rectangle with two triangles inside representing intra-stage

and inter-stage inventory across a machine represented by a circle. 'D' represents the aggregate

demand of all the products and 'R' is the aggregate release quantities between two consecutive

production stages. 'Pi' represents the aggregate production targets as set by linear production rule

at stage 'i'.



R=D

Figure 4-4: Base-stock multi-stage control structure

4.5.3 Model control structure for direct flow

The control structure for direct flow class of SP is a fusion of two approaches i.e. described

base-stock policy applied across a 'coupled-line'. The concept of a coupled-line is introduced

specifically for direct flow and the idea avails the similar SP production schedules on involved

lines as an opportunity. Since the involved lines can operate on one SP at a time, there are no

simultaneous production requirements between them. It doesn't mean that the coupled-line will

be dedicated to one SKU only but it represents the fact that the two production stages coupled as

a line would be dedicated to production of a single SP at a time and would switch to produce

other SP once the production requirements of first are met. Coupled-line will employ a coupling

stock (CS) between two lines and is calculated using the following formula, which is determined

analytically (Refer to Appendix-B for the derivation of formula).

S [C T (T - )xUT,]xUT2  PmaxUT2 CTI -(T -1)xUT]UT]x(UT - UT2 )

(UT2)2



Where,

Pmax = Maximum batch size

UT, [] Unit time of upstream line

UT2= Unit time of downstreage line

CT,= Cycle time of upstream line

CT2 -= Cycle time of downstream line

T= Container size

'Unit time' for downstream line can be defined as the time interval between two consecutive

parts being loaded on it where as for upstream line it can be defined as the time interval between

two successive parts being taken off from it. 'Cycle time' has the meaning of 'total time a part

spent on the entire line'.

This coupling stock would enable the two lines to start production together and will prevent

downstream line starving throughout production for a maximum batch size 'Pmax', discussed in

section 4.4.1. Base-stock policy is applied across this coupled-line to integrate it as a single

production stage in the entire production stages chain. The effective capacity and lead time 'n' is

considered to be the downstream line capacity as it would be responsible for meeting its

downstream. This point is further discussed in section 4.5.3.2. The schematic inventory control

structure for direct flow is illustrated in figure 4-5. 'D' is the demand for a particular SP to be

processed on the coupled-line, 'R' is the released work-in-process from upstream of coupled-line

and 'P' is the set production target for this SP.

R=D - CS M IR=D

Figure 4-5: Base-stock across coupled-line

The changeover times for R&S lines i.e. the downstream lines in coupled-lines are usually more

than the upstream PA lines. This enables the PA lines to replenish the consumed coupling stock

before the line is setup for next SKU production.



4.5.3.1 Batch size consideration

Since the line-coupling concept may be applied over a combination of production lines with

difference in capacities and production rates for instance downstream line can be faster than

upstream line, production targets should not exceed a certain maximum value beyond which the

coupling-stock will be exhausted and the downstream line would need to wait until the upstream

line replenishes the stock. Hence it is required to set the coupling-stock value that will prevent

disruptions in production up to a maximum batch size, which is higher enough to enable the

coupled-line to deliver a desired service level. The maximum batch size 'Pmax' that can be

produced on the coupled-line at a stretch is determined to make it consistent with the service

level that base-stock policy tends to ensure across the coupled-line. According to the base-stock

policy in [5], expected production value of a production stage is the expected demand value over

a certain time period i.e.,

E[P] [ Lp D

Standard deviation of the production values is related to standard deviation of the demand

through following formula,

UD

Where 'n' is the lead-time for downstream production stage in coupled-line.. The maximum

production batch size can be calculated to ensure a service level 'k' using following formula,

Pmax = 17p ] kao

It can be expressed in terms of demand parameters as under,

koDPmax= D D

Pmax represents the maximum batch size for which the coupling-stock would last without any

disruptions in supply between the two lines. Hence the two lines, even with a difference in



production rates can start production together. The coupled stock would be replenished and

consumed simultaneously and eventually reach its original value after the downstream line has

consumed the required numbers of SPs while upstream line is replenishing the stock. This time

difference can be used in the changeover of downstream line, which in this case (R&S stage)

usually takes longer as compared to the changeover of upstream line (PA stage).

4.5.3.2 Coupled-line steady state

For the unbalanced coupled-line, it can be suspected that the capacity value used to calculate

intra-stage and inter-stage inventory levels and coupled-line lead-time, as the downstream

production line capacity is not appropriate. This suspicion holds significance if the planned

production value for a day is greater than the daily capacity of upstream line (bottleneck

production line) in coupled-line. Hence the coupled-line will not stay in steady state once the

planned productions quantities are committed in excess to the bottleneck capacity. Therefore it

needs to be ensured that such a scenario is never realized. This issue is addressed

through 'capacitated shipment planning' approach and is discussed in section 4.7.2 this thesis.

The reason for using downstream production line capacity as the coupled-line capacity is the

downstream requirements fulfillment through its production. The coupling stock in the

coupled-line serves as a virtual addition to the upstream line capacity and the actual unbalanced

coupled-line acts as balanced within certain limits i.e. up to a point (Pmax) where a maximum

demand corresponding to a certain service level can be fulfilled as explained in section 4.5.3.1.

4.5.4 Requirements pooling
It is known that some SKUs share work-in-process inventory at certain production stages i.e. the

production stage processing doesn't differentiate the SP as for a particular SKU. At these shared

production stages, downstream requirements of such SPs can be pooled to establish inventory

levels. The pooling effect reduces the inventory levels and serves as 'risk pooling' of

downstream requirements. This can be explained mathematically as follows.



Consider two production stages under base-stock control that are shared by two SKU SPs as

depicted in figure 4-6. The upstream stage doesn't differentiate the two SPs, which are later

differentiated at the downstream stage. If the two demands are assumed to be independent and

identically distributed normal random variables i.e. D - N(,, 2) and D2 -N(L2,2 ) The

pooled requirements for upstream production stage would be given by DT -N(T ) where

ET0gl 0 / 2 and oT I U-2 L 2 by normal random variables definition.

PT PP, pi t

R2 DWD +D2  M I M

D,- N(A +02,a+a a) W D-N(1, + 2,, a+) RD

RT=DT=Di+D P/22  P 2 D2 - N(p2,ao)

Figure 4-6: Requirements pooling of two SKU SPs on upstream stage

Another form of pooling at a production stage is the aggregation of production requirements

characteristics of all the SKU SPs, regardless of their family/model type, passing through a

production stage. Aggregate daily mean and aggregate daily standard deviation of the production

requirements are required as input parameter for inventory calculations at each stage and can be

obtained in a similar way as explained above. At a production stage, aggregate daily mean is the

sum of all individual production requirements means and aggregate standard deviation is the

square root of sum of squares of all individual production requirements standard deviations. It

can be expressed mathematically for 'N' SKU SPs on a production stage as,

N

Listage-Aggregate L 10SKU-i

N2

-stage-Aggregate SKU-i



4.5.5 Capacity considerations
It is decided that low runner SKUs production will be controlled by the existing method and

room would be provided to accommodate them in parallel to the proposed base-stock control.

Since low runners SKUs don't contribute much to the revenue as compared to high runner SKUs,

it is preferable to meet the high runner SKUs requirements first. Therefore base-stock control is

applied only for the high runner SKU SPs but low runners SKU SPs still need to be produced.

Hence capacity values are modified to consider low runners demand and capacities are reserved

at each production stage equal to the aggregate planned average production requirements of all

low runner SKU SPs flowing through it. The following formula is used to extract low runner

SKUs planned aggregate weekly production quantity from the stock building plan.

Low-Runner SKUs Planned AggregateWeekly Production Quantity = Sum of Family/Model Low-Runner SKUs Demand Contribution x

Planned Family/Model Planned Aggregate Weekly Production Quantity

Capacity at the final production stages i.e. usually R&S are reserved as the aggregate means for

low-runners SKUs and is determined as,

Low-Runner SKUs Aggregate Daily Mean (]LR)=

Sum of Low-Runner SKUs Planned Aggregate Weekly Production Quantity in Season

Total Production Days in Season

For upstream and intermediate production resources, same principle of requirements pooling as

described in section 4.5.4, is used to reserve capacities for low runner SKUs but with a minor

difference i.e. only the averages are added at upstream stages.

It should be noted that capacity figures obtained from manufacturing personnel are for 'effective

capacity' and has considerations of minor line breakdowns, maintenance schedules, lunch & tea

breaks and changeovers.



4.6 Model verification
It is observed that the inventory structure along the production lines is ever changing and the

inventory levels are not appropriate to meet the requirements. At some stages they are higher

when not needed whereas as at some stages, downstream lines are forced to deviate from

production plans due to stock-outs. The inventory control policy proposed for this manufacturing

system would ensure the placement of right stock quantities considering the requirements

characteristics and capacity at production stages. However the inventory calculations for each

stage are performed for a service level of 95%, i.e. stage is expected to meet the downstream

requirements 95 out of 100 times on average. Since the stages are linked together through their

inter-stage stocks (I) and the requirements are propagated simultaneously along the chain of

production stages, a stock-out at any stage would result in base-stock level fluctuation of the

immediate downstream stage. This can affect the performance of inventory policy and hence it

should be verified that a chain of production stages, all controlled under same policy would

deliver desired results and can be implemented as a viable solution to the problems stated in

chapter 3. Coupling stock of a coupled-line with underline assumptions explained in section

4.5.3.1 about Pmax and section 4.5.3.2 also needs to be validated.

4.6.1 Model simulation
Simulation was chosen as a tool to verify if the inventory control policy applied across the chain

of production stages (with routed flow) would deliver desired results and investigate the effects

of stock-out (and even simultaneous stock-outs) at any production stage(s) within the chain prior

to the implementation. A simple simulation was also carried out to verify the service level

ensured by coupling stock under Pmax assumption. Moreover the operation of a coupled-line is

explained with the help of a simple Excel based simulation graph, showing the simultaneous

consumption and replenishment of coupling stock. Monte Carlo simulation was carried out on

Crystal Ball software and specific models are explained in the sections following base-stock

results for chain of production stages (routed flow) and coupled-lines (direct flow) to maintain

consistency of discussion about results and their verification.



4.7 Implementation
This project was aimed at implementation of proposed solutions, which would eventually serve

as an alternate mean of results verification and add value to PDA manufacturing operations. It

was the implementation phase that brought practical challenges to our internship team because

the manufacturing managers and supervisors were concerned about the feasibility of the

proposed inventory control policy. The main challenge was to align the existing practice of

material transfer between production stages and the integration of shipment planning to the

proposed model. This phase involved team efforts and effective communication with the

manufacturing personnel and resulted in the design of a Kanban based visual management

system and the proposal of a capacitated shipment planning approach.

4.7.1 Visual management system design
Setting up the inventory levels and production control rules were not enough for the factory to

run and test the proposed inventory control policy and the line workers required a simple

operating system to carry out operations accordingly. A proposal was put forward about a

Kanban based visual management system to run the chain of production stages under the

proposed inventory control policy, which was refined with immense feedback from line

supervisors and manufacturing managers. The operational procedure of running this system is

given in Appendix-C. The following sub-section will discuss the issue related to material transfer

practice and the solution.

4.7.1.1 Material transfer issue

The base-stock policy introduced in this thesis requires release of material to a production stage

in exact proportion to the demand it incurs but controlling the material flow in a Kanban system

requires a demand quantity to be a definite multiple of container size. Exact numbers can be

simulated and use in calculations for inventory modeling but pre-implementation analysis

identified some discrepancy in the material transfer activities between different production stages

on the floor. There are various transfer-batch sizes used depending on the available trolley and

container sizes. It is found that exact material transfer is operationally infeasible because of

constraints associated with existing practice. Allowing the use of existing material transfer-batch



sizes and rounded up material release values to meet the downstream requirements has some

issues as explained below,

It would imply that every time the demand is incurred, more material will be pushed towards

downstream stage that will eventually increase its base-stock by significant extent. Moreover,

production targets are proportional to the intra-stage stock (W) of a production stage and may

result in capacity violations with higher 'W' values. This scenario can be avoided by monitoring

the excess transfer and considering it in the calculations for production targets and later material

release quantities. It would require skills, more than that of a worker operating a simple Kanban

system, such as computer literacy and will lose the basic aim of visual management.

It is known that shipments are made in standard pallet sizes and production planner tracks excess

shipments. This fact in conjunction with a simple investigation of the current transfer batch sizes

yields some opportunities for simpler solutions that are easy to implement and yet conserve the

model accuracy. Table 4-1 lists down the current transfer batch and shipment pallet sizes

between production stages covered in this project work. The cells with format 'xxx->xxx'

represents the suggestion to change the existing transfer-batch size from quantity on the left of

the arrow to the right, because PDA already has such trolleys/containers available and more

trolleys/containers are ordered for new facility. The numbers are suggested so that they are

factors of shipment pallet size and facilitate Kanban cards operation. This will enable

standardized demand values and corresponding exact material transfer-batch size propagation

along the production stages and conserve 'release quantity (R) equal to demand value (D)'

requirement of the base-stock model.

Table 4-1: Material transfer-batch sizes

Family SKU Name DC/ST PA AC SG R&S Shipment

Dry Mirage Linish 600 600 600
230V

4224
Mirage Linish4224 -> 4200

Dry 230V SKD 600 > 4224 4200

4200

Mirage Coated 600 200 4224 4224 -> 4200
Dry 230V 42004200

Mirage Coated 4224
Dry Mirage Coated 600 200 -> 4224 ->4200

230V SKD 4200



Dry D13 (New) 600 600 - - - 600
Linish

Dry D13 (New) 600 200 600 - - 600
Coated

D13 Coated 4224

Dry (New)-SKD 600 200 -> - - 4224 -> 4200
Indonesia 4200

NDI Coated 4224 4224->
Dry (New) - (SKD) 600 200 -> - 4200

Indonesia 4200

Low End Easy Speed - 840 200 160->15 600
Linish (LE) (ST) 0

Low End Easy Speed - 840 200 200 - 160->15 600
Coated (LE) (ST) 0

Low End Easy speed HE 840 200 200 - - 600
230 PA (ST)

Easy Speed - 840 160->15
Low End Gold Coated (ST 200 - 864

(HE)
E3.3/5/6K 840

Low End (Sumber (ST) 150 - - 160 480
Terang) ST
E3.3/5/6K 840

Complete (Sumber (ST) 150 - - 160 480
Terang) PT
Powerlife 840 160->15

Complete Coated version - (ST) 200 200 192->200 0 600
HV

840 160->15
Basic Powerlife SS 200 200 192->200 600

(ST) 0
840

Basic Azur4400 Ionic 840 150 - - 160 480

Superior Azur4400_Non 840Superioronic 150 - - 160 480lonic (ST)
840

Superior Azur4600_Ionic S 150 - - 160 480
(ST)

Azur4600 Non 840Azur4600 Non 8 150 - - 160 480
Superior Ionic (ST)

Bangkok Non 840 200 200 192>160 72/144-
System SOS (SKD/B) (ST) >160

System BangkokSOS 840 200 200 192->160 72/144- 480B/720SKD->480
Ss (SKD/B) (ST) >160

Shanghai 840 72/144-
System Successor (ST) 200 200 192->160 1604- 480B/720SKD->480

(SKD/B)

For example, a SKU named 'Powerlife Coated version - HV' is transferred from SG to R&S in

trolleys of size 192, from R&S it is taken to curing station in trolleys of size 160 and later

shipped in packed pallets of size 600. It was observed that the trolley used at SG stage could be

slightly modified to accommodate 8 more SPs on its top and the concerned manufacturing

manager approved the idea. Moreover the trolley of size 160 at R&S has compartments that



could be blocked to alter its size to 150 as well as trolleys of size 150 that were already used by

other stages could be used instead. These simple recommendations enabled to transfer material in

batch sizes that are factors of the shipment size i.e. 600. Hence the requirements can be triggered

from shipment towards upstream production stages in standard values and definite number of

Kanban cards can be flipped on Kanban board to signal replenishment. Youqun Dong [2] and

Yuan Zhong [3] have resolved material transfer batch size issue and discuss implementation of

Kanban system at ST stages.

4.7.2 Capacitated shipment planning
It was explained in section 1.4.1 about demand management process that the production planner

has to provide constraints to the factory planner and commercial planner, based on capacity and

stock levels, to bind the confirmed order quantities for coming week. Already established

lead-times of 1 day for each production stage are used and the weekly production requirements

are translated into production plans for individual production stages. Production plan tends to

closely follow shipment plan particularly in low-demand season when there is no stocking at any

production stage. Since the proposed inventory control policy provided planned lead-times for

production stages and establishes inventory levels, existing practice of meeting the shipment

requirements was no longer applicable for high-runner SKUs. Although SKUs demand is

characterized into seasons but non-stationary effects coupled with forecast errors can sometimes

render the stock building policy results ineffective and thus a check over committed shipment

quantities is desired to maintain adequate service levels for final assembly plant and satellite

factories.

An integrated approach was required to align the shipment planning of high-runner SKUs with

the proposed inventory control policy where as the low-runner SKUs can be controlled with

existing planning practices. Since the production targets depend on the intra-stage stock (W) and

the lead-time (n) of a production stage, this feature of the inventory policy plays vital role in

planning daily shipment quantities.

The very upstream production stages i.e. HE and DC are not included in the work done by

Youqun Dong [2] and Yuan Zhong [3], whose works have focused on ST production stage only



and therefore to ensure that HE and DC are able to supply ST (and PA lines for dry irons SPs),

their operating stocks and capacities should be taken into account when shipment planning is

carried out. Moreover, a portion of HE and DC production for some SKUs is outsourced to

external suppliers and production planner was missing an integrated framework that can enable

planning within constraints jointly formed by in-house and outsourcing capacities.

4.7.2.1 Goals and features

An integrated shipment planning approach is developed and implemented in spreadsheet based

interface that has the following goals and features as needed by production planner,

1) Assessment of planned daily SKU shipment values for their feasibility in terms of

corresponding aggregate production targets comparison with capacity of individual production

stages. The solution should integrate anticipated stock levels and planned lead-times maintained

under base-stock inventory control policy at ST, PA, AC, SG and R&S production stages. This

will also include constraining shipment values across coupled-lines considering the bottleneck

capacity.

2) Integration of in-house, out-sourcing capacities with operating stocks of HE and DC

production stages to ensure smooth supply to ST (and PA for dry irons SPs) production stage.

3) Provide production planner an insight about manually leveling the load on production stages

during shipment planning by considering the capacity of individual production stages.

4.7.2.2 Capacity and stock constraints

The backbone of capacitated shipment planning approach is the integration of individual

production stages' capacities and stocks levels to constrain the maximum shipments quantities of

all SKUs that can be committed by production planner. It is known by now that the production

stages can be classified broadly either as those controlled under base-stock inventory control

policy i.e. ST, PA, AC, SG & R&S or those which serves downstream stages by daily production



and running stocks i.e. HE and DC. Hence the constraints applied on these two classes of

production stages and stocks considerations are different.

4.7.2.2.1 Integrated constraints on stages controlled under base-stock

Since the shipment planning is carried out on weekly level because commercial planner confirms

orders only a week before they are to be fulfilled, intra-stage 'W' stock levels would be available

at the end of each week at all the production stages for all the SKU SPs that are processed on

them. The planned lead-times of the production stages are also known after first phase of

inventory calculations.

The aggregate production targets of 'J' SKU SPs at a production stage 'i' with planned-time of

' ni on a day 'k' as given by the base-stock policy can be expressed as,

J

XWij,k

ni

J

Where J is the sum of individual intra-stage stock ' ,,k' for all 'J' SKU SPs at a

production stage 'i' on day 'k', which are recently updated after release of material from

upstream stages. Since the material release quantity of a SKU SP is exactly equal to the demand

'DJ,k' (i.e. downstream requirement and is exactly equal to the planned shipment quantity of the

SKU), the aggregate production target on Day-i for a production stage can be expressed in terms
J,0

of last week ending intra-stage stock values for all SKU SPs i.e. j,koO and is given by the

following relationship,
J,' I Ji, J1,

Pj,j,kl i W j,k O j,klk)
j,k[]l i j,k[O j,kUl



J,1

Djk

Where 'jk[] 'is the aggregate demand of 'J' SKUs on Day-1. The aggregate production

targets would be set by 'W' values on each day, which are updated by releasing material

quantities equal to ' Dj,k ' of all 'J' SKU SPs passing through the production stage. The aggregate

production target set for a production stage should be less than its daily capacity and this

integrated capacity-stock constraint for Day-i can be expressed as,

1 
J,1

-(y Wi,j,k Dj,
k ) < C i

Ei j,kOO j,kl1

'Ci' represents the daily capacity of the stage 'i'. The aggregate 'W' value at the end of the

Day-i after production targets for all SKU SPs have been achieved can be expressed as,

J,0 J,l J,l

IWi,j,k 0 Dj,k- j,k
j,k[0 j,k[Ol j,k l

Hence the aggregate production target of all SKU SPs on 'kth ' day of the week can be generally

expressed for stage 'i' as follows,

1 J,k-1 J,k J,k-I

,j,k I Wi,j,k L Dj,k - Y '.,j, k
j li j,k5O j,k[l j,ko[l

The corresponding integrated capacity-stock constraint for stage 'i' for all the days in a week can

then be generally expressed as,

1 J,k-1 J,k J,k-I

( Wi,jk [ Dj,k- Pij,k) < C
li j,k[0 j,k[l j.kOl

It should be noted that released quantities are assumed to be always fulfilled from upstream stage

i.e. 100% of the time, which is not true in reality because of stock-outs as the upstream

base-stocks are set to provide a certain service level. This assumption allows the planner to carry

out worst-case planning i.e. the production requirements are kept within capacity for all the days



considering there is no stock-out at upstream stage. In case of a stock at upstream stage, the

supply may still be enough to achieve a production target set on real demand values and this

point is further discussed in section 5.3.3 on simulation of base-stock policy on chain of

production stages.

Similar constraints can be applied simultaneously at all the production stages under base-stock

control and daily shipment values ' Dj,k can be set iteratively for a week so that no constraints

are violated during planning at any of the production stage. This section only covered the

production stages controlled under base-stock policy and the daily shipment quantities need

further filtration through integrated capacity-stock constraints for HE and DC production stages,

which are explained in section 4.7.2.2.3.

4.7.2.2.2 Integrated constraints on coupled-line

These constraints are the most critical aspect of an unbalance coupled-line to control as they

have influence on the steady state of the coupled-line, with upstream line production rate being

lower than downstream line. The first constraint should prevent exhaustion of coupling stock,

which will cause disruption in production and is not desired. The second constraint should ensure

that the aggregate daily planned production over a coupled line doesn't exceed the bottleneck

line capacity i.e. upstream line at PA stage in our case because planned lead-time and capacity of

downstream line at R&S stage (faster line) is used for calculating base-stock and it may mislead

in planning phase. The two constraints are discussed as under following. For 'kth' day of a week,

production target 'P' for a SKU SP 'j' on coupled-line 'i' is generally expressed as,

1 k-1 k k-1

P,j,k L (jWPAi,j,k I Djk - jk
nR&S k0O kOl k1

Where ' WPA,i,',k is the intra-stage stock at PA of the coupled-line 'i' and, D j ,k is the shipment

quantity of SKU 'j' and nR&S is the R&S stage lead-time used for calculations purpose. As

discussed in section 4.5.3.1, production target for any SKU SP should not exceed a maximum



batch size' P'axj'. The first constraint i.e. the daily production target of all individual SKU SPs

for all days in a week is imposed as,

Pij,k - Pmax,j

1 k-1 k k-

( WPA, i,j,k [] Djk P,j,k)< Pmax,j
Or nR&S kDO k[l k[ll

The second constraint is restricting the aggregate daily production targets of all 'J' SKU SPs set

on a coupled-line 'i' for all the days in a week and is expressed as,

J

ij,k CPA

1 Jk-1 J,k Jk-I

( WPA,i,j,k X D -j I Pj,k) CPA
Or nR&S j,k[]0 j,k[]1 j,k5

Where CPA iS the bottleneck line i.e. PA stage line capacity. When the shipment quantities are

planned, the joint effect of the two constraints explained in this section will prevent exhaustion

of coupling stock and bottleneck capacity violation.

4.7.2.2.3 Supply and capacity constraints on HE and DC stages

It has already been stated that a portion of DC production is outsourced to external suppliers but

only a limited number of SKU SPs can be outsource in case of in-house production capacity is

not enough to meet the planned requirements. The only difference between HE and DC stages is

that, all the machines at DC can make all type of SKU SPs where as HE has three machines (two

automatic and one manual) which are dedicated to groups of SKU families. There are two types

of constraints that are applied to DC and DC and HE and are named as 'supply constraint' and

'capacity constraint'.

The current planning practice considers 1-day lead-time for all production stages and since the

base-stock policy is not applied on HE and DC, production planner will follow the old planning



practice i.e. 1-day lead-time each for HE and DC. However it should be ensured at the start of

planning cycle that HE would be able to supply to DC throughout the week and DC would be

able to supply to ST (or PA for dry iron SPs) without any disruptions. Hence the planner needs to

make decisions regarding the production targets at these two stages to maintain an adequate level

of stock and prevent capacity violations. It is known that current planning cycle makes use of

confirmed orders for next 1-week and tentative orders for first two days of 2nd next week for

production and shipment planning. The capacitated shipment planning approach will make use of

the same number of days for planning cycle but the confirmed orders will be considered as

demand values for ST, PA, AC, SG and R&S. DC will operate on 6-days confirmed orders and

1-day tentative order while HE will operate on 5-days confirmed orders and 2-days tentative

orders.

Let us first consider constraints at DC. There are two kind of SKU SPs defined at this production

stage, 'j' will represent those SKU SPs that can only be produced in-house and '1' will represent

those SKU SPs that can be produced in-house as well as can be outsourced on daily basis. As a

convention, 'S' will represent the stock value for a SKU SP at the start of day 'k'. Considering

1-day lead-time for DC, the SKU SPs demands at DC for any day will actually be the confirmed

demand quantities on next day at productions stages under base-stock control. The stock

variables 'SDC' for type 'j' SKU SPs can be generally expressed as,

k k k

SDC j,k I SDC, j,k- PDCjk - Dj,k
kOO k[ll knl

Where k=O for 'S' represents last week ending stock position and 'PDC' represents the production

decisions made at DC for SKU 'j' on day 'k-1'. Similarly the stock variables for type '1' SKU

SPs can be generally expressed as,
k k k k

SDC,,k [ ] SDC,.k-1 PDC,1,k-1 [ ] OPDC,1,k-1 - I D,,k
klO kol k-l kOl



Where 'IPDC' and 'OPDC' represent the production targets set for in-house and outsourced

production respectively for SKU SP '1'. The first type of constraint i.e. supply constraint is

applied for all 'J' and 'L' SKU SPs on all the days in a planning week as,

SDC,j,k 0

SDC,,k > 0

This constraint will enable DC to supply to ST (or PA) without any disruptions. The second type

of constraint i.e. capacity constraints are applied on the production targets for all 'J' and 'L' SKU

SPs on all the days in a week as,
J L

XPDc,j,k ] IPDC,,k CDC-IH
j 1

Where 'CDC-IH' is the daily DC in-house production capacity. Similar constraint is applied on

the outsourced production for all 'L' SKU SPs as,
L

OPDC,I.k -DC-OS

Where 'CDC-OS ' is the daily DC outsourcing capacity. The production targets will be set by

production planner to ensure that steady supply is maintained to stages downstream of DC and

the shipment quantities finalized in previous section can be altered in case of lack of capacity at

DC.

HE serves DC and 1-day lead-time is considered for it to supply to DC and hence the demand

values at HE will be the next day production targets set at DC. HE stage has three machines

among which one of the automatic machine can only produce two SKU family components (it's

a different component than SP and is used in SP at DC stage), which can't be produced on rest of

the two machines. The stock variables for those SKU family components represented by 'm' at

HE can be defined as,
k k k k

SHE,m,k [ XSHE,m,k-2 ' XPHE-M1,m,Ik-2 - EPDC,j,k- - IPDC,,k -1
k[]O k[l k[]l klI



Where 'PHE-M1' represents the production targets set at HE automatic machine 1 on day 'k-2' for

component 'm' (mc(j 1)). Furthermore, there are some SKU family components

(represented by 'n') that can only be produced on HE automatic machine 2 and their stock

variables are expressed as,
k k

SHE,n,k [ XSHE,n,k-2 L XPHE-M2,n,k-2

k[OO k1ll
- PDC,j,k-I

kOl

k

I PDC,,k-I
kll

Where 'PHE-M2' represents the production targets set at HE automatic machine 2 on day 'k-2' for

component 'n' (n c (ji l)). Finally, there are some SKU components (represented by 'o') that

can be produced by automatic machine 2 as well as manual machine and their stock variables are

expressed as,
k

SHEok I SHEok 2 L jPHE-M2,o,k-
k1

k

2 -' PHE-MM,o,k-2
kOl

k

- PDC,j.k-1
k[1

Where 'PHE-M2' and 'PHE-MM' represents the production targets set at HE automatic machine 2

and manual machine respectively on day 'k-2' for component 'o' (oc (j U 1)). The supply

constraints for HE are applied for all the days in a week as follows,

HE,,m,k >0

SHE,n,k 0

SHE,o,k > 0

The capacity constraints for the production targets on three machines for all the days in a week

are applied as follows,
M

HE Automatic Machine 1: PHE-MI,m,k CHEMI

N 0

HE Automatic Machine 2: j PHE-M2,n,k I PHE-M2,o,k < CHE-M2

0

HE Manual Machine: i PHE-ML,o,k ! CHE-MM

IPDC,,k
kUl



Where 'CHE-MI 'HE-M 2 'HE-MM' represent daily production capacities of automatic machine 1,

automatic machine 2 and manual machine respectively. Production planner will be responsible to

set the production targets so that supply to DC from HE is maintained for entire week and the

production quantities at DC can be altered in case of lack of capacity at HE. Hence the shipment

quantities can be committed once all the constraints are satisfied at all the production stages.

4.7.2.3 Solution interface design

The integrated capacity and stock constraints are embedded in MS-Excel to provide production

planner an interface to use the solution. The interface design has been given particular

importance and is been developed with immense feedback from production planner. It is a

simple to use tool and contains MS-Excel sheet that has areas allocated to individual production

stages, which are further divided into subgroups of production lines for some stages such as PA

and R&S to apply line specific capacity constraints. ST, AC and SG stages have only one

production line and therefore constraints are applied on overall line capacity. HE and DC areas

on sheet has sub-groups for in-house and outsourcing options. The constraints are enforced by

means of 'conditional formatting' feature whereby cells are highlighted with colors incase the

aggregate daily production targets at the corresponding stage violated capacity daily

requirements. Hence it enables production planner to commit only capacity feasible shipment

plan. The snapshot of this interface at R&S stage is provided in Appendix-D.
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CHAPTER 5: RESULTS & DISCUSSION

This chapter starts with discussion of production seasonality analysis results followed by the

production requirements analysis results, which were carried out for the high demand season.

These results served as input to the inventory model calculations and simulation for chain of

production stages in routed flow and coupled-line of production stages in direct flow.

5.1 Production requirements seasonality analysis - Results

The aggregate monthly demand of all SKUs as predicted by the demand forecast is plotted with

the aggregate monthly planned production of all SKUs at the finished goods level in figure 5-1.

The source of this data is the latest stock building plan available, which was developed in

previous year's December and is revised on monthly basis. This year is an exception for two

reasons; first the demand values are not as high as compared to previous years demand values

because of the economic recession and secondly the factory is shifting to another location.

Monthly Demand versus Monthly Planned Production
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Since the demand values are not higher, it was found that monthly demands could be met with

respective monthly production and no stocking would be required if the factory was not moving

to another location, which caused shutdown of production lines and stocking for shifting period.

It can be seen from figure 5-1 that the planned production values are exceeding the demand

values from April to July and the stock was planned to serve requirements during the periods

when the lines were shifted. It should be noted that not all the production lines were shifted

simultaneously and therefore the planned production curve is continuous. In fact the peak in

planned monthly production is higher than the peak in monthly demand i.e. during July, which

represents the fact that demand was way too low and even excess production could be achieved

within capacity. During the excess production period, daily production plans are decoupled from

daily shipment requirements because of existing stock in finished goods form. The excess

production in November and December, when the demand could be met by capacity alone is

because of plant annual shutdown in late December and stock preparation for next year initial

days demand. The stocking policy ensures the fulfillment of demand through out the year and

this can be seen in the aggregate demand and planned production graph, figure 5-2, plotted as the

running sum of aggregate monthly quantities. The production figures are always in excess as

compared to the demand figures. Moreover it can be seen that the aggregate planned production

is greater than the aggregate demand at the end of year. It can be attributed towards the company

policy to fulfill maximum demand, to protect against any unexpected surge in demand and some

stock preparation for next year demand during the plant annual shutdown in December.
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Figure 5-2: Aggregate demand versus aggregate planned production

It is worth investigating that if the production requirements have seasonal patterns because the

production resources will be subjected to them. This finding would be useful because parameters

of recommended inventory control policy and associated decisions can be modified at right point

of time. ANOVA was carried out on the planned monthly production requirements and the

results comparison is shown in table 5-1. It should be noted that there could be many seasonal

groupings to evaluate but eyeballing the monthly production requirements curve in figure 5-1

identified the apparently significant monthly groupings and combinations were made with some

shifting of months between seasons.

Table 5-1: Planned production seasonality - ANOVA results comparison

Combination Season 1 Season 2 Season 3 F-Critical Value F-Value P-Value

1 Jan-Apr May-Oct Nov-Dec 4.256 8.295 0.0090

2 Jan-May Jun-Oct Nov-Dec 6.329 0.0192

3 Nov-Apr May-Oct - 4.256 17.400 0.0019

4 Nov-May Jun-Oct 12.058 0.0059
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The group means difference significance is measured by comparing the F-critical value to the

combination F-value. Combination F-value should be greater than F-critical value to qualify as a

combination with significant distinct seasons. The P-value is the measure of mean difference

significance and the combination with smallest P-value would be considered the most significant

combination with distinct seasons. There are two options of considering the number of seasons in

a year, two-seasons and three-seasons. It would be operationally preferable to operate in

two-seasons occurring alternatively. Two-season combinations included November and

December to the months in first half of the year for analysis. Table 5-1 suggests combination 3 as

the most significant seasonal grouping based on production requirements. ANOVA results for

combination 3 are given in Appendix-A. This procedure can be recommended to PDA as a

framework for planning associated with seasons and this thesis used these findings for analysis

and calculations in requirements characteristics analysis and simulation work.

5.2 Production requirements characteristics analysis - Results

Although the production requirements seasonality analysis suggests May to October as a distinct

and high demand season, these results were obtained in the middle of this season and the

production requirements characteristics analysis was carried out on planned production values

starting from July to October because the inventory levels were to be established for

implementation phase. Production requirements characteristics analysis was performed following

the procedure explained in section 4.3.2 and resulted in individual high runner SKUs daily mean

and daily standard deviation for high demand season i.e. from July to October. These results are

tabulated in table 5-2.



Table 5-2: Production requirements characteristics

SKU Seasonal Seasonal -Daily
Family! StandardDemand -Daily Standard

Family/Model SKU Name Demand -Daily Model
Contribution Mean Deviation

CV
(%) (units) (units)

Mirage Linish 230V 5.75 2246 1289
Dry/Mirage 0.57

Mirage Coated 230V 3.3 1290 740

Dry/D13-Batam D13 (New) Linish 6.1 3206 0.85 2719

D13 Coated (New)-SKD 3.66 1527 736
Indonesia

Dry/SKD 0.48
NDI Coated (New) - (SKD) 4.19 1745 841

Indonesia

Easy Speed - Linish (LE) 2.67 1463 2693

Easy Speed - Coated (LE) 2.11 1039 1912
Low End/Easy 1.84

Speed
Easy speed HE 230 PA 2.55 1787 2750

Easy Speed - Gold Coated 0.87 429 790
(HE)

E3.3/5/6K (Sumber Terang) 2.69 953 606
ST

Complete/Elance 0.64
E3.3/5/6K (Sumber Terang) 10.66 3779 2402

PT

Basic/Power Powerlife Coated version - 10.16 2241 0.88 1968
Life/HV HV

Basic/PowerBasic/Power Powerlife SS 20.73 4572 0.49 2226
Life/Successor

Azur4400 Ionic 0.65 139 139

Azur4400 Non Ionic 6.37 1358 1358

Superior/Azur 1
Azur4600 Ionic 3.24 691 691

Azur4600 Non Ionic 7.38 1574 1574

Bangkok Non SOS 1.2 836 296
(SKD/BTM)

System 0.35
Bangkok_SOS (SKD) 2.2 450 159

Shanghai Successor 1.14 429 152



Table 5-2 contains daily means and daily standard deviation of individual high runner SKUs and

their family/model common coefficient of variance (CV). CV is a measure of variability and can

be used for comparison purpose. Low End/Easy Speed irons SPs has the most volatility i.e.

CV=1.84, in production requirements whereas System irons SPs have the least i.e. CV=0.35.

Assumption of common CV for a family/model sounds appropriate as most of the SKUs are sold

in the same markets and share same features. It can be seen that the Dry iron SKUs have CVs

usually less than 1 and represents stability in production requirements. It should be noted that

these values are extracted from stock building plan, which has the planned aggregate weekly

values either on SKU family or model basis and the production planner try his best to meet the

targets that are more or less equal to the weekly mean (= number of production days per week x

daily mean) of the production requirements. The actual variability may come from planner's

tendency to run larger lots of SKUs in case of enough stocking for rest of the SKUs, raw

materials supply and labor supply issues on production lines. The standard deviations of

production requirements calculated in table 5-2 are introduced as input parameters for inventory

calculations and can be considered as good representatives of variability in the SKU production

requirements because they are scaled in proportion with magnitude of their mean production

requirements. It is planned to establish robust inventory levels that can contain risk of similar

magnitude such as unexpected surge in the production requirements.

5.3 Routed flow - Base-stock results

5.3.1 Model parameters
Inventory calculations for a production stage required production requirements characteristics of

all the SKUs processed on it, effective capacity estimate and reserved capacity figures for low

runner SKU SPs. The first phase of inventory calculations involved stage lead-time, slack

capacity and aggregate demands mean & standard deviation estimates with requirements pooling

consideration, which served as the input parameters for the model. Table 5-3 lists the results in

tabulated form for all the production stages considered in this thesis. Daily effective capacity

values at each production stage are obtained from production planner and capacity for low runner

SKU SPs at each production stage is reserved and calculated according to procedure explained in



section 4.5.5. Aggregate daily mean and aggregate daily standard deviation are calculated

through procedure explained in section 4.5.4. Stage slack capacity and lead-times are calculated

using the formula given in section 4.5.1.

Table 5-3: Production stage demand & capacity parameters

High-Runner
Daily Aggregate High-Runner Slack Aggregate

Production Effective Low-Runner Aggregate Daily Capacity Daily Lead Time
Stage-Line Capacity - Mean/Reserved Mean -- - X Standard -n (Days)

C (units) Capacity (units) (units) (units) Deviation -
(units)

R&S-PL 8914 571 6813 1530 2971 5.63

R&S-S 3600 356 1715 1529 368 1

R&S-LE 10970 1076 2931 6963 3395 1

PA-PL/S 16290 927 8528 6835 2994 1
PA-LE 10970 1042 4718 5210 4370 1.56

PA-Dry 14571 1205 10014 3352 3294 1.81

AC 19575 2082 14458 2935 3878 2.88

SG 21400 12964 6287 2149 2256 2

It can be seen from table 5-3 that slack capacity has positive values for all production stage and

thus provides flexibility of altering the production rate of a stage to meet requirements. Stage

lead-time acts as a production smoothing factor and larger values implies greater smoothing.

Production stages with 1-day lead-time have higher capacities relative to the aggregate average

requirements at them and thus tend to have low inventory levels and observe virtually no

production smoothing effect. This smoothing effect will be discussed shortly in section 5.3.3.4.1.

5.3.2 Inventory results
The second phase has the actual inventory calculations based on the parameters calculated in first

phase, as explained in section 4.5.1. Table 5.2 tabulates expected intra-stage E[W], expected

inter-stock E[I] and base-stock values for entire high runner SKUs range at the involved

production stages in routed flow for a service level of 95% at each stage. The cells covering

multiple SKUs represent pooled SP stock requirements since the corresponding production stage

processing doesn't differentiate the SP.



Table 5-4: Base-stock results summary for routed flow

R&S P&A SG AC

SKU Name I W B I W B I W B I W B

Mirage Linish
230V 2744 6415 9159
Mirage . . - - - - 1611 3710 5321
Coated 230V

D13 (New) - - 5020 5817 10837 - - -
Linish
D13 Coated
(New)-SKD - - - 1359 2770 4129 - - - 1602 4392 5994

Indonesia
NDI Coated

(New) - - - 1553 3166 4719 - - - 1831 5019 6850
(SKD)
Indonesia
Easy Speed - 4443 1463 5906 - - -
Linish (LE) 5740 3647 9387
Easy Speed - 3155 1039 4194 - - 4162 2988 7150
Coated (LE)
Easy speed
HE 230 PA

Easy Speed - 4972 3230 8202

Gold Coated 1304 429 1733 - - - 1720 1234 2954

(HE)

Powerlife
Coated 5709 12625 18334 - - 4284 6446 10730

version- HV 4902 6813 11715
version - HV

Powerlife SS 6458 24757 31215 4242 9147 13389 4846 13150 17996

Bangkok Non
SOS 488 836 1324
(SKD/BTM)

Bangkok SOS 262 450 712 608 1715 2323 703 3431 4134 803 4933 5736

(SKD)

Shanghai 403 429 832
Successor

It can be observed that inventories are pooled more at upstream production stages such as PA,

AC and SG as most SPs are not differentiated at these stages. For example, the two Powerlife

SKUs shares SPs at PA stage, which is the first process in production stages, considered in this

thesis and their pooled inventory levels are shown in table 5-4.

From table 5-3, stage lead-time of R&S-LE is 1 day on which Easy Speed SKUs (in table 5-4)

are processed. The intra-stage stock 'W' values of these SKUs at this stage are exactly equal to

their mean production requirements (refer to table 5-2) because this 1 day lead time implies that



the production targets are set exactly equal to the updated 'W' level and thus tends to process all

the material within a day. Hence E[W] for such SKUs at this stage acquires values equal to their

respective production requirements daily mean in a longer run of time.

The inventory levels of a production stage are directly proportional to its lead-time. For example,

R&S-PL has a lead-time of 5.63 days and the SKU SPs process at this stage i.e. Powerlife

Coated version and Powerlife SS has E[W] values equal to the product of their individual

production requirements daily means and lead-time (5.63 days). It is because the production

targets are set so that only a fraction (1/lead-time (n)) of updated 'W' value is processed in each

day at the stage. It implies that higher lead-times cause higher 'W' values (and eventually higher

base-stock 'B' levels).

The base-stock 'B' is also affected by the variability in production requirements, which is

contained by keeping inter-stage stock 'I'. The 'I' values are directly proportional to the standard

deviation of production requirements and reduces with higher stage lead-times. From table 5-4, it

can be observed at R&S (R&S-PL with lead-time of 5.63 days) stage that the SKU SPs E[I]

values are much smaller as compared to their corresponding E[W] values.

5.3.3 Production stages chain simulation model

It is of paramount importance to verify the inventory calculations through reliable means to

ensure that the inventory control policy would provide desired results and the effects of

stock-outs should be studied. This verification is achieved through a simulation model of an

entire production stage chain involved in manufacturing of two SKUs, named 'Powerlife Coated

Version' and 'Powerlife SS' as depicted in figure 5-3. The chain simulation model integrates

stocks of four production stages i.e. PA, AC, SG and R&S. The individual stocks are set to

achieve a service level of 95%. The simulation period is set to be 120 days because the inventory

calculation were done only for four months i.e. from July to October of the high demand season

for the reason already explained in start of this chapter. This entire production stages chain is

modeled to investigate stock-out effects propagation along the production stages, which couldn't

be observed if individual stages are simulated in isolation. Since the stocks are set for duration of

a whole season usually lasting for half a year, a holistic picture of stock-out effects on production



stages chain can look different from that proposed by an individual stage production stage results

in term of stocks structure.

PLCVC0oting PLCV Coeti ng PLHV

PLCVIPLSS ST PLCVPLSS PA AC R&S

LSSAneding PLSSAnedingl SG PLSSAling PLSS

Figure 5-3: Simulation model material flow logic

As shown in figure 5-3, both SKUs share SP stock at ST and PA stage and therefore stocks of

these two stages will be subjected to aggregate demand. Powerlife Coated Version is then

processed at AC for coating while Powerlife SS is too processed on AC stage but for annealing

and hence they don't share SP stock at this stage. Powerlife Coated Version is sent directly to the

R&S stage whereas Powerlife SS requires coating at SG stage and is then processed at R&S

stage (same line as that for Powerlife Coated Version). This SP flow logic was built into the

model and each production stage was subjected to random number streams of size 120 (for 120

days representing production requirements of two SKU SPs) accordingly. A total of 10,000 runs

were executed for better sampling results and the simulation work was carried out on Crystal

Ball version 7.3.1.

5.3.3.1 Simulation goals

It was important to identify and state the goals of simulation explicitly so that simulation model

assumptions were made in accordance with the requirements. Following is a list of core

simulation goals desired,

1) Study the effects of stock-outs (including simultaneous stock-outs) at production stage(s) in

terms of disturbance in base-stock level of immediate downstream production stage.

2) Verification of service levels promised at each production stage in general and final

production stages in particular.



5.3.3.2 Simulation model assumptions

This simulation work was aimed at investigating effects of stock-out on base-stock and service

levels and the model was formed with the following assumptions,

1) All production stages are controlled under proposed base-stock inventory control policy.

2) Individual production stages inventory levels are initially set to the calculated values in table

5-4 to provide a service level of 95% in isolation.

3) In case of a stock-out at a production stage, release quantity to the downstream stage would be

exactly equal to the current 'I' level of the upstream stage because it is the maximum quantity it

can provide at that time.

4) In case of a stock-out at a production stage, it will still try to retrieve material quantity equal to

the requirements (demand of downstream), provided upstream stage can supply, so that its

inter-stage stock 'I' can be replenished by setting higher production targets, which depends on

the 'W' values updated after material is received from upstream stage. It is intended to protect

possibility of consecutive stock-outs on following days that can be caused by lower 'I' values or

base-stock reduction caused by stock-outs at upstream stage. The immediate effect of this

assumption would be increase in base-stock of the production stage, which could only be

lowered in case of stock-out at its upstream stage.

5) In case of a stock-out at upstream of a production stage that will cause less supply and reduced

base-stock, production stage will try to set the production targets based on material release

values equal to demand (requirements of downstream stage) to its 'W' stock, provided the supply

is enough to achieve this target else the whole 'W' stock would be processed.

6) The goal of base-stock policy is to ensure that service level of a production stage is met and its

base-stock is conserved. It can be noted that stock-outs at upstream of a production stage will

cause reduction in its base-stock and hence the inventory structures in the entire chain can

change similarly. Therefore, it is assumed that the total base-stock of the entire production



should at least be kept constant and conserve in the longer run. Hence the material release

quantity to the first production stage (ST in this case) 'W' stock is controlled in exact proportion

to the release from last production stages (R&S in this case) 'I' stock(s). In case of stock-out at

R&S stage(s), it can only provide what is available in its 'I' stock(s) and hence ST's 'W' stock

will be replenished with this quantity.

7) In case of a stock-out at a shared production stage with shared SP stock for example, PA stock

is shared by the two SKUs in this model and supplies to AC for two different processes, a

priority criterion is set to supply material to downstream stages in proportion to the weighted

demand contribution of their SKUs unless the requirements at one of the downstream stage is

less as compared to the supply share it can avail.

8) No backlog replenishment is considered and requirements are fulfilled with an intended

service level of 95%.

9) Since Die Cast (DC) stage is not controlled under this policy, it is not included in the model

and is assumed to meet ST's requirement 100% of time.

5.3.3.3 Simulation model input data

The model input parameters are classified as demand characteristics of the chosen SKUs as given

in table 5.2, starting stock values as given in table 5.4 and stage lead-times as given in table5-3.

Expected inventory levels for ST stage are taken from Youqun Dong [2] and Yuan Zhong [3].

These parameters are tabulated together in table 5-5 and serves as model input parameters.

Table 5-5: Simulation model input parameter



5.3.3.4 Simulation model results

This section will present results on the simulation model and covers discussion on inventory

structure charts at productions stages, production smoothing effect and summary of stock-out

results each in light of model assumptions and will focus on achievement of simulation goals.

Inventory structure charts are drawn and values are taken from a single run of simulation for

production smoothing comparison purpose and hence don't conclude the actual performance of

the inventory policy in terms of stock-outs and service level.

5.3.3.4.1 Production smoothing effect

The recommended base-stock inventory control policy works on a linear production rule. It

implies that the intra-stage stock 'W' of a production stage is converted into inter-stage stock 'I'

in inverse proportion to its planned lead-time. Hence it can be said that production rule

introduces flexibility in production rate of a production stage i.e. higher output would be

expected for higher 'W' stock caused by introduction of higher release quantity of material 'R',

which is in exact proportion to the demand 'D' (downstream requirements) and vice versa.

Therefore a production stage appears to alter its production rate as per the requirements. This

flexibility in production rate eventually contributes towards smoothing of output of a production

stage. This smoothing effect is in direct proportion to the stage lead-time. It is explained through

example of three production stages modeled for simulation in which R&S has lead-time of 5.63

days, ST has lead-time of 3.46 days and PA has lead-time of 1 day. This comparison will explain

the production smoothing effect and its relationship with stage lead-time with discussion of three

cases. Consider figure 5-4, if the line graph of intra-stage stock 'W' is compared with that of

corresponding production 'P', it can be seen that the two differs much in terms of dispersion

observed from day to day for a period of 120 days. This difference is chiefly caused by higher

lead-time of this production stage i.e. R&S, highest in the chain of production stages in this

simulation model. By eyeballing the figure 5-4 roughly from Day 30 to Day 50, it can be seen

that 'W' undergoes a deep convex shape whereas corresponding 'P' undergoes only minor

dishing.



R&S-PLHV - Inventory Structure
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Figure 5-4: Inventory levels snapshot at R&S-PLHV

ST inventory graph as depicted in figure 5-5 is chosen to compare the effects of lead-time on

production smoothing. It can be seen that the 'W' still has higher dispersion and the

corresponding 'P' has lower but it has increased as compared to that of R&S. This relative

decline in production smoothing can be attributed towards difference in lead-times, as ST has a

lead-time of 3.46 days.

It has been observed so far that production smoothing is significant for the last two cases just

discussed above, the third case present the other extreme as shown in figure 5-6. PA has a

lead-time of 1 day i.e. it has higher capacity as compared to the average aggregate production

requirements and thus tends to convert the entire 'W' within a day. This fact can be seen from

the overlapping of 'W' and 'P' graph in figure 5-6 and it shows virtually no production

smoothing effect at this stage.

Hence it can be concluded that the higher the lead-time of a production stage, the smoother will

be the production targets with less dispersion from day to day. Moreover the three inventory
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structures charts cited in this section present the fact that 'P' tends to follow trend of 'W' but

with smoothing effect.

ST - Inventory Structure
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Figure 5-6: Inventory levels snapshot at PA
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Figure 5-5: Inventory levels snapshot at ST

PA - Inventory Structure

- PA - Base-Stock (B) - PA - Intrastage Stock (W) PA - Interstage Stock (I)~ PA - Production (P)

16000

14000

S12000

Cr 10000

8000

i 6000

C 4000

2000

0

- r a -- zrs~



5.3.3.4.2 Stock-sharing & production targets deviation

A priority criteria was set during model simulation that in case of a stock-out at shared

production stage with shared SP stock, downstream stages will be supplied material in proportion

to the weighted demand contribution (32% for Powerlife Coated Version and 68% for Powerlife

SS) of their SKUs unless the requirements at one of the downstream stage is less as compared to

the supply share it can avail. PA inventory structure is shown in figure 5-6, in which the

inter-stage stock 'I' goes to 'zero' in case of a stock-out. Since it is supplying same SP stock to

AC but for two different processes, the release value to the AC 'W' for Powerlife Coated

Version SP and Powerlife SS would be less as compared to AC requirements. Although it can

not be observed just by looking at the charts, but all 'W' values in figure 5-7 and figure 5-8 the

corresponding to stock-outs at PA in figure 5-6, are replenished with less material than what AC

had required for each SKU and its 'I' had been depleted by higher values, provided it itself didn't

have stock-out.

AC-PLHV - Inventory Structure
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Figure 5-7: Inventory levels snapshot at AC-PLHV
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The stock-out at PA may also cause deviation of AC from its production targets based on

expectation of replenishment from PA in proportion to AC downstream requirements but model

has been built with logic of setting the production target in case the supply is enough for

conversion into 'I'.

AC-PLSS - Inventory Stucture
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Figure 5-8: Inventory levels snapshot at AC-PLSS

5.3.3.4.3 Individual base-stock(s) fluctuations

As already discussed in section 5.3.3.2, it is expected that the individual stages base-stock levels

would decline because of the stock-outs at their upstream stages. These levels can only be raised

back, although not to the original values, when a stock-out occurs at a stage and its 'W' is

replenished either with values equal to its downstream requirements or more than what it had in

'I' at the time of stock-out. Hence the model logic was built so that individual base-stock levels

don't incur decline only. This aspect of model design is explained with the help of figure 5-8 and

figure 5-9. AC supplies SP stock of Powerlife SS to SG and in case of a stock-out at AC for

example at Day 87 as encircled in figure 5-8, would cause drop in 'W' of SG as encircled in

figure 5-9.
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The rise of base-stock is shown with the help of square drawn on figure 5-9, which represents

increase in base-stock of SG at Day 49 when it had a stock-out. Although requirements at this

particular day caused simultaneous stock-out at AC as well (shown in figure 5-8 and marked by a

square) but the supply to SG was in excess to what SG supplied to R&S and therefore the net

change in SG base-stock was positive.

SG-PLSS - Inventory Structure
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Figure 5-9: Inventory levels snapshot at SG-PLSS

5.3.3.4.4 Production stages chain base-stock conservation

It was explained in section 5.3.3.2 that to somehow contain the effects of individual base-stock

fluctuations as described in section 5.3.3.4.3, total base-stock of production stages chain can be

tried to keep constant in longer run. Hence the material released into the first stage of the chain

i.e. to ST's 'W' would be equal to the depletion of R&S stage's 'I'. This particular assumption

along with assumptions of meeting the production targets to the maximum extent as well

maximum possible movement of material between stages to meet requirements can help in

maintaining stage service levels as planned and conservation of individual base-stock to some

extents. The overall impact of all these assumptions can be seen in figure 5-10 in which

base-stock levels of individual stages are stacked together for a period of 120 Days. The total
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base-stock of production stages chain is able to held constant for the entire simulation period and

the individual base-stocks don't fluctuate beyond certain limits.

Chain Base-Stock Structure
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Figure 5-10: Chain base-stock conservation

5.3.3.5 Production stages chain performance

The ultimate goal of this simulation exercise is the performance of the chain of productions

stages, all controlled under recommended base-stock inventory policy, which should be studied

and verified to form basis for implementation of the work explained in this thesis. The main

deliverable to the PDA management is the confidence in service levels this policy is claiming to

provide. Hence the expected number of stock-outs at each production stage is estimated with

considerations of all the stock uncertainty in the entire chain and corresponding service levels are

calculated. The results are expressed on average level as well with a confidence level of 95% in

table 5-6.
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Table 5-6: Simulation model stock-outs summary

Maximum Service level

Stage-SKU Average Average Stock-outs with 95%
stock-outs Service Level with 95% Confidence

Confidence

ST 10 91.67 18 85.00

PA 10 91.67 19 84.17

SG-PLSS 4 96.67 9 92.50

AC - PLHV 12 90.00 23 80.83

AC-PLSS 3 97.50 8 93.33

R&S-PLHV 11 90.83 21 82.50

R&S-PLSS 4 96.67 10 91.67

The average service level of ST and PA as achieved through simulation are low as compared to

the committed ones. It should be noted that inventory calculations are carried out with

consideration of requirements pooling effect and in reality it is also true that assembly plant

doesn't demand for high quantities of both SKUs at the same time because of their own capacity

constraints. Whereas the simulation model used two independent random streams of production

requirements generated without any pooling effect and thus can be a reason of lower service

levels.

However it is interesting to see that AC service levels for two SKUs are not identical which may

cause some suspicion but it is quite clear from the fact that weighted demand contribution of

Powerlife SS is 68% whereas it is only 32% for Powerlife Coated Version i.e. even less than half

of Powerlife SS. Hence it can be perceived that in case of a stock-out at PA stage, Powerlife SS

had more priority for supply as compared to Powerlife Coated Version. AC for Powerlife SS has

a service level estimate that is even higher than committed which suggests that this priority

criteria can be relaxed in real production environment and supervisors can make better decisions

for supply in case of stock-outs.

Since AC supplies Powerlife SS to SG and Powerlife Coated Version to R&S stage, their service

levels should be compared. It can be seen that SG has service level of more than 95% whereas

R&S for Powerlife Coated Version has only 90%. The reason behind this can be connected to

service levels of their upstream stages which influences level of stage base-stock fluctuations and



eventually service level i.e. SG has supply with higher service level from AC whereas R&S has

lower service level supply relatively. Hence it can be concluded that the stock-outs and service

level of a stage has propagating effects on its downstream stages.

Although the service levels of all the stages are important but those of R&S stage are the crucial

ones because it is the last stage in production process of SPs and its stock is meant to shipment

for assembly plants and satellite factories. Hence the entire chain performance is reflected at this

stage. It can be seen that R&S has even a higher than committed service level for Powerlife SS

whereas it is lower for Powerlife Coated Version.

One parameter that can be adjusted in the simulation to improve overall results is the priority

criteria based on weighted demand contribution because the variability in requirements of

Powerlife SS (CV=0.49) is low as compared to Powerlife Coated Version (CV=0.88), which can

influence the vulnerability of already fluctuated base-stock levels to stock-out. Hence by trial and

error, a priority criterion was updated to supply PA stock to AC for Powerlife SS and Powerlife

Coated Version in a proportion of 55% to 45% respectively in case of a stock-out. The results are

quite satisfactory in terms of service level and are summarized in table 5-7.

Table 5-7: Simulation model improved stock-outs summary

Maximum Service level
Average Average Stock-outs with 95%

stock-outs Service Level with 95%
Confidence Confidence

ST 8 93.33 15 87.50

PA 9 92.50 16 86.67

SG-PLSS 7 94.17 13 89.17

AC - PLHV 6 95.00 11 90.83

AC-PLSS 7 94.17 13 89.17

R&S-PLHV 7 94.17 12 90.00

R&S-PLSS 6 95.00 13 89.17

It can be noted that service levels are improved at each production stages with R&S stage

providing almost 95% service level for Powerlife Coated Version and exactly 95% for Powerlife

SS on average. It is interesting to note that even the service levels of ST and PA are improved. It



can be attributed towards increase in material release quantities to 'W' of ST because

comparatively less material was pushed in the chain in case of a stock-out at R&S stage, which

was more likely in case of previous priority criteria. Hence the priority criteria modification

enabled comparatively higher inventory levels for ST and improved service level, yet the total

base-stock of production stages chain remained same (to its value in previous priority criteria)

and conserved.

In real production environment, randomness in production requirements during high demand

season is less because stock building enables decoupling of production plans from shipment plan

and production planner tends to run larger but uniform batches of every high runner SKU for

some definite period of time. During low demand season, production planner has the authority to

negotiate shipment plans with assembly plant planner and can prevent stock-outs.

5.4 Direct flow - Base-stock results
This section will cover results and discussion about coupled-lines including the parameters used

for calculations, coupling stock quantities along with base-stock results, a comparative study of

inventory results of line coupling with original base-stock results and verification of service level

'Pmax' can provide.

5.4.1 Coupled-line parameters
Table 5-8 provides the line parameters i.e. unit time and cycle time of PA and R&S stage and is

taken from the line capacity data provided by production planner and was verified with time

sampling on lines. PA is the first stage in the coupled-line and R&S is the second. For example,

it can be seen that cycle time of PA-Azur is smaller as compared to R&S-Azur and hence the

coupling stock will start being replenished after 335 sec of start of production and the rest of the

parts will be collected with a time interval of 10.08 sec. Since coupling stock is consumed by

downstream line, it will be depleted with a time interval of 9.16 sec. For Elance ST and PT, the

two lines at PA and R&S stage are balanced and once the first part is collected from PA,

consumption and replenishment can be observed at a same pace as the unit times are equal i.e.

7.76 sec.



Table 5-8: Coupled-line parameters

Stage Parameters Azur - 441/44NI/461/46NI Elance ST/PT

Unit Time (sec) 10.08 7.76
PA

Cycle Time (sec) 335 1200

Unit Time (sec) 9.16 7.76
R&S

Cycle Time (sec) 1200 1200

5.4.2 Coupling stock results

Coupling stock calculations were performed according to the procedure explained in section

4.5.3 with maximum batch size consideration given in section 4.5.3.1 and the results are given in

table 5-9. The base-stock results for 'W' and 'I' (for a service level of 95%) in upstream and

downstream of coupled-line respectively, are calculated using R&S stage effective capacities and

lead-times (R&S-Azur lead-time is 1-Day and R&S-Elance lead-time is 1.15 Days and are

calculated using the formula given in section 4.5.1) for the reasons explained in section 4.5.3.2.

Maximum batch size 'Pmax' values are established to ensure that coupling stock would provide a

service level of 95% between PA and R&S stages.

Table 5-9: Coupling stock summary

Coupled Cul Coupling Stock Coupled Line
Copled Coupling 'CS' f Coupled Line Total

SKU P Stock Inter-stage
SKU max Intra-stage 'CS to container size - Stock 'I' Inventory

Stock 'W' 150)

Azur 44
Non 3599 1358 542 600 2241 4199
Ionic

Azur44 369 139 218 300 230 669
Ionic

Azur 46
Non 4172 600 600 2597
Ionic 2265 6602

Azur46 1832 365 450 1140
Ionic
Elance 1831 1008
ST

5435 304 450 10890
Elance 7259 3997
PT



It can be seen from table 5-9 that Azur 46 Ionic shares SP stock with Azur 46 Non Ionic and

Elance ST with Elance PT at PA stage and hence the coupling stock for these SKUs can be kept

at the relative maximum (of the two SKUs) i.e. 600 (>365) for Azur 46 Ionic and Azur 46 Non

Ionic. Pmax doesn't affect the coupling stock level for balanced lines and it only needs enough

stock that can last up to the start of replenishment from PA stage. The coupling stock values are

rounded-off to the nearest multiple of container/trolley size because movement between PA and

R&S is not carried out as single-piece flow rather in batches of size 150.

5.4.2.1 Comparison with original base-stock results

The trade-off between introducing the concept of coupled-line operating under base-stock policy

and PA and R&S stages operating independently under base-stock policy should be evaluated.

The first aspect is the inventory reduction and is expressed in table 5-10, where it can be seen

that a total of 16674 units are saved by introducing concept of a couple-line and recommended

for lines at PA and R&S production stages for two SKU families i.e. Superior (Azur) and

Complete (Elance).

Table 5-10: Coupled-line comparison with base-stock

Total
PA - R&S - Coupled Line Inventory Total

SKU InventoryBase-stock Base-stock Total Stock Reduction Reduction

Azur 44 Non 3599 3599 4199 2999
Ionic

Azur 44Azur 44 368 368 669 67
Ionic

Azur 46 Non 4171 16674
Ionic

5101 6602 4051
Azur 46 1831

Ionic

Elance ST 2103
9557 10890 9107

Elance PT 8337

The second aspect is the performance of coupled-line in an event of a major breakdown at

upstream stage i.e. PA during production, which will cause disruptions in supply to R&S stage.

Independent base-stock control of the two stages has an edge over coupled-line because R&S



would draw required stock from upstream and won't be affected in short run if the major

breakdown at PA lasts not more than a day. The inclination toward coupled-line concept is

drawn more from operational aspect because same supervisor runs the two stages and the lines

can be operated on synchronized production schedules, which will be an easy task since coupling

stock enabled simultaneous production start on two lines. It prevents need to prepare stock and

use of personal judgment in scheduling that usually causes unnecessary inventories.

5.4.2.2 Verification of maximum batch size

It has been stated that the coupling stocks of a coupled-line are established to deliver desired

service levels that base-stock policy intends to provide across a production stage, which resulted

in consideration of a maximum batch size 'Pmax'. A simple simulation model on Crystal Ball was

developed to verify that the maximum batch size values are established correctly. The simulation

was carried out on Azur 46 Non Ionic with a mean and standard deviation of demand each as

1358 (CV=1) for a time period of 120 days (i.e. from July to October and consistent with time

frame of inventory calculations) and a total of 10,000 runs were executed for better sampling.

The maximum batch size 'Pmax' value as given in table 5-9 was compared with the production

target 'P' and the excess production targets were counted relative to the maximum batch size.

The base-stock level of the coupled-line was set initially with 'W' and 'I' values given in table

5-10, which is calculated to provide a service level of 95% across coupled-line. Figure 5-11

depicts the histogram of the production targets excess count relative to the maximum batch size.
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Figure 5-11: Histogram of production targets violation of Pmax

Simulation model statistics shows that productions targets will exceed maximum batch size for

only 5% of the time on average (8.34% of the time with 95% confidence) and there it can be

concluded that 'Pmax' accurately established for a service level of 95% (as explained in section

4.5.3.1

5.4.2.3 Coupling stock levels verification

Once the maximum batch size values are established according to the method explained in

section 4.5.3.1, it should also be verified that the coupling stock would deliver desired

performance i.e. it will not exhaust and cause disruptions in production, provided the upstream

line doesn't experience a major breakdown. A simple MS-Excel based simulation is carried out

on coupling stock of Azur 46 Non Ionic of size 600 (equivalent to 4 trolleys of size 150), which

is subjected to the maximum production target that it can serve (i.e. maximum batch size of 3600

equivalent to 24 trolleys of size 150) and the performance is illustrated in figure 5-12.

-------------I-------------------~------
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Coupling Stock vs Aggregate Trolleys Consumption
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Figure 5-12: Coupling stock simultaneous consumption & replenishment

X-axis is representing the time-line marked for consumption of trolleys by R&S line and

replenishment by PA line and Y-axis shows count of trolleys. It can be seen that a total of 24

trolleys are being consumed by R&S to meet a production target of 3600 while PA is

simultaneously replenishing the coupling stock. The coupling stock graph never touches zero and

rise back to its initial position of 4 trolleys once R&S has met its requirements. The minimum

number of trolleys present at any instant was 1 and therefore it can be concluded that coupling

stock would provide desired performance successfully under the assumptions stated for its

feasibility.

5.5 Operational impact
This thesis is written at a time when PDA is undergoing implementation of the proposed

solutions provided during internship work and management is keen to implement and extract

value from a system it had put immense interest in. Management has evaluated the proposed

solutions at every stage of project and provided feedback that added value to the work. The

immediate impact, which appears most potential, is the improvement in PDA manufacturing

; ~ """""""~~~;;;;"""'~';--""';-



operations practice. A complete solution in form of an inventory control policy that suits quite

well to PDA production system is provided after verification through simulation work with a

Kanban based visual management system and capacitated shipment planning approach that is

established to integrate shipment planning practice with inventory control policy to ensure that

the transition is smooth from current practice to new system.

Inventory structures on the production floor will be certain and allocated in right quantities to

ensure inter-stage service levels are met. Production planning would be an easy task

comparatively and decisions would be made with an insight into inventory levels and within

integrated capacity constraints. Furthermore, visual management system will enable clear

communication between productions stages for material consumption and replenishment signals

and therefore production planner doesn't need to prepare plans for individual production stages

once the planning phase has considered all the constraints.

The direct impact of the inventory control policy is setting up controlled inventory levels across

production stages, which after comparison with the current inventory levels, turned out to be a

major reduction in overall inventory levels of PDA. This comparison is depicted in figure 5-13 in

which the anticipated inventory levels are derived from inventory calculations whereas current

inventory levels are taken on average during June for the high runner SKU SPs. It can be seen

that PDA is keeping high inventory levels at the finished goods stage i.e. R&S. The reason

behind high stocks at last stage is the stocking of finished goods for serving requirements during

production lines movement to another location, which makes current year an exception even

though the demand figures are not as high as last year and could be met by capacity alone. The

usual reason for stocking finished goods is to meet demand requirements in excess to capacity

during high demand season. It is observed that the current inventory levels at intermediate

production stages are ever fluctuating and thus cause uncertainty in service levels between

production stages.
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Figure 5-13: Inventory levels comparison

It can be seen that the anticipated inventory levels at R&S stage even with consideration of

stocking are much lower as compared to current inventory levels and their contribution to total

inventory levels is dropped from 84.6% to 30.9% as shown in figure 5-14. However, increase in

inventories at intermediate stages can be seen and is explained as setting up of base-stocks to

ensure adequate service levels between production stages. The overall reduction in inventory

levels is estimated to be 67.4% across all the production stages. The reduction in finished good

stock levels also indicate that PDA will have less customized inventories, which would be

present in upstream production stages and increase PDA responsiveness to demand fluctuations.

....... .............
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Figure 5-14: Inventory level contributions comparison

5.6 Financial impact
As shown in section 5.5, it is anticipated that overall inventory figures at PDA would be

controlled and showed reduction from their current levels. This reduction resulted in financial

savings because overall inventory holding costs would drop and increase cash in operations

budget. This impact can be seen in figure 5-15 (inventory values are not shown because of

information confidentiality but relative difference between values can be observed), which shows

that proposed inventory control policy would reduce the cash blocked in inventories. An overall

reduction of 74.3% is expected because the inventory levels at R&S stage are greatly reduced,

which contribute 90.8% percent in current inventory values and is expected to contribute only

41.7% after implementation of the proposed solutions as shown in figure 5-16. Hence the

proposed inventory control policy would help in restructuring the inventory levels and results in

shifting the inventories to upstream production stages where the inventory costs are lower as

compared to finished goods.

..... ....................................................... .. .... . .
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CHAPTER 6: RECOMMENDATIONS, CONCLUSION & FUTURE WORK

6.1 Recommendations
The project work presented in this thesis resulted into solutions that were verified and improved

with PDA management feedback. The following recommendations are made for smooth

transition from current production planning and inventory control practice to the proposed ones

and obtain the benefits that are expected in form of inventory reduction and improved

operational practices.

1) Production requirements seasonality should be analyzed according to the provided framework

and analysis of variance (ANOVA) should be carried out to choose the best monthly groupings

that forms production seasons.

2) Production requirements characteristics for high runner SKUs should be extracted from stock

building plan according to the proposed method during each production season.

3) Production requirements characteristics should be pooled for production stages (wherever

applicable) as explained in this thesis and effective capacity of each production stage should be

estimated with consideration of low runner SKU SPs production requirements.

4) Base-stock levels for production stages should be set up according to the proposed inventory

control policy during identified production seasons with respective production requirements

characteristics.

5) Production personnel should use the Kanban system to align operational activities with the

inventory control policy requirements for delivery of its performance.

6) Production planner should use capacitated shipment planning approach to ensure shipment

plans are feasible in terms of production capacity and stock levels.



6.2 Project wide conclusion
The MEng project at PDA Singapore aims to design a system for controlling inventory and

directing daily production. After a thorough study of the factory' operation, the MEng project

group identified problems in production planning, inventory control, and communication

between different production stages.

In order to solve the problems identified above, the project group decided to propose a new

base-stock model combined with a Kanban visual management system for the factory. The group

split into two teams to work on designing the system for different stages. Youqun Dong [2] and

Yuan Zhong [3] focused on the bottleneck of the production system, the ST stage. Xiaoyu Zhou

[1] and the author worked on PA, AC, SG and R&S stages, covering the end stages of various

products. The implementation of systems designed by the two teams is expected together on the

production system to improve the overall operation efficiency. The Kanban system will link the

different production stages together into an integrated operations management system.

ANOVA analysis was proposed by Yuan Zhong [3] as a method to facilitate demand

characterization during the planning process. It effectively identified the seasonality of demand

in the year and guided the setting of appropriate inventory targets for respective seasons.

The author studied the performance of the proposed base-stock model was using Monte Carlo

simulation that modeled the chain of production stages. It was found that the model was able to

conserve the overall inventory levels of the production stages in chain. Furthermore, the

base-stock model delivered satisfactory customer service level and improved the overall

inventory structure, via demand-driven production. As a result, appreciable reduction of total

inventory cost was achieved. Youqun Dong [2] and Yuan Zhong [3] simulation at ST stage also

indicated that small batch sizes could be more cost-efficient in actual operation. Xiaoyu Zhou [1]

and the author, proposed to incorporate the line-coupling concept into the system to further

reduce the inventory at certain production lines with close production rates.

Methods were also proposed to assist the production planning process. Youqun Dong [2]

developed a capacity planning optimization framework to handle excess demand during peak



demand season. Xiaoyu Zhou [1] proposed a production leveling method functioning as a

demand filter, which was shown to improve customer service level during simulation. The author

developed an interface tool for production planner that enables integration of shipment planning

and proposed inventory policy with capacity and stock considerations.

Based on the above results, the group recommends that PDA implement the proposed system on

its production system. Further study of the system could be carried out in the future to

understand the performance of the system in different scenarios. After further fine-tuning, the

system could be extended to the rest of stages in the factory. As PDA is not the only factory of

its type, the proposed models and methods can be applied to other factories with similar

characteristics.

6.3 Future Work

There are few things that are identified as potential future work and are expected to improve the

performance of the solutions presented in this thesis.

1) Study of SKUs demand correlation can help in identifying more realistic production

requirement characters because the PDA customer, i.e. assembly plant has limited capacity and it

demand supply of high runner SKU finished SPs on different days to level the load on its

production resources. This thesis has set stock levels for a scenario where the entire range of

high runner SKUs can be supplied together. This requirement can be relaxed in light of results

provided by detailed demand correlation analysis and may result in further inventory levels

reduction.

2) HE and DC production stages are not covered in the project work and the same inventory

control policy can be extended to include these two stages for synergistic improvement.

3) SG production stage has issues related to production yield caused by smaller batch size and

thus tends to accumulate requirements for 3-4 days. This can be studied in details and if feasible,

suitable modifications can be made to the base-stock control of SG.



4) The base-stock levels are established using effective capacities (with considerations of

average production time losses in changeovers, machine breakdowns and maintenance activities)

and the simulation work didn't involve study of issues related to machine breakdowns in

particular. Therefore, production lines reliability aspect can be incorporated in the simulation

model and the results can be used to modify inventory levels.

5) Capacitated shipment planning approach can be extended to include planning for low runner

SKUs production by making use of the reserved capacity. This integration would prevent the

production planner from parallel planning of low runner and high runner SKUs production.
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APPENDICES

Appendix-A - ANOVA result

103

ANOVA: Single Factor - Production Seasonality Analysis

SUMMARY

Groups Count Sum Average Variance

Nov-Apr 6 4041.3164 673.5527333 10617.23675

May-Oct 6 6319.2174 1053.2029 39082.53843

ANOVA
Source of
Variation SS df MS F P-value F-critical

Between 432402.74 0.00191369

Groups 72 1 432402.7472 17.40059168 5 4.96

Within 248498.87
Groups 59 10 24849.88759

680901.62

Total 3 11
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Appendix-B - Coupling stock formula derivation

'Unit time' i.e. UT can be defined as the time interval between two consecutive parts being

loaded or unloaded on a production line. 'Cycle time' i.e. CT has the meaning of total time a part

spent on the entire line.

Since it is desired that the two lines i.e. PA and R&S start production simultaneously, the initial

values of the coupling stock say Q1, should be enough to supply R&S until the first

replenishment is made from PA. The time required by the first trolley of size 'T' to be processed

by PA needs a total time, CT 1 + (T-1) x UTI (It should be noted that the first part at PA would

take CTi before it can be unloaded and the remaining (T-l) parts would be following the first

part with a time interval of UTI), during which R&S would be consuming stock with time

interval of UT 2 between two successive parts consumption. Hence Qi should have a value as

given by following relationship,

CT [ (T - 1)xUT
UT2

The coupling stock is established to even couple two unbalanced lines, i.e. with different

production rates, PA is slower than R&S for Superior (Azur) family in our case, hence the

coupling stock should also hold material for the difference in production rates to prevent R&S

starvation within a certain limit i.e. a maximum batch size of Pmax. By the time R&S has already

consumer Q1, the maximum remaining requirements would be 'Pmax - Q1' for which the

production rates difference effect should be dealt with. The difference in time taken by PA and

R&S to produce this remaining maximum requirement value can be expressed as

(Pmax -Q 1)xUT- (Pmax -Q 1)xUT2 , during which coupling stock should hold stock that can be

consumed by R&S. This portion of coupling stock can be given by following relationship,

(Pmax - Q,)xUT - (Pmax - Q)xUT2

UT2
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(Pax - Q,)x(UT - UT2 )

UT2

Hence the total coupling stock value can be expressed as sum of the two requirements as follow,

(Pmax - Q)x(UT, - UT,)
CS [ e, m

UT2

This relationship can be further derived purely in terms of unit times and cycle time in the

following manner,

Q,x UT2 - (Pmax - Q1)x(UT - UT2 )

UT2

(CT, [ (T - 1)xUT )XUT2 [ [Pmax -

[IT

CT [ (T - 1)xUT,
T]x(U -UT2)

V'2 2

UT2

PCT (T -xUT2 - CT - (T- (T - )xUT(UTUT2)
CT,[ (T-1)xUT,[[ max 2 1 ]X(UTT- T))

UT2

UT2

[CT [ (T - 1)xUT,]xUT2 [ [PmaxXUT 2 - CT - (T - )xUTI ]x(UT, - UT2 )

UT2

UT2

S[CTO 0 (T - 1)x UT]x UT2 [PmaxXUT2 CT - (T - 1)xUT(UT - UT2)
(UT2)2
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Appendix-C - Kanban system design

The proposed base-stock control across a production stage makes replenishment and

consumption decisions by use of parameters such as intra-stage stock 'W', inter-stage stock 'I',

downstream requirements 'D' and stage lead-time 'n'. The Kanban system is designed to align

role of these parameters in the consumption and replenishment decisions with physical material

movement between and within production stages.

The design proposes use of a Kanban board and cards to reveal real-time stock levels of SKU

SPs at the production stage and signal material acquisition (from upstream stage) and

replenishment of inter-stage stock 'I'. The operation of the card movement for a SKU at a

production stage is explained with the help of figure C-1, which has four sections and represents

'I', 'R', present WIP and 'P' levels. The total number of cards in R and 'WIP' section indicates

the intra-stage stock 'W' level.

I
R Base-stock 'B'

W L-] -I [IZ ]l I

Present WIP, Ending Intra-stage stock of
Last day

P

Figure C-1: Kanban board at the start of the day
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The operation of card movement is summarized as under,

1) At the start of the day, downstream requirements 'D' are fulfilled from 'I' and equal number

of cards on this section are moved to section 'R'. This movement is aligned with the base-stock

policy requirements of material acquisition from upstream stage in exact proportion to the

downstream requirements i.e. 'R=D'. This cards movement is the first step of Kanban operation

that updates 'I' values for the day. This is depicted in figure C-2.

I (Updated)

R (Updated) B ase-stock ,

Present WIP, Ending Intra-stage stock of
Last day

P

Figure C-2: Kanban board with updated-I

2) Production personnel/material handlers are required to replenish intra-stage stock 'W' of the

stage by obtaining material quantity, indicated by the number of cards in 'R' section, from

upstream stage. Material acquisition would make the board look as shown in figure C-3 with

updated WIP levels.

3) Once the required material is obtained from upstream stage, production personnel would set

the production targets based on the linear-production rule i.e. P=W/n and round-off the targets to

the next multiple of container/trolley size used to store stage's finished SP stock. Number of

cards equivalent to production target will be moved to the 'P' area. The updated board would

look as in figures C-4.
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I pdated)

R J Base-stock 'B'

WIP (Updated)

Figure C-3: Kanban board after material acquisition

I (Updated)

R Base-stock 'B'

WIPI'w' IW IL LI -- LI-] - l -]W WI [ I
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Figure C-4: Kanban board with updated-P

4) The cards from 'P' section to 'I' section will be moved in real-time when a container/trolley

has been processed by the production stage. At the end of the day, when the production targets

have been met, all the cards in 'P' section would have been moved back to 'I' section and the

board would appear as shown in figure C-5.
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Figure C-5: Kanban board at the end the of day
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Appendix-D - Capacitated shipment planning

Figure D-1: Capacitated shipment planning interface snapshot
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