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Kapchinsky and Vladmirsky have defined a self-consistent particle distribution function, known as K-V distribu
tion, which satisfies the time-independent Vlasov equation and has linear space-charge forces. 1 We examine the
generalized form of the K-V distribution for an asymmetric system with different focusing forces and emittances
in the two transverse directions. The transverse energy distribution of a K-V beam is a delta function when the
beam is symmetric and matched with equal transverse emittances. We show that, the transverse energy distribu
tion changes to a flat-top shape with a finite width when the two transverse focusing constants or emittances are
different and the beam is matched in both directions. We have also determined the transverse energy distribution
for a K-V beam undergoing small mismatch oscillations in the emittance dominated regime.

KEY WORDS: Beam transport, particle dynamics

1 INTRODUCTION

The well-known K-V distribution function1 is a self-consistent solution of the time
independent Vlasov equation. It has the property that, the external forces due to applied fields
and the self forces due to the space-charge and the beam current, are both linear functions
of the transverse displacements of the particles. In this case, the transverse emittances Ex

and Ey (or the normalized emittances when acceleration is involved) of a beam remain
constant through a "smooth" focusing channel. The term "smooth" corresponds to slowly
or adiabatically varying focusing strength. Due to this property the K-V distribution is a
very useful design tool and can serve as an equivalent uniform beam for other, more realistic
particle distributions having the same rms properties (beam width, emittance).2-4

Thus, it is important to know this distribution function for an ideal K-V beam under
different conditions. For a symmetric matched K-V beam passing through a smooth focusing
channel the transverse energy distribution is a delta function. However, in many practical
cases, such as in synchrotrons or in sheet beam devices, this assumption is not valid as the
focusing forces and/or the transverse emittances in the two directions may have different
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values. In this paper, we have determined the transverse energy distribution for such an
asymmetric or mismatched K-V beam.

First, we redefine the K-V distribution in Section 2 in a more generalized form, which
takes into account different values of transverse emittances (Ex =1= Ey) and the cross
terms xx' and yy' corresponding to a mismatched beam. In Section 3,. we determine the
transverse energy distribution for the following three cases: (1) symmetric, matched K
V beam through smooth focusing channel, (2) asymmetric, matched K-V beam through
smooth focusing channel, and (3) K-V beam undergoing small mismatch oscillations for
an emittance dominated case. Section 4 contains the concluding remarks.

2 FORMULATION OF GENERALIZED K-V DISTRIBUTION

We start with the equations of particle trajectories in a channel where the external forces are
linear functions of x and y, the transverse displacements from the beam.axis. For the K-V
distribution the electric and magnetic self forces are also linear functions of the transverse
displacements. In order to have these linear dependences the condition for paraxial motion,
i.e. vx , vy, « vz , must be satisfied. The particle trajectories obey the following second order
linear differential equations, known as Mathieu-Hill equations:

x" + Kx (z)x = 0,

y" + Ky(Z)Y = O.

(la)

(lb)

The coefficients Kx and Ky include both external focusing and self forces and are assumed
to be slow functions of the axial distance z. Following Courant and Snyder,S an invariant
of motion A~ in the XX' plane can be written as,

2
x ( I ')2 A2
2 + wxx - wxx = x'
W x

(2)

where W x (z) is the amplitude of the Floquet function which is the eigenfunction of the
Mathieu-Hill equation and satisfies the following differential equation:

The parameter Ax, remains constant through the channel. Equation 2 can be written as,

(3)

A 2 2 A , fJ'" /2 A2Yxx + £Xxxx + xX = x· (4)

where the Courant-Snyder parameters ax, fix, and Yx satisfy the relations ax = -wxw~, fix
= wi, Yx = 1/wi + w~2, and hence fix Yx - ai = 1. The notation (/\) is introduced to
differentiate these parameters from the common use of y as a relativistic factor and fJ as a
velocity normalized to the speed of light. An invariant ofmotion in the Y Y' plane is obtained
in a similar way, which is given by,
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" 2 2" , fJ" '2 A 2 (5YyY + ClyYY + yY = y. )

For any particle the values of Ax and A y remain constant through the channel, but for
different particles these values differ based upon their initial conditions.

The original K-V distribution function 1 is defined by,l

(6)

where 10 and Fo are constants and 0 represents Dirac-delta function. For a general case, F
can be written as,

F= A; + sA; . (7)

s takes the value of unity under the assumption that Ey = E')' = E. In Ref. 1 all the properties
of the K-V distribution are determined for s = 1.

First, we define the' generalized K-V distribution by treating the transverse emittances Ex

and Ey independently as follows:

1 = Imo(G - 1) ,

where 1m is a constant and G is a normalized function given by,

G = A~ + A~ = (Yxx2 + 2axxx' +Pxx'2) + (yyy2 + 2ayYY' + pyy'2)

Ex Ey Ex Ey

(8)

(9)

This definition of the generalized distribution function follows ftom the earlier definitions
of K-V distribution in the literature. l,6 1 This definition is equivalent to the original
distribution (Eq. (6) and (7)), if we assign Fo = Ex and s = ExlEy.

First, we will recap some of the important ~{operties of this distribution function. The
reader is referred to Ref. 12 for detailed derivation. For this distribution, the representation
points of all particles in the beam lie on the surface of the hyperellipsoid in the four
dimensional phase space XY X'y' given by,

A2 A2

----!. + -l. = 1. (10)
Ex Ey

The projection of this hyperellipsoid in any two-dimensional plane is a uniform density
ellipse. The projections in the XX' plane and YY' plane ate ellipses given by A;max = Ex

and A~max = Ey , with the phase-space areas of 1rEx and 1r€y" respectively. The projection

in the XY plane is an upright ellipse with semi-axes XI1l == lfixEx and Ym = JPyEy and
having a cross-sectional area of Ao = 1rXmYm. The space...charge density Po of the beam
can be written in terms of the beam, current I and the axial velocity of the particles Vz as,

(.11)
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(12)

(13)

(14)

The space-charge potential <I>s, can be written as,

<I> - PO.[ 2 + 2 Xm - Ym (2 2)]s - -- x Y - x - Y
480 xm + Ym

This implies that, the electrostatiC' and magnetic self-forces for this distribution are linear
functions of the transverse displacements x and y. Thus, the generalized distribution satisfies
the basic premise of the K-V distribution.

3 TRANSVERSE ENERGY DISTRIBUTION

To obtain the corresponding distribution of transverse energy Hl. we must evaluate the
following integral over the 4-dimensional phase-space volume,

Iff"{ 2 /2 2 /2
f(H1.) = fm lv 8(0 - 1)8(H1. - KxX - X - KyY - Y )dv.

We have analyzed this distribution under different conditions.
The functional dependence of A; andA~ (in Eq. (4) and (5)) can be further simplified

fora matched beam. First, we will determine the values of the Courant-Snyder parameters
for a perfectly matched K-V beam through a smooth focusing channel. For a K-V beam
matched in the XX' plane, the amplitude function Wx is constant, i.e. w; = w~ == O. Hence,

ax = -wxw~ == 0 andyx = l/w; = 1/~x. Equation (4) can now be written as,

2 1 2 "/2
Ax = ~X+ f3x x .

f3x

Notice that this is an upright ellipse in the XX' plane with no xx' cross-terms. Also, from
Eq. (3) we get,

1 1
Kx = w4 = f3"2 .

Xx
(15)

For a matched beam through a constant focusing channel the Hamiltonian Hx = Kx X 2 +x'2

is a constant of motion for each particle. As stated before, Kx includes both the external
focusing and the space-charge forces. For a matched beam through a channel with slowly
varying focusing fields the Hamiltonian is not a conserved quantity. However, a distribution
function of transverse energies can be determined at a given cross-section of a beam.

Now, we analyze three different situations. The first two cases are for the matched
K-V beams and the Eqs. (14) and (15) can be applied to them. Whereas, the third case
corresponds to mismatched oscillations and a =1= O. We have analyzed this case under a
simplifying assumption of small mismatch oscillations in the emittance-dominated regime.

3.1 Symmetric, Matched K-V Beam in a Smooth Focusing Channel

In the symmetric case, we have Ex = Ey = E and ~x = ~y = ~. Thus,
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(16)

where Xm = Ym = .JlfE is the beam radius, Hl. is the transverse Hamiltonian of a particle,
and Hl.o = KX~. Thus, the distribution function can be described as a delta function in the
transverse energy as,

(17)

where fH = Kx~fm.

3.2 Asymmetric, Matched K-V Beam in a Smooth Focusing Channel

In this section, we will consider a K-V beam matched in both the XX' and the YY' planes
but having different transverse emittances Ex t= Ey or different focusing strengths Kx t= Ky

(and hence, ~x t= ~y) or both. The normalized function G can then be written as,

KX X 2 + x'2 K y2 + y'2
--~-+-y---

KxX~ Kyy~

Hx Hy=-+-,
Hxo Hyo

(18)

where Hxo and Hyo are the maximum possible values of the Hamiltonians Hx and Hy,
respectively. From Eqs. (9) and (18), we can write the net transverse Hamiltonian Hl. as,

(19)

where Rg = Hx / Hxo is uniformly distributed from zero to unity. This implies that, Hl.
is uniformly distributed from Hxo to Hyo and we have a flat-top distribution as shown in
Figure 1. This can be mathematically expressed as,

(20)

where u represents a unit-step function.
Notice that, this function reduces to a delta function in the transverse Hamiltonian when

Hxo = Hyo, Le. Ex,J"K; = Ey,JKY. Thus, even when the beam is not symmetric we can still
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FIGURE 1: Variation of particle density f versus the net transverse energy HJ.. for a matched, asymmetric K-V
beam through a uniform focusing channel for Hxo=13 and Hyo=21 in arbitrary energy units.

get a delta function in the transverse Hamiltonian if the beam parameters satisfy the equality
Ex/Xm = Ey/Ym, which can also be expressed as, Ex,JK; = Ey,JilY.

3.3 K-VBeam Undergoing Small Mismatch Oscillations

In Sections 3.1 and 3.2, we considered the cases in which the beam was perfectly matched.
When the beam is not matched, on the other hand, it undergoes oscillations in beam radius.
The single-particle Hamiltonian, in general,·is not a constant due to coupling between the
transverse and longitudinal motion. Here, we will analyze the transverse energy distribution
for a K-V beam undergoing small mismatch oscillations through a smooth focusing channel.

First, we will analyze abeam having small mismatch in the X-direction and then we will
extend the analysis to two dimensions. We assume that the beam parameters are sufficiently
away from the space-charge dominated regime, i.e. we will analyze the emittance dominated
case. This implies that the variation in space-charge contribution to Kx due to small mismatch
oscillations is a second order term and can be neglected. Under these assumptions, the x
component of the Hamiltonin Hx remains constant if the external focusing force is constant.

The variation of beam width Xm along the channel length is shown in Figure 2(a). We
consider cross-sections in the transverse plane at the maximum, minimum, and average
values of Xm . For the sections at the maximum and minimum values of Xm , we have w~ = 0
and w~ '# O. These sections are represented by points A and C, respectively, in Figure 2(a).

Thus, for both sections we have fix = 1/~x = l/w; and ax = O. The corresponding
projections of the distribution function in the XX' plane are upright ellipses as shown in
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FIGURE 2: (a) Variation of beam width along the x-direction xm , versus the axial distance z showing mismatch
oscillations or ~Kx/Kx=O.4.The figure shows the positions of A, B, C, D, and A cross-sections. A and C sections
are at the maximum and the minimum of Xm and the sections B and D are at its average value.
(b) Emittance ellipses in the XX' phase space at A, B, C, D, and A cross-sections. The sections A and C have
upright ellipses and are shown by the solid curves. Whereas, the sections B and D have tilted ellipses and are
shown by the dotted curves. A particle at the extreme location at the section A is traced by an open circle at each
section in the XX' phase space.
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Fig. 2(b). From Eq. (3) we can also get,

(21)

By small mismatch, we have assumed that ~Kx = (Kx - 1/ fi;) « Kx . The beam-width Xm
at the two sections (A and C) is given by,

(22)

For sections A and C the magnitude of ~Kx is the same, but there is a difference in sign.
Depending upon the sign of ~Kx, the value of Xm would either be at the maximum or
minimum. The variation ~xm in the beam width can be written as,

~Xm 1 ~Kx
=

XmO 2 Kx

where, XmO = JEx/K;/2 is the average beam width.
For the sections A and C we also have,

A; fix (1 2 '2)Rg = - = - -;::-x + X
Ex Ex f3}

1 [ 2 '2]= ( ) (Kx - ~Kx)X + X .
1 - D.Kx K x 2

2Kx x m

(23)

(24)

We can now substitute, H x = Kx X2 + x'2 and Hxo = KxX~ in Eq. (24) to get H x as a
function of a position x as follows,

(25)

where, x 2 varies from zero to xf = Rgx~. Now, we define ~Hx = H x - RgHxo. Then,

(26)

For any value of Rg (between 0 and 1) the particles lie unifonnly along the circumference
of an upright ellipse in the XX' plane. By taking the projection on the X-axis, we get the

particle density Px(x) to be proportional to J(xf - x 2). Thus, the energy distribution of
the particles for a fixed value of Rg can be written as,



TRANSVERSE DISTRIBUTION OF ASYMMETRIC K-V BEAMS

Px(x)dx X M2

PH(Hx ) = dH = PHO- 1 - 2:
x Xl Xl

23

(
tJ,.Hx 1) ( tJ,.Hx 1)

= PHO - t1K
x
xf + 2. t1K

x
xf - 2 (27)

The above equation implies that, the energy distribution is independent of the sign of tJ,.Kx
and hence, it is the same at sections A and C. This is consistent with the fact that under small
space-charge conditions Hx is only a function of mismatch parameter and matched focusing
parameters and independent of maxima or minima in beam radius or any axial location in
between. For a constant focusing channel the energy distribution remains unchanged through
the channel. The particle number density as a function of Hx is plotted in Figure 3. It has
a dome-shaped distribution centered at RgHxo and has width proportional to mismatch
coefficient tJ,.Kx .

Although, the energy distribution at sections Band D is the same as shown in Figure 3,
the corresponding ellipses in the XX' plane are tilted (Figure 2(b)). The beam width X m

is at its average value XmO. Also, w~ -1= 0 and w~ = 0, therefore eX -1= 0 and~; = I/Kx •

The positions of a particle with the highest transverse energy H x = RgHxo + itJ,.KxXr in
the XX' phase space are shown in Figure 2(b) at the four cross-sections, A, B, C, and D.
The particle position undergoes half the rotation in one complete cycle of the envelope
oscillation. The beam envelope oscillates with a frequency that is twice as fast as the single
particle oscillation frequency, which is consistent with the earlier analysis presented in
Ref. 13.
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FIGURE 3: Variation of particle density f at a fixed value of constant Rg versus the x-component of the
Hamiltonian Hx for /)",Kx / Kx =0.4.
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In order to get the net transverse energy Bl.., we need to add the y-component of the
Hamiltonian By. In a matched beam (zero-th order approximation) By is given by,

By = (1 - Rg)Byo = (1 - Rg)Kyy~ . (28)

To get the particle distribution as a function of Bl.., we have to combine Eq. (27) with the
equivalent function for By and then integrate with respect to Rg going from zero to unity.
The results for four possible scenarios are numerically evaluated and presented in Pig. 4,
viz., (a) a symmetric beam with small radial mismatch oscillations, (b) a zero-th order
symmetric beam with small mismatch in x direction, (c) an asymmetric beam with small
mismatch oscillations in both x and y directions, and (d) an asymmetric beam with small
mismatch only in x direction. Note that, for symmetric radial oscillations the transverse
energy distribution (Pig. 4(a)) is somewhat similar to that for a single component, with
a fixed' Rg shown in -Pig. 3 and the width of the distribution spectrum is proportional to
l:1Kx = l:1Ky = l:1K. Figs. 4(a) and 4(b) reduce to a delta function, given by Eq. (13), as the
mismatch parameter tends to zero. Correspondingly, Figs. 4(c) and 4(d) reduce to a flat-top
distribution given by Eq. (20).

This analysis can be extended to include the space-charge effects on the beam mismatch
oscillations. In this case, the space-charge contribution to Kx varies along the axial distance
as a function of the beam width xm . Even for a constant external focusing Hx is no longer
a constant of motion for each particle. Some qualitative remarks can be made about he
transverse energy distribution under these conditions. Although the net transverse energy
distribution repeats itself after every ;beam oscillation the individual particles do not have
the same energies and there is a continuous regrouping of the transverse energy between
the particles.

4 CONCLUSIONS

Starting from a generalized form of the K-V distribution taking into account different values
of the focusing coefficients Kx and Ky and transverse emittances, Ex and Ey and small beam
mismatches, we have determined the transverse '.energy distribution of the particles. We
have shown that the transverse energy distribution is a delta function for a symmetric,
matched beam and a flat-top function for an asymmetric, matched beam through a uniform
focusing channel. We have presented a detaileq analysis of a beam undergoing small
mismatch oscillations in the emittance-dominated regime. A symmetric beam undergoing
radial mismatch oscillations has a dome-shaped transverse energy distribution, having a
spectral width proportional to the mismatch parameter l:1K . An asymmetric beam undergoing
mismatch oscillations has a trapezoidal transverse energy distribution.
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FIGURE 4: Variation of particle density f versus the net transverse energy HJ.. for the following situations: (a) a
symmetric K-V beam with the radial mismatch oscillations, Hxo=Hyo=13 and !::"Kx/Kx=!::"Ky/Ky=OA, (b) a zero
th order symmetric K-V beam with the mismatch oscillations only in the x direction, Hxo=Hyo=13, !::"Kx/Kx=OA,
and !::"Ky/ /Ky=O, (c) an asymmetric K-V beam with the mismatch oscillations in both x and y directions, Hxo=13,
Hyo=21, and !::,.Kx=!::,.Ky=OA Kx , and (d) an asymmetric K-V beam with the mismatch oscilations only in the x

direction, Hxo=13, Hyo=21, !::"Kx/Kx=OA, and !::"Ky/Ky=O.
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