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HELICAL SNAKES WITH NO ORBIT CORRECTION
AND THEIR DISCRETE ANALOGUES
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Possibility of using helical magnetic fields is considered for constructing siberian snakes. 1\vo schemes are
described, that do not require additional orbit correction. One of the designs has the radial axis of spin rotation,
and the other has axis of about 40 degrees from radial. Analogous discrete snake configurations are also
presented.
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1 INTRODUCTION

The siberian snake method is applied to cancel the depolarizing effect of numerous spin
resonances that occur during acceleration of polarized particles. Ideally, the siberian snake
is a device that rotates particle spin around a horizontal axis by 180 degrees and at the
same time is optically transparent for particle motion. Therefore, the siberian snake is often
considered as a specially arranged sequence of dipole magnets which restores the particle
orbit and has the required rotation of the particle spin. However, in many cases helical dipole
fields can be more attractive for building a snake. There are two advantages in using the
helical dipoles in a snake design. First, its orbit excursion is smaller than that for similar
discrete snake configurations, which is very important at low energies. And the second
advantage is that smaller total snake field integral allows one to construct a compact helical
snake model. It is then less likely to be constrained by the length of straight sections available
in any given machine.

Here we investigate two helical snake designs where no additional orbit correction
is required outside the helix. We also consider their discrete analogues with similar
properties. First, we obtain the expression for the Spin Transfer Matrix (STM) ofan arbitrary
helix.
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2 STM FOR AN ARBI~RARYHELIX

We will use a coordinate system (x, s, z) where s is the direction of the reference particle
orbit and z, x are vertical and radial axes, respectively. The Thomas-BMT equation of spin
motionI written in this coordinate system for the spinor wave function2 is:

(1)

where,

-+ e
Q =- [(1 + G)· BII + Gy . B-l],

pc

G is the anomalous magnetic moment coefficient (G = 1.79285 for protons), BII and Bl
are longitudinal and perpendicular components of magnetic field with respect to the particle
orbit. Since the ideal magnetic field of an arbitrary helix can be written in the form:

Bx = Bo cos(ks + a); Bz = Bo sin(ks + a)

the equation of spin motion becomes:

dljr. i eGy
- = -- . --Bo (al cos(ks + a) + a3 sin(ks + a)) ljr =
ds 2 pc

(2)

(3)

= -~QO'I (cos(ks + a) - iO'2 sin(ks + a)) 1ft = _~QO'le-i<T2(kS+a)1ft

where Q[rad] = eG: Bo = Bo[Tesla]j1.746 is the angle of proton spin rotation by one
meter of transverse ~agnetic field Bo. Changing the variable (going into the rotating frame):

q;(s) = e- !a2(ks+a) ljr (s)

the equation of spin motion reduces to:

for which the solution is:

cp(s) = exp {-~kS (0'2 + iO'1)}cp(O)

Modifying the argument of the exponential in (6) we obtain:

ks (a2 + ~al) = () (a2 + al tan 8) = -()-a2 (i cos 8 - ia3 sin 8)
k cos8

(4)

(5)

(6)
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(7)

Then, in terms of the original spinor wave function 1/1 the spin transfer matrix for the
helix is:

Mh = e~a2(o+a) . exp {-~eAa2e-ia38 } . e-~a2a ,

where a is the initial field orientation in the helix and (() + a) is final. The obtained STM
for the helix can be also written in the form of rotation transformation on spin:

A A( ()'A () ()'A . ()) -+-+
Mh = I cos-cos- +sin-cos8s1n- +ia ·a+;

2 2 2 2
(8)

(

-sin (2). sin 8 cos (~ + a);

a+ = cos 8), sin fl. - sin 8), cos8 cos fl..2 2 2 2'

-sin 8J sin8 sin(~ +a)

It is also easy to show that if reversing the direction of field rotation in the helix (putting
kl = -k in (2» the vector awhich corresponds to the axis of spin rotation in the helix
changes to:

(

-sin8Jsin8cos(~-a); )

a_ = sin (2). cos 8 cos ~ - cos 8J sin~;

sin (
2
). sin 8 sin (~ - a)

(9)

We now consider particle motion in the helix. It is determined by the system of equations:

I
x" = eBz = eBa sin (ks + a)

pc pc

z" = _eBx = _eBa cos(ks +a)
pc pc

The general solution of system (10) is:

{

X = -rsin(ks+a)+_ClS+_CO;

z = r cos (ks + a) + CIS + Co;

(10)

(11)

where r[m] = p;~~2 = Qj(Gy k2) = 0.914 (t)2 j(Bo[T] E[GeV]) , and CO,l, CO,l are
constants determined by initial conditions. Solution(11) contains a spiral trajectory plus a
straight line solution. To minimize orbit excursions inside the helix one can use a system
of correction magnets to match the incoming beam with the spiral trajectory.3 However,
the particle orbit can also be restored without additional correction magnets. In this article
we consider snakes consisting of two helices so that the orbit excursion stored in the first
helix is canceled in the second. The orbit excursion in this case is larger than for pure spiral
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FIGURE 1: Antisymmetric helical snake magnetic field configuration and particle orbit excursion profile.

trajectory, but may be suitable in practice. Such optically transparent system can be made
either by reversing the direction of field rotation in the second helix (symmetric scheme)
or by reversing the initial field orientation in the second helix (antisymmetric scheme). We
shall consider both possibilities.

3 HELICAL SNAKES SCHEMES

When saying antisymmetric snake we understand such snake field configuration that
horizontal field projection is symmetric about the center of the snake and vertical projection
of magnetic field is antisymmetric. This symmetry applied to the snake field configuration
allows one to obtain horizontal snake axis automatically. For the symmetric snake both
vertical and horizontal field components are symmetric with respect to the snake center;
this configuration of the magnetic field makes possible to obtain the axis of spin rotation
with no longitudinal component (i.e. lying in the perpendicular plane). It means that rotating
the whole snake around the longitudinal direction one can find a position for which the snake
axis is exactly radial. First, we discuss the antisymmetric snake. It consists of two identical
full twist helices with 1800 phase shift in the field orientation between the first and second
helices. The snake field configuration and particle trajectory inside the snake are shown in
Figure 1. The spin transfer matrix for this scheme is a product of two parts:

'" ( '" ()A ()A (-+ -+)) (", ()A ()A -+ -+)S = I· cos 2 + i sin 2 a· b I . cos 2 + i sin·2 (a . a) (12)
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and since both parts have negative direction of field rotation with initial phases (X 1 = ~;

(X2 = - ~ and () = 2n , the axes of spin rotation aand bfor each part are:

a=(0;cos8; -sin8)

b= (0; cos 8; sin 8)

Hence, spin transfer matrix (12) can be rewritten as:

A A ( • 2()A 2) ~ {~ ()A 1 ~ } 2()A 2S = I 1 - 2 sIn - cos 8 + ia· es cot --- + ex tan 8 2sin - cos 8. (13)
2 2 cos8 2

The condition for the spin to rotate by 180 degrees in this system will be:

(K 2) 1 1sin2 n 1 + - --- = -.
k2 1 + {}2 2

k 2

If the above condition is satisfied, the expected orientation of the snake axis is:

(14)

()A 1
tan CPs = cot --- (15)

2 sin8

Before solving equations (14) and (15) for the antisymmetric snake parameters we now
consider the symmetric helical snake. The field configuration and particle orbit excursion for
the snake are shown in Figure 2. In this scheme two snake helices have different directions
of field rotation and the same initial phases al = a2 = O. Similarly to the antisymmetric
scheme the spin transfer matrix for this configuration can be written in the same form (12)
but the axes of spin rotation aand bfor each helical part of the snake are different:

a=(-sin8; -cos8;0)

b= (- sin 8; cos 8; 0)

It also changes the expression for the STM of the snake:

A A ( • 2()A 2) ~ {~ ()A 1 ~ } 2()A 2S = I 1 - 2 sIn - sin 8 - i a· ex cot - -.- - ez cot 8 2 sin - sin 8, (16)
2 2 sIn 8 2

and the condition of 180 degree spin rotation becomes:

(K2) 1 1sin2 n 1 + - -- = -
k2 1+ k

2 2
{}2

(17)
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FIGURE 2: Magnetic field configuration and particle orbit excursion profile for the symmetric helical snake.

As it follows from (16) this snake has radial axis of spin rotation if rotated around the
longitudinal direction by angle fJ:

fJA
tan fJ = - tan - cos 8

2
(18)

he obtained result is interesting for the purpose of using two snakes in an accelerator.
Helical snake schemes with orbit correction3.4 have their axes within few degrees from
longitudinal direction and when using a pair of snakes in an accelerator their axes should
be orthogonal.5 Thus, the described symmetric snake can be used in pair with the one,
whose axis is longitudinal. It may be also important for practical realization that both snake
schemes described here can be split in two parts with no effect on the orbit excursion inside
the snake. It follows from the fact that the snake configurations restore particle velocity at
the snake center in both x and z planes. Hence, the snake can be made as a system of two
separate magnets.

In order to obtain parameters of the described snakes we should resolve the conditions of
180 degree spin rotation (14) and (17). Figure 3 shows behavior of the functions f (~) and
g (~) that correspond to the left parts of the conditions for the symmetric and antisymmetric
helical snakes:
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FIGURE 3: Behavior of the functions f(~) and g(~) for the helical snakes' conditions of 1800 spin rotation.

Only for the symmetric scheme there are solutions with 180 degree spin rotation. They
correspond to 100% snakes. As for the antisymmetric scheme, there are only partial snake
solutions with smaller angle of spin rotation. But as we will see later, there is a way to modify
the antisymmetric scheme in order to obtain 100% antisymmetric helical snake. Among
the solutions for the symmetric snake the one with the smallest value of ~ = Q/ k gives
minimum snake field integral. The solution was obtained solving equation (17) numerically
and Table 1 summarizes the snake scheme parameters.

TABLE 1: Symmetric helical snake parameters.

Root value of ~ = Q/ k

Length of the helix period

(assuming B = 1.7 Tesla)

Field integral (JB d1)

Snake axis

Angle f3 the snake must be rotated

around S-axis to obtain radial snake axis

Maximum orbit excursion

1.037

6.69m

22.742 T'm

radial

74.723 deg

x=21l'r; z=2r

r=O.983j(Bo[T] E[GeV])
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FIGURE 4: Modified antisymmetric helical snake magnetic field configuration.

4 MODIFIED ANTISYMMETRIC HELICAL SNAKE

The antisymmetric helical snake described in the previous section doesn't allow one to
obtain 180 degree spin rotation, but it can be modified for this purpose. We substitute the
central part of that scheme (+1l' /2; -1l' /2 around the center) with a horizontal field insert in
such a way that the orbit restoration is preserved. Then, the field integral of the insert must
be equal to 2Bo/ k in order to restore particle orbit in the vertical plane. On the other hand,
to obtain orbit restoration in the horizontal plane the length between two remaining helical
parts must be equal to 2/ k. Therefore, one can make a one magnet antisymmetric helical
snake with the field configuration as it is shown in Figure 4, where in the center there is a
dipole insert with constant field (not rotated). The spin transfer matrix for this scheme is a
product of three parts:

where:

A ( A -+ -+) (A QJ QJ) (A -+-+)S = I· A - i a . b I cos "2 + i al sin "2 I . A - i a . a

1 (()'A ()'A)
A =.j2 sin 2 cos 0 - cos 2

-+ 1 (()'A ()'A e'A ()'A)
a = .j2 sin 2 sino; sin 2 coso + cos 2; - sin 2 sino

b= (ax; ay ; -az)

(20)

(21)
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here ¢ is the angle of spin rotation in the insert, which is equal to </J = 2QI k. After
multiplication in (20) the STM of the helical system transforms into:

SA [A (. ¢ . 2 ()). . 2t' ¢ . ()'\ t') .~ d~= SIn - SIn - SIn 0 - COS - SIn A COS 0 - l a .
2 2 2

sin ~ (1 - 2 sin2 Bt sin2 8) + cos ~ sin ()). sin 8

d = - cos ~ cos ()). + sin ~ sin ()). sin 8

o

(22)

The obtained STM of the antisymmetric helical snake gives the constraint of 180 degree
spin rotation:

2~ ( . 2 (3Jr r:-:-:;) . cos~. (3Jr r:-:-:;)).j1+12 sm -y 1 + ~2 sm~ - .j1+12 sm -y 1 + ~2 = 0
1 + ~2 4 1+ ~2 2

(23)

Here ~ is substituting QIk. Solving this equation numerically we define other parameters
of the snake summarized in Table 2. It is to be noted that the orientation of the snake axis is
fixed for this scheme at 39.47° to the radial direction. It solely depends on the value of (21 k
, which is determined by the condition of 180° spin rotation. However, using two additional
dipoles, one on each side of the snake, one can obtain snakes with different snake axis
orientations. It would then require changes in the helix parameters in order to keep particle
orbit restoration. As an example we refer to the snake described in.4 It consists of one full
twist helix and two correction dipoles. The length of the constant field insert is zero for this
example. The snake axis for such scheme is close to the longitudinal direction.

We now proceed to the consideration of discrete analogues for the described helical
snakes.

TABLE 2: Modified antisymmetric helical snake parameters.

Root value of ~ = (2/ k

Length of the helix period

(assuming B = 1.7 Tesla)

Field integral (fB dl)

Snake axis ({Js

Maximum orbit excursion

0.8819

5.69m

17.59 T'm

39.47° from radial

z=1.5r(rr+l); x=2r

r=O.711j(Bo[T] E[GeVD



70

z

V.A. ANFEROV

z

1/;3=21/1

3

a)

x

1/;1

,1,6

I
1/J2=21/JICOSa. I

------:-~~~~~~-7I-----;X
2.5

I
1 3 .4

b)

FIGURE 5: Discrete analogues for the helical snakes: (a) five magnet antisymmetric snake; (b) six magnet
symmetric snake.

5 ANALOGOUS DISCRETE MAGNET SNAKE CONFIGURATIONS

Both symmetric and antisymmetric helical snakes described above have discrete magnet
analogues. They can be easily obtained by approximating parts ofthe helix with couventional
dipoles.? . Figure 5 shows two discrete magnet snake configurations which can be considered
as the analogues for the symmetric and antisymmetric helical snakes. Each vector on these
diagrams corresponds to one magnet and shows both the direction of magnetic field and
angle of spin rotation in the magnet. It is convenient to consider STM for both discrete
schemes as a product of two parts dividing the snakes in the center. Due to the symmetry
in the snake field configurations the STM can be written as a product:

S=(ioA-iaob)(ioA-iaoii) (24)

Then the condition for the spin to rotate by 180 degrees can be written for both snakes
in the form:

2 (-.-.)A - a·b =0

For the symmetric snake shown in Figure 5:

A 0/2 (1 2· 2 0/1 2) . 0/2 . 'tIl' •=cos - - SIn - cos a + sIn ----. sIn 'P 1 SIn a
2 2 2

-. ( 0/2. 'tIl'· 0/2 'tIl'a = cos 2 SIn 'PI cosa - SIn 2 cos 'PI;

0/2 . 2 0/1 . 2 . 0/2 . 'tIl'· 0)cos 2 SIn 2 SIn a - SIn 2 SIn 'P 1 SIn a; ,

b= (ax; -as; 0)

(25)

(26)
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TABLE 3: Discrete six magnet analogue for the symmetric helical snake.

71

Angle of spin rotation in the first magnet

Angle of spin rotation in the second magnet

Orientation angle of the first magnet

Angle the snake must be rotated

around S-axis to obtain radial snake axis

Field integral (fB dl)

Snake axis CPs

0/1 =125.82 deg

0/2=135.172 deg

a=57.51 deg

,8=30.455 deg

23.574 T'm

radial

where 1/11, 1/12 are angles of spin rotation in the first and second snake magnets and a is the
first magnet orientation angle.

The axis of spin rotation in the discrete system doesn't contain longitudinal
component as well as the symmetric helical snake. Hence, if the whole snake is
properly rotated around longitudinal direction the snake axis is exactly radial. Similarly
to the helical snake the discrete analogue can be split in two parts since each half restores
particle velocity. On the other hand, the third and the forth magnets are identical; therefore,
they can be made as one long magnet. This snake scheme has one free parameter which
can be varied in order to obtain minimum field integral. The numerically obtained sample
solution which gives close to minimum field integral is given in Table 3.

As an analogue of the antisymmetric helical snake we consider the five magnet system6

shown in Figure 5 that approximates helical field of the snake. It has the vertical projected
field antisymmetric and the horizontal projected field symmetric as well as the helical snake.
Therefore, angle of spin rotation in the third snake magnet is equal:

1/13 = 21/1 = 21/11 cos a (27)

where 1/11 is angle of spin rotation in the first magnet and a is the first magnet orientation
angle.

The snake STM also can be written in form (24) where for this scheme:

A 1/1 ( 1/11 1/12 . . 1/11 . 1/12 ) . 1/1 . 1/11 1/12= cos - cos - cos - + sIn a SIn -'- SIn - + cosa SIn - SIn - cos-
2 22 22 222

-+

a=

cos a cos Y!.. sin 0/1 cos 0/2 - sin t (cos 0/1 cos 0/2 + sin a sin 0/1 sin 0/2)
2 2 2 2 2 2 2 2

sin t (sin a sin 0/1 cos 0/2 - cos 0/1 sin 0/2) - cos a cos t sin 0/1 sin 0/2
2 2 2 2 2 2 2 2

COS ~ (cos tl sin t2
- sin a cos t2 sin tl

) - cos a sin ~ sin tl sin t2

(28)
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TABLE 4: Five magnet snake examples (lgap=O.4m, B = 1.7 T).

a (deg) 0/1 (deg) 0/2 (deg) 0/ (deg) CPs (deg) JB dl (T'm)

49.82 101.7 148.3 65.61 75.28 19.24

47.97 102.6 144.3 68.6~ 71.23 19.23

45.79 104.4 140.3 72.8 66.02 19.35

43.13 108 136.9 78.82 58.48 19.73

41.38 111.6 135.7 83.74 52.23 20.17

40.12 115.2 135.8 88.1 46.49 20.66

39.17 118.8 136.7 92.1 41 21.18

38.46 122.4 138.2 95.84 35.62 21.72

37.94 126 140.2 99.38 30.27 22.28

and since b = (ax; ay ; -az) the resulting snake axis lies in the horizontal plane. The
five magnet snake has one free parameter which can be varied in order to obtain different
snake axis orientations. This is an advantage over the antisymmetric helical snake, however
the total field integral of the helical snake is smaller. Table 4 contains solutions for the
five magnet snake obtained by varying the angle of spin rotation in the first magnet as a
free paranieter and assuming for the snake 0.4 m gap between magnets and 1.7 Tesla field
strength in all magnets.

6 CONCLUSION

Helical magnetic fields are commonly used for producing circularly polarized synchrotron
radiation. The magnet period in such helical undulators lies in the range 20-200 mm. In
this paper we have considered another application of the helical system with the magnet
period of several meters for constructing spin rotators. We discussed the ideal case when
the spin is rotated by the field on the axis of the helix. However, in practice one should take
into account off-axis fields in the helix and also the effect of particle orbit excursion. Field
quality in the helix is proportional to the factor (r2n / L)2 , where L is the magnet period and
r is off-axis distance. Therefore, even at 10 cm orbit excursion the off-axis fields are small
for the helix with 6 m period. The particle orbit excursion itself ·causes small variations of
the snake spin rotation angle and the snake axis orientation, that can be neglected in the first
approach. It is also to be noted that the siberian snakes have small focusing effect on orbital
motion in the accelerator.8 This cause excitation of the lattice structure· functions and may
require local quadrupole correction.

Finishing our consideration we emphasize features of the described snake schemes
and their advantages and disadvantages. Both helical snake configurations doesn't require
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external orbit correction. The symmetric helical snake can be split in two separate magnets
while antisymmetric is a one unit magnet. Practical application of the helical snakes may
be constrained by the maximum orbit excursion in the snakes, which is at 20 GeV 18 cm
for the symmetric snake and 13 cm for the antisymmetric snake assuming 1.7 Tesla field
in the helix. The symmetric helical scheme has radial snake axis and for the antisymmetric
scheme the snake axis orientation is 39.47° from the radial direction. Both helical snakes
have discrete magnet analogues with the same properties but larger orbit excursion and field
integral. These discrete schemes can be used in accelerators with higher injection energies.
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