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POTENTIAL WELL DISTORTION EFFECTS
FOR A PARTIALLY FILLED RING
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A novel analytic treatment of the multi bunch potential well distortion for a partially filled ring is presented. We
start with a standard set of wake field-coupled equations ofmotion describing a train of M consecutive bunches in a
storage ring ofharmonic number N, where the wake field effects are separated into: the mode loss, the synchrotron
tune shift (both due to potential well distortion) and the coherent multi-bunch coupling. Unlike in the case of
completely filled ring, now, the first two quantities vary from bunch to bunch. Here, we evaluate both quantities
analytically (using contour integration technique) for a general situation of a partially filled ring (M<N), where
individual bunches are mutually interacting via wake fields generated by resonant structures. Resulting simple
analytic formulas describe the mode loss and the synchrotron tune shift experienced by a given bunch within the
train, as a function of the resonance frequency, UJr , and the quality factor of the coupling impedance, Q. The first
formula reveals resonance frequency regions in the vicinity of the integer multiples of the r.f. frequency, N UJo ,

where the mode loss response is still equal for all bunches (its absolute value scales as M). It also identifies the
second (denser) set of characteristic resonant frequencies, spaced by the multiples of NUJo/M, at which the mode
loss is not only bunch independent, but also considerably smaller (it scales as M Q-2). Conversely, our analytic
formula identifies frequency regions, where bunch-to-bunch variation of the mode loss is the strongest (UJr at odd
multiples of N UJo12M). Similarly, an analogous analytic formula describing the amount of synchrotron tune shift
suffered by different bunches was derived. Both analytic expressions can give one an insight as to optimizing
various schemes; e.g. how to modify the existing configuration of parasitic cavity resonances (via frequency
tuning), so that the resulting bunch-to-bunch spread of the mode loss and/or the synchrotron tune spread could be
instrumental in stabilizing (via Landau damping) some unstable modes of the coupled bunch instability. A number
of other possible applications of the presented formalism emerge from the fact that for a given configuration
of cavity resonances one can get immediately a simple quantitative answer in terms of the mode loss and the
synchrotron tune shift experienced by each bunch along the train.

KEY WORDS: Collective effects, storage rings

1 INTRODUCTION

While coupled multi-bunch motion for a symmetric configuration of populated buckets in
a storage ring has been extensively studied and the stability problem has a closed analytic
solution1 for most standard wake fields a fully populated ring is rarely the case for any
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operational mode of a realistic synchrotron. As a beam is injected and extracted to and from
a storage ring there is always a gap of missing bunches to accommodate injection/extraction
kickers. Even a small gap breaks down the symmetry of a coupled multi-bunch motion. Quite
often, an extremely no:Q. symmetric situation is present in high energy colliders, where a
relatively short train ofbunches is being accelerated in a long storage ring; e.g. during bunch
coalescing.

Here, we present a rigorous treatment of the potential well distortion effects for a non
symmetric configuration of populated buckets. We formulate the problem in the framework
of a system of differential equations of motion for individual bunches coupled via wake
fields. First, we extract the non symmetric mode loss and the synchrotron tune shift terms
from the rest of the multi-bunch coupling. The core of this paper is an analytic method,
involving contour integration in complex frequency domain, which yields a pair of closed
expressions describing the mode loss and the synchrotron tune shift, driven by a general
resonant impedance, for the case of partially filled ring.

Both quantities, the mode loss and the synchrotron tune shift, are expressed in terms of
explicit functions of: the bunch index, the resonance frequency and the quality factor of
the impedance peak. Superimposing many parasitic cavity modes one can use the above
formulas to choose appropriate tuning of existing configuration of parasitic modes to
minimize mode loss effects.

2 COUPLED MULTI-BUNCH MOTION

We assume a storage ring of a harmonic number N populated by a train of M consecutive
bunches, where M ::s N. We will confine our consideration the dipole mode of the
longitudinal motion only. Therefore, it will be sufficient to model each bunch as a macro
particle combining intensity of the entire bunch. To describe a coupled motion of a system
of M bunches one can represent a state of the system at a given time by the following vector
in the M-dimensional configuration space RM

Yl (t)

Y2(t)

Iy(t)) = (2.1)

where the n-th component of the above vector describes the longitudinal coordinate of
the n-th bunch (Yn is the phase of the bunch with respect to the center of an unperturbed
bucket). The steady state value of Yn is in general non-zero - except for the case of a
machine operating with harmonic number one.

Collective synchrotron motion of the system on M bunches coupled via wake fields can
be described by the following set of equations of motion1,2
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(2.2)

NoroY]wo
A:= .

21l'y

Here W' is the time derivative of the wake function, w is the unperturbed synchrotron
frequ~ncy, 1] is the phase slip factor, c is the velocity of light, ro is the classical proton
radius, Wo is the revolution frequency and To is the revolution period. The index k gives the
sum of the wake fields from all previous turns.

The argument of the wake function in the right hand side of Equation (2.2) can be
separated into a large part given by the bunch separation and a small correction of the order
of the relative bunch displacement due to the synchrotron motion. Taylor expansion of the
wake function with respect to the difference of bunch displacements (up to the linear term)
allows one to rewrite the set of equations of motion as follows

(2.3)

1 00 M-l (( m- n) )
+A~ k~OO; WI! - k + --;:.;- To [Yn(t) - Ym (t - (k + m~ n) TO] .

We can identify the first term in the right hand side ofEquation (2.3) with the mode loss3,4
suffered by the n-th bunch. It explicitly depends on the bunch index n. One can notice in
passing, that the mode loss can be viewed as a shift of the minimum of the potential well
(a trivial distortion). It is simply related to a physical observable that is readily measurable;
that is the synchronous phase shift. We will denote the mode loss by In.

(2.4)

Two ingredients of last term in Equation (2.3) have the following physical interpretation.
The term in W"Yn indicates how the wake field changes with respect to variations of the
observation point Yn on the present tum, while the wake field sources Ym := 0 are held
constant. Similarly, the term in W"Ym indicates how the wake field at location Yn := 0
(on the present tum) changes with respect to variations of the sources Ym on the present
and all previous turns. The difference in sign between the two terms arises because the
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wake field depends on the separation of its sources and the observation points, that is the
difference of their locations. Furthermore, the term proportional to Yn in the right hand
side of Equation (2.3) can be absorbed by the synchrotron frequency. This is known as the
synchrotron frequency shift due to the potential well distortion4,S (change of its curvature);
it will be denoted by ~w~. This term can be absorbed to redefine the perturbed synchrotron
frequency corrected according to the following expression

(2.5)

where

L\w~ = A~ k~OO~ W" (- (k+ m~n) TO)

Here, W n - the corrected synchrotron frequency of the n-th bunch explicitly depends on the
bunch index n. Both In and ~w~ will be evaluated explicitly in the next section.

Now the set of equations of motion, Equation (2.2), can be rewritten as follows

a
2

( 2 2)at2Yn (t)+ W -~Wn Yn(t)=ln+ (2.6)

where the last term in the right hand side of Equation (2.6) represents the coherent multi
bunch wake field coupling term, which may result in a collective synchrotron motion of
bunches - a multi bunch instability.

The resulting set of equations of motion, Equation (2.6), along with a convenient
representation of the wake field coupling in terms of the longitudinal impedance, will be
analyzed in the complex frequency domain later in the paper.

3 MODE LOSS AND SYNCHROTRON TUNE SHIFT - FULL VS PARTIALLY
FILLED RING

To evaluate both the mode loss term and the synchrotron frequency shift due to the potential
well distortion it is convenient to express them in terms of the longitudinal coupling
impedance. The time derivative of the wake function is related to the longitudinal impedance
via the inverse Fourier transform as follows

00

W'(t) = ~ f dweiwtZII(W),
2rr

-00

Similar relationship holds for the second time derivative of the wake function

(3.1)
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00

W"(t) = -~ / dw w eiwtZII(W) .
2Jrl

-00

23

(3.2)

One may substitute Equation (3.1) and (3.2) into Equation (2.4) and (2.5) respectively.
The resulting expressions are written as follows

and

00 M-l 00

In = ;;A L L / dw e-iw(k+mNn TOZIl (w) ,
k=-oo m=O-00

00 M-l 00

A / . (k+m-n)r.
~W~ = -. L L dw w e-

zw
-,:r °ZII(w) ,

2Jrl k=-oo -m=O
-00

(3.3)

(3.4)

Infinite summation over k can be carried out explicitly using a trivial version the Poisson
sum identity:

00 00L e-iwkTo = Wo L 8(w - pwo)
k=-oo k=-oo

(3.5)

Substituting Equation (3.5) in Eqs. (3.3) and (3.2) one can also carry out integration over
w. The resulting expressions are given by

and

A 00 M-l
c ~ ~ 2 . n-mIn = WO- ~ ~ ZII(PWO) e rrzPJr,

2Jr k=-oo m=O

A 00 M-l
2 ~ ~ 2 . n-m

/).wn = Wo-. ~ ~ (pWO) 211 (pWO) e rrzp -,:r .
2Jrl k=-oo m=O

(3.6)

(3.7)

Applying a simple sum identity, Equation (AI), to Eqs. (3.6) and (3.7) one can rewrite them
in the following form

A 00 M-l M-l

In = W0
2

; L L e2rril -'N ZII «Nq +l)wo) L ~-2rrilN , (3.8)
q=-oo [=0 m=O

and

A 00 M-l . n M-l

~w; = w0
2ni

L L e21C11N [(Nq +l)woJ ZII (Nq +1) wo) L e-2rrilN , (3.9)
q=-oo [=0 m=O
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The last summation (over m) in Equation (3.8) and (3.9) can be carried out explicitly,
Equation (A3) and (A5), (see Appendix A). The resulting formula is written as follows

(3.10)l=O ... N-l.
M-1 sin Jr 1M

B '""" - 2rr i I!!:!. rr i L (M-1) N
1=L...Je N=e N . I'

m=O SIn Jr""&

One can immediately see that in case of the full ring (M = N) the above expression,
Equation (3.10), reduces to the following simple form

BI = N81,O, l=O ... N-l. (3.11)

Substitution Equation (3.11) into Equation (3.8) and (3.9) and carrying summation over 1
yields the following set of expressions for the full ring

A 00

(f)fu1l = wo---"::"'N L ZII(Nqwo) ,
2Jr q=-oo

(3.12)

and

A 00

(!:J.w2
) = wo-.N L (Nqwo) ZII(Nqwo). (3.13)

full 2Jrl q=-oo

We notice in passing that in the above expressions, Equation (3.12) and (3.13), the bunch
index, n, is no longer present. This simplicity, granted by the symmetry of the bunch
configuration is inherent to the full ring case only. For the general partially filled ring case
(M < N) both quantities: In and ~w~, given by Equation (3.8) and (3.9) vary with the
bunch location within the sequence. In the next two sections we will derive analytically
a simple set of closed formulas describing In and ~w~ in the case of partially filled ring
(M < N) driven by a general resonant impedance.

4 FUNDAMENTAL AND PARASITIC MODE LOSS

We wish to evaluate the general mode loss function, In, given by Equation (3.6), where
n = 0, ... ,M - 1 for the case of partially filled ring (M < N). Summing explicitly over
m, one can" rewrite Equation (3.6) into the following convenient form

A 00 1 -2rri (pwo ) N~
C '""" 2rri(pw) n - e 0In = Wo- L...J e 0 Nwo ZII (pwo) . 1

2Jr 1 - 2rrl (pwo ) -N'"p=-oo - e LVO

00

L F(pwo) (4.1)
p=-oo

The last part ofEquation (4.1) highlights generic sampling structure of the above expression.
Applying the following form of the Poisson sum identity

00

00 00 I! 2rr i J£..
p~oo F(pwo) = q~OO W

o
dw e q Wo F(w) ,

-00

(4.2)
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to Equation (4.1) one can express it in the following form

00 1 100
e2Jri (q+w )c£; _ e2Jri (q- M;n) c£;

In = iAc L -. dw ZII(W) 2 0 w
q=-oo 21T l 1 - e - Jrl Nwo

-00

Introducing two kinds of generic integrals, namely:

00 2 ok w
1 1

Jrl N(;)+ e 0

] (k) = -. dw ZII (W) 2 0 w ,
21T l 1 _ e- Jr 1 N Wo

-00

and

00 2 ok w
1 1 e - Jrl Nwo

]-(k) = -. dw ZII(W) 2 0 w ,
21T l 1 _ e - Jrl Nwo

-00

one can express the mode loss term, Equation (4.3), in the following compact form

In =iAc {I+(n) - r(n)+)~ [I+(Nq + n) + r(Nq - n)+

- ]+(Nq - (M - n)) - ]-(Nq + (M - n))]} ,

25

(4.3)

(4.4)

(4.5)

(4.6)

Assuming general form of the longitudinal impedance of a resonant structure, given by
the following standard expression:

R
ZII(w) = ( )'1 + i Q !!2. _ W r

W r W

Q» 1 (4.7)

where R is the shunt resistance, Q is the quality factor ofthe resonator and W r is its resonance
frequency, one can evaluate integrals ]+ (k) and]- (k) explicitly via contour integration (see
Appendix B). The resulting expressions given by Equation (B5) and (B6) are summarized
as below

1 1 00 R [ 2Jrik.!!!:L+ w+e N~
] (k) = -wo-.N L ZII(Npwo)-i- ° w+

2 21Tl 2Q 1 -2Jrl-Nh,p=-oo - e UJO

and

1 1 00

]-(k) = --wo-.N L ZII(Npwo) ,
2 21Tl p=-oo

w_e2Jrik~ ]

1
-2Jri~ ,(4.8)

- e Nwo

(4.9)



26 S.A. BOGACZ

where the singularities of ZII(w) are defined by the following pair of complex poles w±
located in the upper half plane

1
w± = wr (±1 + i8), 8 = - « 1 . (4.10)

2Q

Substituting the above integrals, Equation (4.9)-(4.10) into Equation (4.6) one can carry out
remaining infinite summation over q, which converges to the following simple expression

00 w± 21Tik :±
L 21Tiq- e 0

e Wo =----2 .w±
q=1 1 - e 1T l Wo

since 1m w± > o. (4.11)

Finally, one can rewrite Equation (4.6) in the following form

Ac 00

fn = wo-N L ZII(Npwo)+
2Jr p=-oo

(4.12)

(4.13)

The first term in Equation (4.12) can be immediately identified with the mode loss term for a
fully populated ring, (f)full, given in the previous section by Equation (3.12). Furthermore,
(f)full was evaluated explicitly for our model resonant impedance, Equation (4.7), at the
and of the Appendix B (see Equation (B.14)). The result can be summarized as follows

( 1TWr ) 1 sin (21TWr )

(f)
AcRwo (Jrwr ) 2 Nwo - '2 Nwo

full = --- -- N8 2 .
Jr Nwo sin2 (1TWr ) + (1TWr ) 82

Nwo Nwo

The above quantity is plotted for our numerical example in Figure 1. One can see, that the
peak value scales with the total number of bunches, N, and the width (FWHH)·ofthe peak
in Figure 1 is determined by the following identity:

k
ti..wr = ±Nwo-.

2Q

Introducing a new function r(w) defined by:

21T in-N
w (1 21T i(N-M)-N

W
)e Wo -e Wo

r(w) - --------- (1 - i rr i N%o ) (1 _e2rr i;£;-) ,

one can express fn in the following compact form

(4.14)

(4.15)

(4.16)
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N = 1000
Q= 100

3.8 4.2

FIGURE 1: Completely filled ring - dimensionless mode loss, !, as a function of the resonance frequency, w"
of the coupling impedance.

Employing symmetry of r(w), namely

r(-w*) = r*(w),

and the fact that w_ = -wt, one can rewrite Equation (4.16) as follows

(4.17)

(4.18)

Cutting through some tedious algebra explicit expressions for Re[r(w+)] and Im[r(w+)]
were worked out as an expansion in 8 (keeping up to quadratic terms in 8). Substituting
them along with Equation (4.13) into Equation (4.18) one obtains the final formula for in

{

M ( rrw, ) 1N sin (2rrw, )
in =AcRwo (Jrwr ) 82 ~ - 2: NW; +

Jr N W o sin2(rrw, ) + (rrw, )2 82
Nwo Nwo

sin (rrw,) sin (rrw, M.) cos (rr.w.'. (2n - M - 1») }Nwo Nwo Nwo

(4.19)
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M= 11
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(4.20)

FIGURE 2: Partially filled ring - dimensionless mode loss, j, acting on the n-th bunch as a function of the
resonance frequency, W r , of the coupling impedance.

Denoting the expression in curly bracket by in, one can introduce a dimensionless mode
loss. Figure 2 illustrates a family of curves for different values of n, calculated according to
Equation (4.19). As one can see Equation (4.19) has a simple asymptotics for the resonace
frequencies, W r , in the vicinity of the integer multiples of the r.f. frequency, kNwo , and
away from them. These two asymptotic regions are determined by the relative strength of
the expressions appearing in the denominator of Equation (4.19), namely: sin2 (rrx) and
(rrx)2 82 . It is convenient to introduce a dimensionless resonance frequency, x, (in units of
the r.f. frequency) namely,

W r
X=-

Nwo

Now, 'the immediate vicinity of the integer multiple of the r.f. frequency' is defined by the
following inequality

which can be rewritten into the following simple form

Ix - kl «k8 .

The remainder of the frequency domain, namely resonance frequencies given by

Ix - kl »k8 ,

(4.21)

(4.22)

(4.23)
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N =1113
M= 11
Q=300
n=O

7.

29

FIGURE 3: Asymptotics of the dimensionless mode loss, in, acting on the O-th bunch for resonance frequencies,
W r , at the 'immediate vicinity' and 'away' from the multiples of the r.f. frequency.

are considered to be 'away from the multiples of the r.f. frequency' - the inequality given
by Equation (4.21) reversed.

Applying the above asymptotics, Equation (4.21)-(4.23), to Equation (4.19) (neglecting
either sin2 (Jrx) or (Jrx)28 2, term in the denominator) reduces Equation (4.19) to the
following simple expression

{

M - N sin(2Jrx) _ 4Q2(_l)k(M+l) sin(Jrx) sin(JrxM)

(
,.., )asym _ 2Jrx JrX JrX

in -
si~(JrxM) cos(Jrx(2n - M - 1))

Sln(JrX)

for Ix - kl « k8

for Ix - kl » k8
(4.24)

Figure 3 illustrates a comparison between the exact formula, hex), Equation (4.19), and
its asymptotic version, given by Equation (4.24). One can notice, that for the resonance
frequencies in 'the immediate vicinity of the integer multiple of the r.f. frequency' (the
first asymptotic region in Equation (4.24)) the resulting mode loss does not depend on the
bunch index, n, and it is governed by the quality factor, Q. Conversely, for the resonance
frequencies 'away from the immediate vicinity of the integer multiple of the r.f. frequency'
(the second asymptotic region in Equation (4.24)) the resulting mode loss does not depend
on the quality factor, Q, and it is governed strictly by the bunch index, n. Therefore, for
parasitic modes at resonance frequencies 'away from the immediate vicinity of the integer
multiple of the r.f. frequency', which is usually the case, the so called 'de-Q-ing' of the
modes does· not have any effect on the beam loading forces experienced by individual
bunches; see Equation (4.24).
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N =1113
M =11
Q=300

-5

FIGURE 4: Dimensionless mode loss, in, acting on the n-th bunch for resonance frequencies, UJr, 'away from
the immediate vicinity'.of the multiple of the rJ. frequency. The mode loss vanishes for a discrete set of resonant

frequencies defined by the fractional, it, multiples of N wo .

Furthermore, the structure of Equation (4.24) (zeros of sin(Jrx M)) reveals another finer
level of symmetry governed by the fractional, it, multiples of N W o . Indeed, as seen in
Figure 4, the mode loss vanishes up to terms of 0(82 ), for a discrete set of resonance
frequencies defined by

W r = (k + ~) Nwa , l = 1,2, ... ,M -1. (4.25)

These resonance frequencies are clearly marked in Figure 4 (arrows). Similarly, one can
find frequency regions where bunch-to-bunch variation of the mode loss is the strongest 
they are defined by the extremes of sin(JrxM), which is also illustrated in Figure 4.

5 SYNCHROTRON TUNE SHIFT

We wish to evaluate general form of the synchrotron tune shift, ~w~' given py Equation
(3.6), where n = 0, ... ,M - 1 for the case of partially filled ring (M < N). Summing
explicitly over m, one can rewrite Equation (3.6) into the following convenient form

A 00 1 -2ni(pwo ) N~ 00
2 c L 2ni(pw) n - e 0 L

~wn = wO-. e 0 Nwo (pWO) ZII(pwO) . 1 = G(pWO)
2Jr l 1 - 2n l (pwo ) -Nh\p=-oo - e UJO p=-oo

(5.1)
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The last part of Equation (5.1) highlights generic sampling structure of the above formula.
The above expression, Equation (5.1), resembles Equation (4.1) - the starting point of

the previous section; in fact one can apply exactly the same method, as used in Sec. 4, to
evaluate the synchrotron tune shift. Repeating a whole sequence of steps from the previous
.section, described by Equation (4.2) - (4.11), one obtains an analog of Equation (4.12),
which can be written as follows

2 Ac 00

!1wn = Wo-.N " (Npwo) ZII (Npwo)+
2Jrl L.-J

p=-oo
(5.2)

(5.3)

[
22rr in N

W
+ (1 2rr i(N-M) N

W
+ ) 22rr in N

W
- (1 2rri(N-M) N

W
- )]R W+ e Wo - e Wo w_ e Wo - e Wo

-Ai- - -------------
2Q ( 2· W+ ) ( 2· W+ ) (2 . w_ ) ( 2· w_ ) •1 - e rr 1 N Wo 1 _ e rr 1 Wo 1 _ e rr1 N Wo 1 _ e rr1 Wo

Similarly, the first term in Equation (5.2) can be immediately identified with the synchrotron
tune shift for a fully populated ring, (!1w2) full , given before by Equation (3.13). Furthermore,
it was evaluated explicitly for our model resonant impedance, Equation (4.7), in the
Appendix C (see Equation (C.12». The result can be summarized as follows

1

{

sin (
2rrw

r) + 282
(rrwr ) 2 cos

1

(-2
1
rwr ) }

( 2) 2 Nwo Nwo
!1w = - ARwr 8 2

full 2 sin2 (rrwr ) + (rrwr ) 82 "2 r wr
Nwo Nwo

Here, r is a characteristic bunch length in units of time. Using previously defined function
f(w), Equation (4.14), one can express !1w~ in the following compact form

2 (2 .R [2 ( ) 2 ]/':;.Wn = /':;.W >tull - Al
2Q

w+r w+ - w_r(w_) .

Employing symmetry of f(w), Equation (4.16), and the fact that w_
rewrite Equation (5.4) as follows

(5.4)

-w+, one can

!1w~ = (!1w~) +A~ 21m [w~ f(W+)] . (5.5)
full 2Q

Substituting the explicit expressions for Re[f (w+)] and Im[f (w+)] along with Equation
(5.3) into Equation (5.5) one obtains the final formula for !1w~

{

M82 (rrwr ) + 1N sin (2rrwr )
2 AWowr R To ( r ) (Jrwr ) Nwo 4: Nwo

!1w =--- - -- cos JrN- + -- +
n Jr Q 2r To N Wo sin2 (rrwr ) + (rrwr )2 82

Nwo Nwo

1sin (rrwr ) sin (rrwr M) sin (rrwr (2n - M - 1») }Nwo Nwo Nwo
(5.6)
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The above expression is still divergent with respect to r -+ O. It is worth noting, that part
of the problem derives from using a resonator model over the infinite frequency domain,
whereas this model is only an accurate model of a fundamental or parasitic cavity mode
close to resonance. Denoting the expression in curly bracket by ~w~, one can introduce a
dimensionless square of the synchrotron tune shift. Its asymptotic behavior for the resonant
frequencies, W r , in the vicinity of the integer multiples of the r.f. frequency, N wo , namely:

wr=kNwo+~wr, (5.7)

is determined by the relative strength of the expressions appearing in the denominator of
Equation (5.6). As before, we define the immediate vicinity of the integer multiple by the
inequalities given by Equation (4.21) or Equation (4.22). If these conditions are satisfied,
Equation (5.6), reduces to the following simple expression:

-2 To ( r )~w = - - cos JrN - + M
n 2r To '

(5.8)

(5.9)

where a bunch independent square of the synchrotron frequency shift scales as the total
number of bunches, M. As an example, we assign a realistic value of a bunch length, in
terms of the bunching factor, Nt, equal to 0.1, the first term in Equation (5.8) can be
evaluated approximately as follows

To ( r)- cos Jr N - ~ 5N .
2t To

Outside the immediate vicinity ofthe integer multiple (inequality, Equation (4.21), reversed)
our expression, Equation (5.6), assumes the following asymptotic form:

-2 1 (Jrwr )~w = -5N + - N --
n 2 Nwo (

Jrwr ) Q sin (~:M) sin (~: (2n - M-1))
cot -- - ------.,;...------------

Nwo sin (rrwr )
Nwo

(5.10)
which does not depend explicitly on the resonance width, 8. Apart from the integer multiples

of the r.f. frequency, N W o , the structure of Equation (5.6) (zeros of sin (;~: M)) reveals

another finer level of symmetry governed by the fractional, -k, multiples of N W o . Indeed,
the third (bunch index dependent) term in Equation (5.6) vanishes for a discrete set of
resonant frequencies defined by

1=1,2, ... ,M-l (5.11)

The amount of the synchrotron tune shift for these resonant frequencies does not depend
on the bunch index. Conversely, one can find frequency regions where bunch-to-bunch
variation of the synchrotron tune is the strongest. From Equation (5.10) one can easily

identify them with the extremes of sin ( ~: ), namely
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1=1,2, ... ,M-1 (5.13)

One can see from Equation (5.6) and (5.10) that the synchrotron frequency shift in case
of a partially and completely filled ring are almost the same, since the third term in both
equations is very small compare to the first two. Figure 5 illustrates the case of a completely
filled ring (for N = 1000 and Q = 100), where the synchrotron frequency shift denoted by
(~w2)full, extracted from Equation (5.6) is plotted as a function of the resonance frequency,

W r ·

To illustrate a small bunch-to-bunch variation effect, a family of curves ~w2 - (~w2)full

is plotted as a function of W r in Figure 6 (N = 1000, M = 10 and Q = 100). All
the asymptotic features of the synchrotron tune shift, we discussed above, are visible in our
example.

6 SUMMARY

Both potential well distortion characteristics: the mode loss and the synchrotron tune shift
experienced by a given bunch within the train, were calculated analytically (using contour
integration technique) for a partially filled ring (M < N). Here individual bunches are
mutually interacting via wake fields generated by resonant structures. Resulting simple
analytic formulas express both quantities, as a function of the resonance frequency,. W r , and
the quality factor of the coupling impedance, Q.

Both formulae reveal, that for resonator natural frequencies in the vicinities of the integer
multiples of the r.f. frequency, N wo , the beam loading response is equal for all bunches
(its absolute value scales as M). It also identifies the second set of characteristic resonant
frequencies, spaced by the multiples of N wo / M, at which the potential well distortion
characteristics are not only bunch independent, but also considerably smaller (it scales
as M Q-2). Further we identified another interesting set of resonance frequencies (wr at
odd multiples of N wo /2M), where bunch-to-bunch variation of the mode loss and the
synchrotron tune shift is the strongest.

Finally, for a given configuration of cavity resonances one can get immediately a simple
quantitative answer in terms of the mode loss and the synchrotron tune shift experienced
by each bunch along the train6. These analytic expressions give one an insight into various
optimizing schemes; e.g. to modify the existing configuration of parasitic cavity resonances
(via frequency tuning), so that the resulting potential well distortion effects are minimized.
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FIGURE 5: Completely filled ring - dimensionless square of the synchrotron tune shift, D..;;}, as a function of
the resonance frequency, (J)r, of the coupling impedance.
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FIGURE 6: Partially filled ring - dimensionless square of the synchrotron tune shift, D..W~, experienced by the
n-th bunch as a function of the resonance frequency, (J)r, of the coupling impedance.
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APPENDIX A

The following useful summation identity can be proven by inspection

35

(A.I)
00 00 N-I

L F(pwo) = L L F «Nq + l)wo) ,
p=-oo q=-oo z=o

where F is an arbitrary continuous function and N is a positive integer. Indeed, any integer
p can be written as p = N q + l, where the numbers q and 1are unique (there is one-to-one
correspondence between p and a pair (q, l)). Therefore summation over p is equivalent to
a double summation over q and l.

Let us evaluate the following sum of the first M N -th roots of unity, M ::s N

M-I

L 2 ' J-t-V
A - e rrlm /iT"j.LV - ,

m=O

JL=O N-I

v=O N~I

(A.2)

The above sum is in fact a sum of a geometric series, which can be easily evaluated as

rr J-t-V (M-I) sin Jr(JL - v)~
Aj.Lv = e N • j.L-v •

SIn Jr t:I

One can see that for M = N, the above equation simplifies as follows

(A.3)

(A.4)

We notice in passing that the general form of Aj.Lv, given by Equation (A.3), depends on the
difference of JL and v. Therefore, one can identify expression Bz, (see Section 2), with AIO.

Bz = Azo,

APPENDIX B

We wish to calculate the following pair of integrals:

I foo e2rr ik N%o

[+(k) = -. dw ZII(w) -2rri--2L '
2Jrl I - e Nwo

-00

and

00 2 'k w
I f e- rr l Nwo

[-(k) = -2' dw ZII(w) . 2' w ,
Jr l I _ e- rr l N Wo

-00

k~O

(A.5)

(B.I)

(B.2)

Assuming general form of the longitudinal impedance of a resonant structure, given
Equation (4.7), one can rewrite it in the following form
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wr w
ZII(W) = -iR- (B.3)

Q (W - W+)(W - w-)

where the singularities of Z II (w) are defined by the following pair of complex poles w±

(located in the upper half plane)

w± = wr (±1 + i8),
1

8=-«1.
2Q

(B.4)

Here R is the shunt resistance, Qis the quality factor of the resonator and W r is its resonance
frequency.

Both integrants, written explicitly in Equation (B 1) and (B2), have the same configuration
of singularities in the complex w-plane. It includes a pair of poles, w±, in the upper
half-plane, introduced by ZII (w) and an infinite array of poles located on the real axis
at integer multiples of N wo . This last set ofpoles is introduced by the zeros of the following

denominator: 1 - e-2n i N~o , which appears in both Equation (B 1) and (B2). Furthermore,
the integrant of ]+ (k) restricted to a semi-circle of radius R, closed in the upper half-plane,
vanishes exponentially with R -+ 00 (faster than ~). Similar property holds for the integrant
of ]-(k) in the lower half plane.

Now we are ready to employ Cauchy's integral theorem to evaluate principle value
integrals ]+ (k) and ]- (k) explicitly. Figure 7 illustrates a complete set of singularities
along with the appropriate choice of integration contours for both ]+(k) and ]-(k); C+
and c- respectively. Carrying out integration along these contours via Cauchy's integral
theorem reduces integrals ]+ (k) and ]- (k) to the following sum of residuum

[

2 Ok w+
1 1 00 R nl w-+ w+e ~

] (k)=-2 wo-.N L ZII(Npwo)-i- oW+
2Jrl 2Q 1 -2nl-N....,p=-oo - e <.vo

and

2nikl:!.=.. ]w_e Nwo

1 -2nil:!.=..- e Nwo
(B.5)

(B.6)
1 1 00

]-(k) = --wo-.N L ZII(Npwo) ,
2 2Jrl p=-oo

The infinite sum over p appearing in both Equation (B.5) and (B.6) can be rewritten via
the Poisson sum identity, Equation (4.2) as follows

00

1
00

00 IfNwo-. L ZII(Npwo) = L -. dw e2niqN~o ZII(w) ,
2Jrl p=-oo q=-oo 2Jrl

-00

(B.7)

Since both singularities of Z II, w±, are located in the upper half plane the following integral

00[ If· d e2niq N~oq=-. W
2Jrl

-00

(B.8)
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b)

FIGURE 7: Complete set of singularities along with the appropriate choice of integration contf>urs for both ]+ (k)

and ]-(k); C+ and c- respectively. A pair of poles, w±, (in the upper half-plane) corresponds to the singularities
of the coupling impedance, 211, whilean infinite array of equally spaced poles, Nwo , (on the real axis) corresponds

to the zeros of l-e-2Jri N%o

vanishes identically for q < O. Simple application of Cauchy's integral theorem along the
contours C±, illustrated in Figure 7, yields the following expression for Iq , if q > 0

. R [ 2Jrik.!:!±.- 2Jrik!:!.=-]1q = -12Q w+e Nwo -w_e Nwo , for q > O. (B.9)
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The remaining nontrivial case of I q (q = 0) can be evaluated via Cauchy's integral theorem

as follows

00

1 f . R10 = -. dwRe[ZII(w)] = -iwr-·
2rrl 2Q

-00

(B.IO)

Substituting Equation (B.9) and (B.lO) into Equation (B.7) one can carry out the remaining
summation over q employing the following convergence formula

00 2rri~

L
2 . w± e Nwo

e rrzq Nwo = _
2 . w±

q=1 I - e rr z N Wo
since Imw± > 0 . (B.Il)

The resulting expression can be summarized as follows

[

2 . w+ 2 . w_ ]1 00 R e rr z NWo e rr z NWo

Nwo-. L ZII(Npwo) = -i- wr + w+ . w+ - w- 2 . w_
2rr1 2 Q 1 2rrz -N"·' 1 rrz -Np=-oo - e""'o - e Wo

(B.12)
where

w± = wr(±l + i8),
I

8-- 2Q' (B.13)

After some algebra one can rewrite Equation (B.12) into the following convenient form

(B.14)

(C.l)

APPENDIX C

We wish to evaluate an analog of Equation (B.7), given by the following expression

1 00

J = Nwo-. L (Npwo) ZII(Npwo) ,
2rrl p=-oo

The infinite sum over p appearing in Equation (C.I) can be rewritten via the Poisson sum
identity, Equation (4.2) as follows

00 1 /00
"" 2rr i q -!!LJ = L....J -. dw e Nwo w ZII(w) ,

q=-oo 2rrl
-00

(C.2)



a)

POTENTIAL WELL IN PARTLY FILLED RING 39

b)

FIGURE 8: Complete set of singularities along with the appropriate choice of integration contours for Jq's;
(C+ for q>O andC- for q<O). A pair of poles, w±, (in the upper half-plane) corresponds to the singularities of
the coupling impedance, ZII.

Since both singularities of Z II, W±, are located in the upper halfplane the following integral

00I! 2rriq -5!L..Jq = -. dwe Nwo w ZII(w) ,
21fl

-00

(C.3)

vanishes identically for q < 0 (see contour C- illustrated in Figure 8b). Simple application
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of Cauchy's integral theorem along the contour C+, illustrated in Figure 8a, yields the
following expression for Jq , if q > 0

for q > O.. R [ 2 2rrik.:::±. 2 2rrik~ ]J = -l - W e Nwo - W e Nwo
q 2Q + - ,

The remaining nontrivial case of Jq(q = 0) can be written as follows

00

Jo = _1 ! dwwlm[ZII(w)] .
21l'

-00

(C.4)

(C.S)

One can notice that the above integral diverges for our model impedance, given by Equation
(B.3). Indeed, for large values of w, Im[ZII (w)] r-v ~, therefore, Jo r-v f~oo dw w ~ -+ 00.

This unphysical divergence can be removed assuming finite bunch length rather than a point
like bunch structure. Assuming a simple rectangular bunch of length T (in time units) one
should redefine Jo as follows

00

Jo =_l !dWP(W)Wlm[ZII(W)].
21l'

-00

where the bunch spectrum is given by

sin (!wr)
p(w) = --1--

"2 WT

(C.6)

(C.7)

(C.8)

Simple application ofCauchy's integral theorem along the contours C±, illustrated in Figure
8, yields th~/following expression for Jo

_ . R cos(1wrr)
Jo = -lWr - 1 .

2Q "2 WrT

Substituting Equation (C.4) and (C.8) into Equation (C.2) one can carry out the remaining
summation over q employing the following convergence formula

00 2rri~

L
2 . w± e Nwoe rrlq Nwo = _

2 . w± '
q=1 1 - e rr l N Wo

since 1m W± > O. (C.9)

The resulting expression can be summarized as follows

(C.10)
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where

(C.II)W± = wr(±l + i8),
I

8 = 2Q.

After some algebra one can rewrite Equation (C.IO) into the following convenient form

{

sin (2T(Wr
) + 282 (T(Wr ) 2 cos (lrwr ) }I 2 Nwo Nwo 2

J = -Rwr 8 2 - 1 .

2 sin2 (rrwr ) + (T(Wr ) 82 2 rwr
Nwo Nwo

(C.12)
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