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Beam break-up instability (BBU) growth in multigap accelerators is caused by the transverse impedance, Z.l (w),

arising from the interaction between the beam and a dipole mode in the accelerating cavities. In recirculating
induction accelerators, such as the Spiral Line Induction Accelerator (SLIA) and the Recirculating Linear
Accelerator (RLA), multiple beam pipes pass off-axis through a single radial line feed, resulting in coupling
between the accelerating gaps and destroying the cylindrical symmetry usually assumed in calculations of Z.l (w).

Using an eigenmode expansion formalism, we calculate the transverse impedance for two coupled shielded gaps.
Our calculations show that the imaginary part of Z.l (w) can be smaller or larger than the single gap value, depending
on the spacing between the gaps. An interpretation of the results is presented in terms of two resonant circuits
coupled by a transmission line, and comparison is made to previous coupled oscillator models.
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1 INTRODUCTION

The beam break-up instability (BBU) in multigap accelerators involves a resonant inter
action between the transverse motion of the beam centroid and a dipole electromagnetic
mode in the accelerating cavities.1 The coupling between the beam and a cavity i~ specified
by the transverse impedance Z-,-(w), which is a complex function of frequency w. Z-'- is
essentially the Fourier time-transform of the wake-field excited in the cavity by an off-axis
charge moving along the beam pipe. For axisymmetric gap geometries such as those in the
Advanced Test Accelerator (ATA)1 and the Sandia ET-2 accelerating module,2 Z-'- has been
calculated both analytically3,4,5 and numerically.6,7

In recirculating induction accelerators, such as the Spiral Line Induction Accelerator
(SLIA)8 and the Recirculating Linear Accelerator,9 the calculation of Z-'- and the analysis
of BBU growth is complicated by the presence of multiple accelerating gaps in a single
radial line feed. A typical geometry with two shielded gaps is illustrated in Figure 1. To our
knowledge, shielded gaps were first used in the Sandia MABE accelerator. 10 Their purpose
is to produce axisymmetric accelerating fields in each accelerator gap. The off-axis beam
pipe positions destroy the cylindrical symmetry assumed in the Z-'- calculations cited above.
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FIGURE 1: Schematic of coupled shielded gap geometry.

Furthermore, the gaps are coupled-passage of the beam through one gap produces fields
in the other.

In this paper, we present a calculation of the transverse impedance for two coupled
shielded gaps using an eigenmode expansion formalism which effectively treats the radial
line and the two gaps as a single cavity responding to the excitation of an off-axis beam
passing through one of the gaps. Mode coupling, ifpresent, is thus "built into" the formalism
in a self-consistent way. The eigenmode method restricts the treatment to geometries which
are composed of rectangular regions (see Figure 1). However, we believe that the model
captures the essential effects.

Colombant, Lau, and Chernin (CLC)ll recently analyzed gap coupling effects using
a coupled oscillator model. They concluded that the coupling reduced BBU growth.
The calculation presented here indicates that BBU growth may be larger or smaller for
coupled cavities depending on the transverse separation of the cavities. We believe that the
discrepancy lies in the fact that the CLC model assumes that the transverse impedance and
Q-factor of each cavity have the same values in the coupled configuration as they do for
single cavities. This means that the second cavity is treated as an additional, complex load
on the first cavity. To reproduce the behavior obtained from the field model, we find that
one must treat the second cavity as a replacement for part of the original load.

We note that beam recirculation complicates the calculation of BBU growth. 12 A
particular cavity may contain fields before 'the beam enters it because of cross-coupling
from an adjacent, previously excited, cavity. We do not consider these effects here.

This paper is organized as follows. In Section 2, the eigenmode expansion formalism is
discussed in detail. Section 3 contains numerical results from application of the model to
a specific coupled shielded gap geometry similar to that in the SLIA.8 In Section 4, our
results are interpreted in terms of a simple coupled resonant circuit model of Z1-, similar
to the CLC coupled oscillator model. A brief discussion and summary is presented in
Section 5.
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FIGURE 2: Geometry for two-gap calculation.

2 FIELD MODEL OF TRANSVERSE IMPEDANCE
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A charge moving off-axis through an accelerating gap produces dipole wake fields which
exert a time-dependent transverse force on subsequent particles. This time-dependent force
from a single charge constitutes a Green's function which is used in the calculation of
BBU growth. By transforming to the frequency domain and using eigenmode expansions,
the calculation of the transform of the force (the transverse impedance) is reduced to an
algebraic problem. In the present work, this technique3,S, 13 is applied to the coupled shielded
gap geometry in Figures 1 and 2.

We consider a case with two drift tubes symmetrically offset with respect to a diameter
(D) of the radial line (Figure 2). We define a cylindrical (r, () coordinate system with its
origin at the center of the beam pipe on the right in Figure 2 and () = 0 along the x axis. The
lack of cylindrical symmetry about r = 0 means that the fields excited by a displacement in
the x direction cannot be obtainedjust by rotating the fields excited by an equal displacement
in the y direction. We must calculate a Z..lx (w) (transverse impedance for x displacements)
and a Z..ly. Arbitrary small displacements can be decomposed into x and y displacements
and the gap response calculated separately. We anticipate that gap coupling effects will
be much stronger for x displacements than for y displacements. For x displacements, the
(predominantly) cos () dependence of the excited fields will have a maximum at the position
of the second pipe (() = rr), while for Z..ly, the (predominantly) sin () dependence of the
fields produces a node at () = rr, minimizing the effect of the second gap.
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FIGURE 3: Shielded gap geometry divided into regions of rectangular cross-section viz. (1) drift tube, (2) coax,
and (3) radial line regions.

Figure 3 shows how the shielded gap is divided into three rectangular regions to obtain
expansions for the fields. We now examine each region in tum.

2.1 Drift Tube (r < bl)

In the drift tube, we represent the TM and TE contributions to the electric and magnetic
fields by sums of Fourier integrals:

00

~ f sin(kdl /2) eik(z-d l/2) I n (qr) dkAz(r, Z, ()) =~ An cosn()
n=O Jrk Jn(q b1)

-00

00( ~. () f sin(kdl/2) eik(z-d l/2) [-ikn In(qr) JdkBz r,Z,(J) = ~Anslnn
n=l Jrk qbl J!t(qbl)

-00

(1)

(2)

where Az is the Zcomponent of the vector potential (Ez = i~ Az), and Bz is the Zcomponent
of the magnetic induction. All of the transverse field components may be obtained from
Equations (1) and (2) in the usual fashion. 14

To obtain Equations (1) and (2), we have followed Briggs et a1.3 in assuming that Az is
constant across the accelerating gaps:
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and that

Z < 0, Z > dl

°< Z < dl
(3)

Ao(bl, Z, ()) = °- 00 < Z < 00 (4)

Equations (3) and (4) provide an adequate approximation to the exact matching conditions
in the narrow gap case (dI < bI). (See Reference 3 for a detailed discussion.) The accuracy of
the approximation in the present case is demonstrated by the benchmark calculation present
in Section 3 below. Use of Equations (3) and (4) greatly simplifies the mode expansions
and field matching conditions at r = bl, at the expense of some generality.

2.2 Coax Region (bi < r < b2)

The Fourier-Bessel expansions for the fields in this region are as follows:

00 00

Az(r, Z, ()) = Lcosn() L [Dnm In(qm r ) + EnmYn(qmr)]coskmz (5)
n=O m=O

00 00

Bz(r, Z, ()) = L sinn() L [FnmJn(qm r ) + GnmYn(qm r )] sinkmz (6)
n=1 m=1

where km = mJr/ Land q; w2 / c2 - k;. Consistent with the discussion following
Equation (4), we require that Ae(bl, z, ()) = °and Ae(b2, z, ()) = 0, the latter condition
limiting the applicability of the model to narrow radial lines (d2 < b2). Standard Fourier
analysis then gives two sets of equations relating the coefficients Dnm , Enm , Fnm , and Gnm .

2.3 Radial Line (b2 < r)

Using the assumption of a narrow radial line we restrict the fields to be TM, represented by
a longitudinally uniform Az (Reference 3):

(7)

We now proceed to apply (a) matching conditions on the tangential fields at r = bi and
r = b2, (b) a lumped impedance boundary condition at the outer boundary of the radial
line, and (c) symmetry conditions along the diameter. The matching condition at r = bi
again follows Briggs et al.3 The return current in the drift tube wall due to the off-axis beam
is interrupted by the accelerating gap. We impose a discontinuity in Bo equal to the dipole
wall current:
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where I is the beam current and ~ is the displacement of the beam centroid from the axis
of the drift tube.

Continuity of Az at r = bl requires

dl < Z < L
(9)

o< Z < dl

At r = b2, A z and Be are continuous across the opening to the radial line, giving

00

L [Dnm In(qm b2) + Enm Yn(qm b2)] coskmz
m=O

o< Z < L - d2

L - d2 < Z < L

L - d2 < Z < L

(10)

(11)

At the outer boundary to the radial line (radius Ro in Figure 2), a lumped impedance
boundary condition is applied:

L - d2 < Z < L (12)

where Bt , the magnetic field tangential to the outer boundary, is in general a linear
combination of Br and Be. If we define a second cylindrical coordinate system (r ' , e')
with its origin at the center of the radial line (Figure 4), we see that Bt can be written as

Bt = Be cos(e - e' ) + Br sinCe - e' ) (13)

where Be, Br are evaluated along the boundary. Since this boundary is not a coordinate curve
(r = constant) of the (r, e) coordinate system, Equation (12) couples all modes together.

Finally, we apply symmetry conditions along the diameter D in Figure 2. Assuming
an excitation due to an off-axis beam in one of the gaps, we note that the symmetry
makes it possible to carry out the calculation using expansions for the fields on only
one side of the diameter D. The complete solution for the fields (on the side of D
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FIGURE 4: Schematic of off-axis pipe showing Bt tangent to outer boundary at r'=Ro.
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through which the beam is assumed to pass) is the average ofthe two solutions corresponding
to symmetric and antisymmetric "boundary cqnditions applied along D. (The symmetric
condition is 8Az/8x = 0, and the antisymmetric is Az = 0.) For this case, the complete
outer boundary consists of the semicircle at r' = Ro, -Jr/2 :::; ()' :::;n/2, and the diameter
D. In practice, the infinite sum in Equation (7) is truncated at some maximum value n = N.
The symmetry condition is applied at M equally spaced points along D, and Equation
(12) is applied at N + 1 - M points along the semicircle at equal ()' spacings. A ratio of
(N + 1 - M) / M = 3/2 proved satisfactory.

Standard Fourier analysis on the matching and boundary conditions discussed above leads
to a system of linear equations which are solved numerically for the expansion coefficients
in Equations (1) and (5) through (7). Examination of the fields within the drift tube region
shows that only the n = 1 terms in the expansions in Equations (1) and (2) contribute to
the on-axis transverse force experienced by a beam particle traversing the gap. Integration
of the force along the path r = 0, -00 < z < 00 yields the following expression for the
transverse impedance as a function of angular frequency w:
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_ dl sin(wdl/2c) -iwdI/2c /( I~ )-Al- e -
hI Wdl/2c ChI

(14)

Multiplication by 3D/hI (cm) gives the transverse impedance in units of Q/cm.

3 NUMERICAL RESULTS FROM FIELD MODEL

We now present result~ obtained from the model in Section 2 for the cavity parameters in
Table 1. These parameters are based on those of the SLIA accelerator.

TABLE 1: Shielded gap parameters.

(em)

Beam pipe radius, bI 5.72

Coax radius, b2 7.2

Coax length, L 20.

Gap width, dl 2.0

Radial line width, d2 2.0

The value of 2 cm for the accelerating gap is significantly smaller than in the SLIA, which
uses a long tapered gap. This difference mainly affects the behavior of the so-called trapped
mode.4 By its nature, this mode is expected to exhibit negligible cross-coupling. As a further
simplification, we have used an outgoing-wave boundary condition to terminate the radial
line (i.e., Zs = Zo where Zo is the impedance of free space). Our results are obtained by
carrying out a numerical solution of the system of equations in Section 2. Since asymptotic
BBU growth is determined by the peak value of the imaginary part of Z-t (w), we will show
only plots of Im[Z-t (w)].

We first benchmarked the model by applying it to the calculation of the transverse
impedance of a single, on-axis shielded gap with the parameters in Table 1. Recall
that the model uses a single term in the expansion for Az in the gap and radial line
regions-Az is assumed to be uniform in these regions. Figure 5 shows Im[Z-t(w)]
calculated from the present model compared to a calculation using the code BBUS,15
which does not assume uniform Az in the gaps and radial line. We see that there is
no significant difference between the two calculations. The function Im[Z-t(w)] has a
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FIGURE 5: Imaginary part of transverse impedance for single on-axis shielded gap (parameters of Table 1)
calculated using (a) exact Az and (b) approximate (constant) Az in the drift-tube gap and in the radial line.

large peak near wb! / c = 0.99 which we call the fundamental coax mode. It is the lowest
order TE standing wave in the coax region, lying just above the TE cutoff of the coax line,
and has been seen in previous calculations15 and experiments. 16 (There are no modes below
the coax TE cutoff.) We focus on this mode in the two-gap calculations which follow since
it is the dominant contributor to BBU growth.

A series of calculations was carried out for varying values of pipe separation 2~

(see Figure 2) using the cavity dimensions in Table 1. Results for Im[Z-lx(w)] in the
vicinity of the fundamental coax mode frequency are shown in Figures 6 and 7. These
show that the presence of the second gap strongly modifies Z-lx(w). For ~ = 15.92 cm
(Figure 7), the peak value of Im[Z-lx(w)], denoted by ZT~x, is about 25 percent smaller
than the value for a single gap. Reduction in ZT~x occurs only over a narrow range of
~ values, however. In Figure 8, we show values of ZT~x and ZT;x as a function of ~.
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FIGURE 6: Imaginary part of transverse impedance Z..lx (w) for (a) single shielded gap and (b) two coupled gaps
with ~=15 em.
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FIGURE 7: Imaginary part of transverse impedance Z..lx(w) for (a) single shielded gap and (b) two coupled gaps
with ~=15.92 em.
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FIGURE 8: Z~;x and Z~;X (maximum imaginary impedances) as functions of pipe separation for parameters in

Table 1. (Outer boundary was at Ro=34.5cm.)

On either side of ~ = 15.92 em, ZT~x rises fairly sharply to values larger than the single
gap values. We defer further discussion of ZT~x in Figure 8 until Section 4, except to note
that at ~ = 15.92 em, the pipe separation corresponds to roughly half of a free-space
wavelength of the mode. As anticipated, ZT;x is relatively insensitive to the presence of
the second gap.

4 COUPLED RESONANT CIRCUIT MODEL OF ZJ..

We now present an interpretation of the preceding results using equivalent circuits. In
principle, we could derive a circuit model for the configuration in Figure 2 taking the radial
line geometry into account (see, e.g., Chapter 8 of Reference 17). For the sake of simplicity,
we base the circuit model on the geometry in Figure 9, where the radial line has been
replaced by uniform rectangular waveguides. The placement of the waveguides is intended
to suggest the cos () dependence of the fields excited by horizontal beam displacements. The
key to understanding the results in Figure 8 is that in Figure 9 (and Figure 2), the second
cavity is not an additional load which has been added to the first cavity-it replaces part of
the load on the first cavity.

We can represent a single cavity using the shunt resonant circuit in Figure 10.
We prescribe the following correspondences between the mode parameters (resonant
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FIGURE 9: Schematic of coupled gap geometry used as basis for equivalent circuit model. The radial line has
been replaced by rectangular waveguides.

FIGURE 10: Resonant circuit model for single mode.

frequency wo, peak value of Im[ZJ.. (w)], denoted by ZTax, and mode quality factor Q) and
the circuit parameters R, L, C, and Vc (voltage across the capacitor):

w6 = llLC

ZTax = LIRC

ZJ.. (w) == _wo_V:_c = __Z_T_ax
_w_6/_Q__

iwI w6 - w2 - iwwolQ

(15)

(16)

(17)

(18)
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FIGURE 11: Imaginary part of the transverse impedance from resonant circuit of Figure 10 for single mode
(ZTax =26, Q=15).

A plot of ZJ... (w) from Equation (18) for fo = 830 MHz, ZTax = 26, and Q = 15 is shown
in Figure 11. With these parameters, the resonant circuit closely follows curve (a) of Fig. 6,
i.e., the impedance of a single cavity.

To model the coupled cavities in Figure 9, we consider two identical resonant circuits
connected by a transmission line of length l (see Figure 12). We take l to correspond to
the distance between the coaxial regions of the two accelerating gaps [l = 2(~ - b2)].
The transmission line and coupled circuit of Figure 12(a) can be replaced by an equivalent
impedance

ZL - iZotan(wljc)
Zeq = Zo-------

Zo - i ZL tan(wljc)
(19)

where Zo is the characteristic impedance of the transmission line and

. ,1
ZL = -lwL + R - -

iwC
(20)

producing the equivalent circuit of Figure 12(b). We relate the transverse impedance to the
voltage across the capacitor as before.

It remains to specify the characteristic impedance Zo and the circuit resistance R'.
The impedance of a microwave element is directly proportional to the Poynting flux
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FIGURE 12: The coupled resonant circuits connected by a transmission line in (a) are equivalent to the circuit
in (b) where Zeq is given by Equations (19) and (20).

into it (Chapter 5 in Reference 17). In Figure 9, the characteristic impedance of the i th

waveguide is given by ai R where ai is the fraction of the total Poynting flux that it
carries, and R is the total impedance for a single cavity. Thus, we have Zo = al Rand
R' = (1 - a I) R. Noting the cos () dependence of the (primarily) n = 1 mode in question,
we estimate the parameter al as follows:

(21)

where 2f:h ~ bi / ~ is the angle subtended by the second cavity, and the small angle
approximation has been used.

Results from this model for ZTax as a function of ~ (or equivalently £) are shown
in Figure 13 and are compared to results from the field calculation. The outer boundary
radius Ro was set to 100 cm. Since the lumped impedance outer boundary condition
is nearly perfectly transmitting (Zs = Zo), the precise value of Ro has a minimal
effect on the results. The coupled circuit model produces results qualitatively similar
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FIGURE 13: ZT~x versus ~ from (a) mode expansion calculations (parameters in Table 1) and (b) coupled circuit
model. Horizontal line (c) shows value for single on-axis gap.

to the eigenmode expansion calculations. The cross-coupling effect decreases with increas
ing ~, and values of ZT: smaller or larger than the single gap value can result depending
on the gap spacing. The latter implies that asymptotic BBU growth for coupled gaps will
be greater or less than for uncoupled gaps depending on ~. This result differs from the con
clusion of the CLC model,11 and we discuss the reasons for this in the following section.
The minima in ZT~x occur for

n == 1,2, ... (22)

where Af == 2Jr C/ evQ is the free-space wavelength of the resonant mode.

5 DISCUSSION

The main results of the field model can be summarized as follows. Two transverse
impedances, Z.-Lx and Z.-Ly are needed to describe the dipole response of the two coupled
gaps. Only one ofthese, Z.-Lx, is strongly affected by the second gap. The qualitative behavior
of Zlx can be reproduced using a circuit model.
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Our circuit model and the CLC model11 are mathematically equivalent. However, the
CLC model assumes R' == R and treats the cross-coupling strength (proportional to a1 R
in our model) as a free parameter. The assumption R' == R means that the second cavity
acts as an additional energy-loss mechanism for the first cavity. It is not too surprising that
this leads to reduction of BBU growth for the coupled system. By setting R' == R, we can
indeed reproduce the CLC results with the circuit model of Section 4. In Figure 13, we find
that curve (b) moves down so that it always lies below curve (c), i.e., ZT~x is always lower
for coupled gaps than for single gaps.

The field model indicates that R' == R is not a valid assumption for the coupled gap
geometry in Figure 1. Our findings, however, do not rule out this possibility in general. For
example, Menge et al. 18 report reduced BBU growth in an experiment using loop-coupled
cavities. We believe that in this case one can plausibly assume R' == R, since the coupling
loops do not affect the loss mechanism which gives rise to the finite Q of the uncoupled
cavities. (The cavities contained microwave-absorbing material.)

The main practical implication of our results is that the transverse spacing of shielded
gaps can have a large effect on their transverse impedance.
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