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IMAGE EFFECTS FOR BUNCHED BEAMS IN
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We analyze the longitudinal image force on bunched beams in cylindrical conducting tubes assuming ellipsoidal
uniform density. Numerical and approximate analytic solutions for the potential and electric field of such bunches
are presented. It is found that the total self fields are linear only when the bunch length is less than the pipe diameter.
The fields become highly nonlinear as the bunch length increases beyond the pipe diameter. Using the equivalent
linear model for the longitudinal electric field, we calculate the geometry factor for different bunch sizes. Other
bunch geometries are also considered.
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1 INTRODUCTION

Image forces resulting from the presence of a beam pipe can play an important role in
the dynamics of bunched beams. In previous treatments of longitudinal instabilities and of
the behavior of bunched beams, the longitudinal image forces have been assumed linear
in axial distance and independent of radial distance. The longitudinal self fields, including
image effects, have usually been represented by a geometry factor g, used as a constant
of proportionality between longitudinal self electric field and the derivative of line charge
density. It is the purpose of this paper to investigate these longitudinal self fields in detail
and incorporate our findings into the geometry factor model.

It is known that a uniform ellipsoidal charge distribution yields linear internal fields in free
space,1,2,3 and it has been previously assumed that these fields are also approximately linear
in the presence ofmetallic boundaries.4 However, we find through numerical simulation and
analytic approximations that the fields are linear only for short bunches. The longitudinal
field becomes more hyperbolic as the bunch length increases.
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FIGURE 1: Ellipsoidal Bunch in Cylindrical Pipe.

To our knowledge, there is no simple analytical solution for the potential distribution of
a uniform ellipsoidal bunch in a cylindrical pipe, our primary focus in this paper. We have
obtained numerical solutions for this case using the method of moments,5 also referred to
as the charge-density (or integral) method.6 We also develop some approximate analytic
results. In addition the results for some charge distributions which may be solved analytically
are presented. Both of these results rely on the Green's function technique for the inversion
of Poisson's equation.7

We compare these results to the geometry factor ("g-factor") model for the longitudinal
electric fields. This model was originally developed to treat perturbations on continuous
cylindrical beams and has been extended to the bunched beam case. We provide some
modifications to the model in order to make it consistent with our findings.

2 BUNCHED BEAM MODEL

We model the bunched beam as a uniform axisymmetric ellipsoid with constant charge
density PO. The ellipsoid has radial semi-axis a, longitudinal semi-axis Zm and is centered
inside a conducting pipe of radius b. The situation is depicted in Figure 1. We explicitly
consider only the case of a prolate ellipsoid (Zm > a) but the results are readily extended
for the oblate case.

We make all field calculations in the beam frame, so we need only consider Poisson's
equation. Thus, for relativistic beams it is necessary to Lorentz transform the solution into
the laboratory frame. We need to solve the following system of equations:
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2 per, z)
V ¢(r, z) = --- for r E [0, b], z E (-00, +(0),

EO

¢(b, z) = 0 for z E (-00, +(0),
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(1)

where ¢ is the electrostatic self potential and p is the volume charge density. The pair (r, z)
denote the radial and axial coordinates in a cylindrical coordinate system. We assume that
the beam is centered in the pipe, which is considered to be a perfect conductor. The charge
density may be written explicitly as

{

PO if r E [0, aJl - Z2/z~], Z E [-Zm, Zm]

per, z) =

o otherwise

(2)

for the uniform ellipsoid. Once the potential is known, the electric field E is given by - V¢
which, along with any external forces, dictates the beam dynamics. Throughout this analysis
we assume that there exist linear external focusing forces which confine the bunch.

We may separate the total self potential ¢ into two components, the free-space potential
¢ j s and the image potential ¢i; that is

¢(r, z) = ¢js(r, z) + ¢i(r, z).

The free space potential is known analytically. For points inside the ellipsoid, it is3

poz~ [2 ] Po [1 -ME 2 2]¢js(r,z)=-- 1-~ (I-ME) -- r +MEZ ,
2Eo 2Eo 2

where

1- ~2 [1 1+ ~ ]
ME=~ 2~lnl_~-1 ·

(3)

(4)

(5)

Note that the first term for ¢js (r, z) is simply a constant. Also note that ¢js depends
quadratically both on rand z and, consequently, the fields are linear inside the ellipsoid.
Thus, for linear focusing fields the uniform ellipsoid is a stationary distribution in free space.
In order to continue the analysis of beam dynamics, we need to determine the image fields
inside the ellipsoid. Before proceeding, however, we introduce the g-factor model for the
longitudinal electric field.
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3 GEOMETRY FACTOR MODEL FOR Ez

The general method of modeling the longitudinal effects uses the so-called
g_factor.4,8,9,lO,11,12 In this model the longitudinal electric field inside the bunch is de-
fined in terms of the line charge density A(Z) as

where

Ez(z) = __g_d)..(z) ,
47tEo dz

(6)

(7)

(8)

(9)

b

)..(z) = 2:rr f p(r, z)rdr,

o

and g is the g-factor which is dependent upon the geometry of the system. Thus, for the
uniform ellipsoid of Equation (2) we find

a2 Po
Ez(z) = g"2- z

zm 2Eo

inside the bunch. We may find the radial self field through the divergence equation
V· E = pleo as

Er(r) = (1 _~ a
2

) ~r.
2 z~ 2Eo

We see that both fields are linear in their respective coordinates. It is the goal of this paper
to determine the value for g. In the free space case, we may find g simply by comparing the
derivative of (4) with respect to z and Equation (8). Denoting the free space g-factor as gO,
we have

(10)

Before proceeding, it is convenient to introduce some definitions. In the forthcoming
discussion it is found that the true Ez is not a linear function of z. We may still use the
definition (6) by assuming that g is a function of rand z, i.e. g = g(r, z). Also, note that
for the ellipsoidal bunch of Equation (2), the total charge Q is given by

4 2'
Q = 37ta ZmPO·

Using Equation (8) and the above value we define the function g as follows:

87tEOZ~ Ez(r, z)
g(r, z) == .

3Q z

We also denote g(O, 0) as simply g(O).

(11)

(12)
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We can express the nonlinear results in terms of an "equivalent linear beam" in which the
form of (8) is still valid, but the geometry factor is redefined. First we introduce the familiar
weighted average for any function f of rand z:

(f(r, z)} == 2Jrf f fer, z)p(r, z)rdrdz . (13)

Thus, (z) and (z2) are the first and second moments of z about the distribution per, z). Next
we define an average g-factor which is appropriate for the collective particle behavior,

_ 8Jl'EOZ~ (zEz(r, z))
g == 3Q (Z2)

8Jl'EOZ~ f f zEz(r, z)p(r, z)rdrdz
=

3Q f fz 2p(r,z)rdrdz
(14)

The first order electric field within the bunch is then given by Ez = (3 Q/8Jl'EOZ~) gz. This
is a least-squares linear fit to the actual field. It represents an equivalent linear model to the
nonlinear field.

4 NUMERICAL RESULTS

As previously mentioned, the numerical results were obtained using a moment method tech­
nique. Briefly, this consists of discretizing the cylindrical pipe into triangular
finite elements. A uniform surface charge is assumed on each triangle, the magnitude
of which is to be determined. Thus, the system consists of a (piecewise constant) sur­
face charge distribution a(b, z) and a volume charge distribution per, z). The total potential
anywhere in space is the superposition of the individual potentials from each charge distri­
bution. The potential for p (r, z) is known analytically, l therefore we must determine a (b, z)
in order to match the boundary condition c/J (b, z) = O. In the method of moments, the co­
efficients for a are selected to meet this criterion in the least squares sense. All numerical
results are given for the ellipsoidal distribution (2).

The potential and electric field ·were computed numerically for a range of parameter
values. The ratio zmla was varied over the interval 1 to 20 for the values bla = 1.5, 2,
3, and 5. Figures 2a through 2f illustrate the general trend for the axial potential and z
electric field as Zm / a is increased; this is for the case b/ a = 3. The radial semi-axis a
was held at 1 cm throughout. The total bunch charge was 10-11 C, thus for each case
Po = 3 x 10-1I e /4Jl'a 2 Zm. Note the change in axis scales, especially for the z-axis.

For Zm less than b, the electric field is essentially linear; yet, as bunch length increases
beyond this point the fields become increasingly nonlinear. From the numerical calculations
it is possible to compute the g-factor, which we find to be a function of both zmla and b/ a.
Both g(O) and g vary as a function of eccentricity and both approach a limiting value as
Zm/a -+ 00. We find that as Zm/a -+ 00,
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FIGURE 2: Axial Potential and Longitudinal Electric Field for bja=3.
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TABLE 1: Geometry Factors versus Zm Ia and bIa

bla =1.5 bla =2 bla =3 bla =5
Zm/a

g(O) g g(O) g g(O) g g(O) g go

0.58 0.59 0.63 0.63 0.66 0.66 0.66 0.66 0.67

1.5 0.80 0.85 0.93 0.94 1.01 1.01 1.04 1.04 1.05

2 0.91 1.02 1.14 1.18 1.31 1.31 1.37 1.37 1.39

3 0.94 1.21 1.35 1.48 1.73 1.76 1.90 1.90 1.96

4 0.89 1.30 1.41 1.65 1.98 2.05 2.29 2.30 2.41

5 0.85 1.38 1.40 1.74 2.12 2.24 2.57 2.60 2.79

7.5 0.81 1:38 1.39 1.86 2.19 2.52 2.96 3.08 3.52

10 0.81 1.40 1.39 1.93 2.19 2.63 3.11 3.34 4.06

15 0.81 1.40 1.39 1.97 2.20 2.72 3.19 3.58 4.84

20 0.81 1.41 1.39 1.97 2.20 2.77 3.21 3.68 5.40

g(O) -+ 2In (~),

g -+0.6 + 2In (~) . (15)

We also find that the longitudinal field is essentially independent of radius except at the
ends of the bunch.

Values of g (0) and g along with gO are listed in Table 1. for several different values of
b/a. These values are plotted as a family of curves in Figure 3. Note that our results differ
significantly from the results found in the literature,9,11,12 where the fields are assumed
to be linear and various values of g are used, including 2in(b/a), 1/2 + 2in(b/a), and
1 + 2in(h/a). These are considered to be valid only in the long bunch limit. We also note
in this context that the g -factors for longitudinal perturbations in the long wavelength limit
differ from the g-factors associated with bunched beams.8

5 ANALYTICAL RESULTS

5.1 Green's Function

Green's function G(r, z; r' , Z') for an axisymmetric charge distribution per', Z') may
be computed by solving Poisson's equation for a unit ring of charge (in r - z space)
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FIGURE 3: Geometry Factor versus Zmfa and bfa, where g=g.

located at source point (r', z'). The resulting equation becomes

2 8(r - r')8(z - z')
V G(r, z) == - r E [0, b], z E [-00, +00]

Eor

G(r, z) == 0 r == b, Z E [-00, +00] (16)

This equation may be solved by standard techniques.? In particular, we solve (16) by
expanding G(r, z) in terms of the orthogonal set of Bessel functions {Jo(anr/b): n ==
1,2, ... and Jo(an) == O} where the coefficients are functions of z. By substituting this
expansion into (16), then taking inner products with lo(amr/b) we obtain an equation for
each coefficient. Solving for each coefficient, the desired Green's function is given by the
infinite summation

.' , __l_~JO(abr)Jo(~r') -1;Llz-z'l
G(r, z, r , Z ) - L.J 2 e ,

Eob n=1 an 11 (an)

where the unprimed coordinates indicate field points and the primed coordinates denote
source points. The solution ¢(r, z) to Equation (1) for any axisymmetric per, z) may now
be written as

+00 b

¢(r, z) = f 1G(r, z; r', z')p(r', z')r'dr'dz'

-00

(18)



IMAGE EFFECTS FOR BUNCHED BEAMS

5.2 Uniform Ellipsoidal Charge Distribution

By applying (18) to the distribution (2) we end up with the incomplete solution

157

Although there is no known analytic solution to the above integral we can make some
approximations. Consider the case where Z E [-Zm, +Zm]. As Zm ~ 00 the exponent
in the above integral behaves much like a Dirac delta function around z, since the other
expressions vary slowly in comparison. Thus, the radical and the Bessel function may be
pulled from the integral and evaluated at z' = z. If Izl > Zm then we evaluate them at
z' = Zm. The resulting expression becomes

¢(r, z) =
• (1 - e_

an
:

m
cosh (ab' z))

o

for Z E [-Zm, Zm]

for Izi > Zm

(20)

The total electric field for the long bunch approximation is found by differentiating (20).
We have

for Z E [-Zm, Zm]

(21)

o for Izi > Zm

Notice that the field is dominated by the top expression since the exponent is small
at the center of the bunch while the radical is small at the ends. Note also that it is
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FIGURE 4: Ellipsoid Analytic Approximation.

possible to obtain a better approximation by adding the first order correction terms to (20)
and (21). For the potential ¢ (r, z) in Equation (20), these terms appear as follows:

Po 00 1o(~r) a [H2 (an H2
)]- - a 1 - -11 -a 1 - -

EO L a 2 J2(a ) aZ' Z2 b Z2
n=l n 1 n m m (z'=z)

+Zm

f ( ') -~lz-z'ld '. Z-Z e b Z.

-zm

(22)

Equations (20) and (21) are plotted against the numerical results in Figure 4. The summation
was truncated at 20 terms and the test case of Zm == 10 cm, b == 3 cm, a == 1 cm and
Q == 10- 11 C was used. Note the spikes in the analytic curve for Ez; this is because (21) is
mildly singular a z == Zm.

A convenient identity may be derived by applying (18) to a uniform cylindrical distri­
bution (see section 5.3). By allowing Zm -* 00 and comparing with the known potential
solution for the continuous beam case, we arrive at the following relation:
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r E [0, a]

r E [a,b]
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(23)

Within the distribution we may apply this identity to determine a simplified expression for
the central potential. Neglecting the exponential terms in (20) we have

poa
2

[( (b) ( Z2 )) ( Z2 ) r
2

]¢(r, z) = 4£0 1 + 2in ~ -in 1 - z~ 1 - z~ - a2 .

Thus we may compute the central field to be

(24)

(25)

This is the same expression one would obtain by solving Poisson's equation in the long
bunch limit (i.e. neglecting a2 jaz2 ). Note that not even the central field is linear.

The above expression also confirms Equation (15) for g(O), since g(O) -+ 2In(bja) as
Z -+ O. We may get an approximate value for gby using expression (25) in Equation (14).
The resulting analytic approximation is given by g -+ 0.68 + 2In(bja). This value is an
upper bound on g since (25) blows up at.Z == ±Zm. Equation (25) is, however, a reasonably
accurate approximation to the fields everywhere else in the bunch, as Figure 5 demonstrates
for the same test case.

5.3 Uniform Cylindrical Charge Distribution

Equation (1) may be solved exactly for the uniform cylinder in terms ofan infinite summation
of Bessel functions. This distribution is given by the following:

I
Po

p(r, z) = 0
if r E [0, a], Z E [-Zm, +Zm]

otherwise
(26)

The resulting potential for this distribution is

2poab ~ Jl(~)Jo(li-r) (1- _an: m h(~))
E L..J 3 J2 ( ) e cos b Z
o n=l an 1 an

1J(r, Z) ==

for Z E [-Zm, +Zm]

for Izi > Zm.

(27)
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Inside the distribution, we may apply (23) to display the central potential which is
independent of z, as one would expect.

poa
2

[ (b) r
2

]¢(r,Z) ==- 1 +21n - --
4Eo a a2

2poab~ 11 (aha) 10 (atr ) _cxnZm (an)+-- L...t e b cosh - Z
EO n=1 a~ 11 (an) b

(28)

Here the central potential (first term) and the fringing potential (summation) are shown
explicitly. The electric field is given by the expression

for Z E [-Zm, +Zm]

(29)
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In Figure 6, this field is plotted, along with the r.m.s value of Ez' for our test case Zm = 10
cm, b = 3 cm, a = 1 cm, and Q = lo-lle. We see clearly that almost all the field is in
the regions of the head and tail of the distribution. Essentially we have only fringe fields.

In case of the uniform cylinder g (r, z) is essentially undefined, since d'A / dz is zero almost
everywhere. Physically, this idea is seen in the above equation for Ez which consists entirely
of the fringing effect. Thus, the central field is zero. However, g may still be defined. The
result of this calculation is

- 8b
2
~ 11 (aha) [ h (CtnZm) b . h (Ctnzm)] _anZmg = - L..J cos -- - -- SIn -- e b

a2 n=l Ct~11(Ctn) b CtnZm b
(30)

which in the limit Zm -+ 00 becomes 1/4 + in(b/a).
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5.4 Parabolic Cylindrical Charge Distribution

This distribution consists of a cylinder of charge with a parabolic density in z. Precisely,
we have

{

Po (1 - :~) ifr E [0, aJ, Z E [-Zm, +zml
per, z) == m

o otherwise

(31)

This distribution has been treated previously by Irani using similar techniques. 13 The
solution to this distribution is

(~ - ;b~) e_
an

:
m

cosh (ab
n z)J for z E [-Zm, Zm]anZm anZm

¢ (r, z) == (32)

which yields an electric field

for Z E [-Zm, Zm]

•[-L cosh (anZm) - _b_ sinh (anzm)J e-l;t1z1sgn(z) for Izi > Zm.
Zm b anZ~ b

(33)

The central potential can be determined from Equation (32). Inside the charge distribution
it is given by the expression

poa
2

( (b) r
2
) ( Z2)¢ (r, z) == - 1 - 2in - - - 1 - -

4Eo a a 2 z~
(34)

This is also the total potential in the limit Zm -+ 00. Note that this is the distribution which
is most accurately described by the original g-factor model.
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FroID these results it is possible to determine the respective g-factors. We have the
following:

g(O) =1 + 2in (~)

_ 240b2
00 Jf (aba) {I (b b2

) [ 3b anZm
g --- '"' - + -- + -- -- cosh (--)

- a2 ::r a~Jf (an) 15 anZ~ a~z~ anZm b

(
3b) (an zm )] CinZm }- 1 + z~ sinh -b- e--b- (35)

g -+~ +2in (~) as Zm -+ 00

Figure 7 shows the potential and Z electric field for our test case of the previous sections.
The r.ID.S. Z electric field is also shown.
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The image fields of bunched beams are generally nonlinear. Our results are contrary to
previous works where (6) was used for any bunch length greater than b and where g is
constant with values ranging from 2in(b/a) to 1 + 2in(b/a). We see that for Zm » b the
g-factor does indeed reach an asymptotic value independent of Zm, yet (6) is invalid (i.e.
the field is quite nonlinear). On the other hand, for short bunches Zm « b the form of (6)
is valid (i.e. linear fields) however the g-factor is dependent upon Zm. Thus, the use of the
g-factor model requires some scrutiny.

The applicability of g seems to be divided into three regions. When zm/a is much less
than b/ a we are at liberty to use the free space value for g (i.e. go). In this case the pipe
dimensions are much larger than the bunch dimensions and the image field has little effect.
In the other extreme, when Zm/a is much larger than bfa, the effect of the fringe field is
small compared to that of the central field. As such, we may use the asymptotic expressions
for g. Between these two extremes we have a transition region where the central fields and
the fringe fields are comparable. Accordingly, g is a function of both Zm / a and b/ a and
there are no simple expressions governing this behavior.

Throughout the analysis we implicitly assumed the existence of linear focusing fields
to confine the bunch. We then treated the bunch as an equivalent uniform ellipsoidal
distribution which produces linear self fields. It was found that in the presence of a beam
pipe the true uniform ellipsoid generates nonlinear self fields. The actual distribution will
of course adjust itself in order to maintain equilibrium with the linear external forces. We
are currently investigating the behavior of these self consistent distributions. These results
and the correlations with our present work will be presented in a future paper.

In relativistic situations, one must Lorentz transform the fields into the laboratory frame.
Since this constitutes a scale contraction in the axial direction, this transformation simply
results in replacing Z and Zm by y Z and YZm in all relevant equations. Also, the derivative
of the line-charge density transforms as (aA/aZ)beam ---+ (1/y2)(aA/aZ)lab, hence a factor
1/y 2 must be added to the leading coefficients of Equation (6).
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