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Ferrite has a variety of applications in accelerator components, and the capability to model this magnetic material in
the time domain is an important adjunct to currently available accelerator modeling tools. In this paper is described
a general dispersive material model which is suitable for a wide variety of media, including ferrite. Based on this
model we have developed a representation of the time-domain magnetic properties of PEllBL, the ferrite used in
the induction modules of the ETA-II (Experimental Test Accelerator - II) induction linac at LLNL. This material
is characteristic of the soft ferrites commonly used in induction accelerators. The model has been implemented in
l-D and 2-D finite-difference time-domain (FDTD) electromagnetic simulators, and comparisons with analytic
and experimental results are presented.
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1 INTRODUCTION

Soft ferrite found in induction accelerator cells has two principal roles: (1) it acts as
an inductive load to the pulse power drive to the cell, and (2) it acts to lower the
quality factor (Q) of undesirable rf modes in the cell (see Figure 1). In this paper
we will focus on the latter role, in which the material may be characterized by its
small signal response. The frequencies of interest are bounded above by the beampipe
cutoff of the TEln (dipole) modes, which for the ETA-II accelerator is ~1.3 GHz.
At low frequencies the magnetic response of a polycrystalline NiZn ferrite such as
PEIIBL (- a photomicrograph of the grain structure of this ferrite is shown in Fig. 2)
manufactured by TDK is dominated by the motion of domain walls. At frequencies
above ~1 GHz the domain walls can no longer track the applied rf field, and the

* Work was performed by the Lawrence Livermore National Laboratory under the auspices of the U.S.
Department of Energy under contract No. W-7405-ENG-48.
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FIGURE 1: Illustration of a cross-section of an ETA-II induction module. Cell is rotationally symmetric about
the indicated centerline except for the pulse power feeds (indicated with dashed lines) which enter the cell at two
points separated by 1800 azimuthally.

FIGURE 2: Electron micrograph of the grain structure in PE11BL, the ferrite used in the ETA-II accelerator.
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(1)

response becomes dominated by the ferromagnetic spin resonance of dipoles within the
domains.!

In general, the small signal response of the material biased with an applied magnetic field
is characterized by a tensor permeability with nonzero off-diagonal elements.2 When there
is no preferred direction imposed by an applied magnetic field, or by other means, then the
tensor collapses to a scalar. It is this case that we will investigate in this paper. The more
general case is a straightforward generalization of this analysis.

Our interest is in calculating the beam coupling impedance associated with an accelerator
component such as an induction cavity. The impedance is a very useful quantity in the
study of beam-structure interactions and in beam instability analysis in accelerators. The
impedance is defined by the relation

~ k - (W) i..;' (W)
Z(W)=~WII ~ -~W-l ~ ,

where - indicates Fourier transform, c is the velocity of light (and the assumed velocity of
the particles), and Wis the wake potential. The potential is defined as the integral, along
the test charge path, of the Lorentz force on the charge due to the source charge as they
traverse an accelerator component, i.e.,

~ 1 /00 [ ~ ~ ~J IW(s) = - E + ck x B dz.
Q t=Z+S

-00 c

(2)

The geometry we assume for the wake potential calculation is illustrated in Figure 3.
The interested reader can consult the literature3- 5 for more detailed discussions on the
calculation and use of wake potentials and coupling impedances.

Typically, one is interested in broadband information about the impedance spectrum, and
time-domain simulation is a natural and powerful technique for generating such a spectrum.
In the past the presence of dispersive media such as ferrite has complicated the time-domain
simulation problem by requiring a computationally intensive convolution to be performed
at every time step. However, Yee,6 and later Luebbers, et al.,? have pointed out that when
the frequency dependence of a material constitutive parameter can be represented by simple
poles in the complex plane, an algorithm exists for reducing the convolution to a running
sum. This discovery greatly simplifies the necessary calculation, and we exploit a variation
ofLuebbers ' method in this work. Bui, et aI.,8 have also recently reported a related technique
which they applied to electrically dispersive media in the computation of electromagnetic
pulse propagation in human tissue.

2 EXPERIMENTAL CHARACTERIZATION OF PEIIBL

In order to determine the frequency dependent permeability for frequencies up to the dipole­
mode beampipe cutoff (1.3 GHz), we performed a simple reflection measurement which is
illustrated schematically in Figure 4. This measurement was fashioned after an experiment
reported by Rado, et al..! Some of the material properties of PEIIBL are shown in
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FIGURE 3: Geometry assumed in the definition of the wake potential. Source and test charge move axially (+z
direction) through an evacuated beampipe. The charges move with velocity of light in vacuum, a situation which
is well approximated in any high energy electron machine. The relative position of the test charge with respect to
the source charge is fixed.
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FIGURE 4: Schematic of experimental setup used to measure the permeability of PEIIBL ferrite.
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TABLE 1: Properties of PE11BL (from TDK data sheets and direct measurements). Te = Curie temperature; Bs

= saturation magnetization; Br = remanent magnetization; p = bulk resistivity; He = coersive force.

PE11BL (ETA-II ferrite)

Te 130°C

Bs .33T

Br .11 T

p 103Q·m

He 20 AIm

Table 1. Small annular samples of the ferrite (J.D. 1.9 cm, O.D. 3.1 cm) were milled to axial
thicknesses of 1 mm and 2 mm. To measure the bulk permeability a sample was placed
at the shorted end of a r-v 50n coaxial fixture that mated· to a network analyzer through
a 50n air line. The network analyzer was then used to measure the SII scattering matrix
coefficient over the desired frequency range. The placement of the toroidal samples against
the shorted end of the coaxial line insured that the value of the permittivity of the samples
had a negligible effect on the measurement.

Reflection measurements were taken on both 1 mID and 2 mID thick samples, for the
purposes of checking the method, and to test for reproducibility in the results. Additionally,
several of the samples were measured, then heated above the Curie temperature, allowed
to cool, and then remeasured to test for effects of possible residual magnetization. No
measurable effects were noted.

The reflection coefficient as a function of material constitutive parameters and wave
number is given by the expression for normal incidence reflection from a slab backed by a
perfect electric conductor, i.e.,

[(1 + e-i2k~) - 1]r (1 - e-i2k~)] ei2ko~

R = (1 + e-i2kll ) + IJr (1 - e-i2kll ) ,
(3)

where ~ is the sample thickness, 1]r = r;;;;. is the relative wave impedance of the ferrite,V Er

k is the wave number in the ferrite, and ko is the free-space wave number. R as shown in
Equation (3) has been normalized by the reflection obtained when no material is present.
When the sample is thin compared to a material wavelength, then the relative permeability,
J.Lr, is related to R by the equation

1- R
J.Lr ~ 1 - 2k

o
~ . (4)

In practice we use Equation (4) to obtain an initial estimate of J.Lr, and then iterate on
Equation (3) to get the exact solution. The value of J.Lr derived in this manner as a
function of frequency is shown in Figure 5. The data presented in Figure 5 has been
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FIGURE 5: Experimental data, and 2-term fit to the experimental data, for the permeability of the PEIIBL ferrite.
Parameters used in fit are: a1 =6.67x 1010, fh -Y1 =1.77x 108 , fh +Y1 =1.00x 1011, a2=2.97x 1010, fh-Y2=2.73 x
107 , fh +Y2= 1.00x 1011 (See Equation 9). The dielectric constant for PEIIBL, Er =13, is assumed to be independent
of frequency for the purposes of this paper.

corrected by a multiplicative factor (1.3) to account for the difference between short area
and sample area.

3 RELAXATION MODEL OF FERRITE PERMEABILITY

Generally, when a broadband response is desired from a frequency-dependent medium, it
is necessary to compute a convolution in the time domain. Specifically, when the medium
is magnetically dispersive and we can characterize it with a scalar permeability, we have

where Xm (t) is the Fourier transform of the magnetic susceptibility Xm (w), and we refer to
it as the magnetic response function of the material.
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As indicated by Luebbers, et al.,7 when a material has a response function of the form

{

Lazeiwzt,

Xm(t) = Z

0,

the convolution in Equation (5) becomes

t > 0;

t ::s 0,

(6)

(7)

t

where lz(t) J e- iwp:H(r)dr is a running sum, thus eliminating the necessity to
r=O

store values of H at previous time steps in the simulation. This simple observation,
and the fact that the permeabilities of a large class of interesting materials may be
accurately represented using sums of exponentials, has important implications for time­
domain modeling. Eliminating the need to store previous values of the fields makes it
possible to model realistic media in the time-domain with relatively little increase in the
computational requirements over non-dispersive media, and one method of exploiting the
observation is outlined below.

At frequencies below the ferromagnetic resonance, the following form for Xm (t) is
appropriate:

{

Laze-fhtsinh(yzt),

Xm(t) = Z

0,

t > 0;

t ::s 0,

(8)

which yields a complex magnetic susceptibility of the form

""' aZyz
X(w) = L...J '

z ({3z + iw)2 - y?
(9)

where az, {3z, and yz are all real, and {3z > yZ ~ 0.
We obtain Equation (8) by arguing first that an instantaneous response of the magnetiza­

tion in a material to a change in the applied field is unphysical. This requires that Xm (0) = 0,
which in tum demands that the poles come in pairs, and thus we get the sinh term. Secondly,
at frequencies significantly below the ferromagnetic resonance, the magnetization physics
is dominated by the motion of domain walls that vary widely in their size and shape, and
thus their resonant frequencies. The macroscopic response of this type of system may be
reasonably approximated with a relaxation model. If there is interest in frequencies at or
above resonance, then a term of the form ae-,Bt sin(yt) must be added to Equation (8) to
obtain an accurate representation of the material.

To obtain the adjustable parameters in Equation (9) for a specific material requires
a pole extraction from the given susceptibility function. For the purposes of this paper
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FIGURE 6a: I-D slab reflection problem geometry. PEC = perfect electric conductor; RBC = radiation boundary
condition.
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FIGURE 6b: Distribution of field components in I-D FDTD simulation.

we wrote a simple program that did an exhaustive search in a localized region of parameter
space for the optimal values of ex, {J, and y to obtain the fit to experimental data shown in
Figure 5.

4 I-DMODEL

To study the numerical characteristics of the dispersive media model we conducted a series
of tests using the finite-difference time-domain (FDTD) [9] technique in one dimension.
The problem geometry and field distribution are shown in Figure 6. The FDTD updating
equations and field distribution are obtained by replacing all spatial and temporal derivatives
in the Maxwell curl equations with their center-differenced equivalents. This prescription
leads to a scheme which is explicit and second order in time and space. When the material
is non-dispersive the updating equations in I-D are easily obtained:
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aEx aBy aHy
-=--=-{t-az at at

n+1/2 n-l/2 /).t ( n n)
Hj + 1/ 2 = Hj + 1/ 2 - -- E j + 1 - E j .

{t/).Z
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(10)

(11)

where the superscripts indicate the time step, and the subscripts indicate the spatial position.
Similarly, for the electric field update, we have

which yields

aHy aDx aEx
-- = --- = -E--az at at (12)

(13)En+1 _ En _ /).t (Hn+ 1/ 2 _ Hn+ 1/ 2)
j - j E /).z j+l/2 j-l/2·

When the material is dispersive, the situation is complicated by the convolution which
must be done. Any given media exhibits both electric and magnetic dispersion, but for the
purposes of this discussion werestrict ourselves to the analysis of magnetic dispersion. The
simulation of electric and magnetic dispersion effects simultaneously is the subject of a
future paper. To determine the update equation for the magnetic field, we proceed in the
following manner:

t

aEx aBy aHy a!,..,- = -- = -JLo- - JLo- Xm(t - r)H (r)dr.az at at at y
r=O

(14)

Assuming the magnetic response function Xm is of the form given in Equation (8), we have

a~x = -J-Lo a;y + ~o ~al [AIr! e-A/(t-r) Hy(r)dr - Bl

r
! e-B/(t-r) Hy(r)dr] ,

(15)
where Az = f3z - yz and Bz = f3z + yz. The discrete form of Equatron (15) is given by

H n+ 1/ 2 _ H n- 1/ 2 _~ (En _ En) + (/).t)2 L A nL-I. -Az(n-p-l/2)D.t H P+ 1/ 2
'+1/2 - '+1/2 '+1' al Ie. 1/2) } JLo/).z } } 2 J+

Z p=o

( /).t)2 n-l
- -- '"' B '"' -Bz(n-p-l/2)D.t H P+ 1/ 2

2 ~az z~e j+l/2·
Z p=o

(16)



144 J.E DEFORD et aI.

Defining two auxiliary functions, Rand S, which can be updated recursively, using

n-l
Rn _ '""" -Az(n-p-l/2)t::,.t HP+1/2

Z,j+l/2 - L...-J e j+l/2 '
P=o

n-l
Sn _ ""'" -Bz(n-p-l/2)t::,.t H P+ 1/ 2

Z,j+l/2 - L...J e j+l/2 '
p=o

yields the following set of update equations for the magnetic field:

n+l/2 n-l/2 ~t ( n n)
Hj+l/2 = Hj+l/2 - JLoli.z Ej+l - E j

(~t)2 '""" [n n]+ -2- L...-Jaz AzRZ,j+l/2 - BZSZ,j+l/2 '
Z

Rn - e-Az t::,.t/2 [Hn- 1/ 2 + e-Azt::,.t/2 Rn - 1 ]
1,j+l/2 - j+l/2 1,j+l/2 '

Sn - e-Bzt::,.t/2 [Hn - 1/ 2 + e-Bz t::,.t/2 Sn-l ]
Z,j+l/2 - j+l/2 1,j+l/2 .

(17)

(18)

(19)

(20)

(21)

When the electric dispersion is ignored, as in this case, the electric field update is given
by Equation (13). The auxiliary functions are real, which leads to the conclusion that the
amount of additional storage needed (per field component) to implement this scheme is
2NP real numbers, where Np is the number of terms in the expansion of the susceptibility
(Eq. (9)). The number of floating point operations required (per field component updated
using dispersion model) is 10Np + 4 in I-D, up from 3 when the media is nondispersive.

To test the method and its implementation we solved the I-D reflection problem illustrated
in Figure 6a using the parameterization obtained for the PEIIBL ferrite. A short Gaussian
pulse (at == .5 ns) was impinged on the ferrite slab, and the normalized reflection coefficient
was obtained for the frequency range 0-3 GHz by taking the ratio of the Fourier transforms
of the incident and reflected pulses. These data are compared with the analytic result in
Figure 7, with excellent agreement.

The magnetic dispersion model has been implemented in the 2!-D FDTD wakefield
code AMOS [10], and a 2-D analog to the slab reflection problem was used as a test case.
Specifically, we computed the reflection of a pulse from a ferrite load in a shorted coaxial
transmission line. Again, excellent agreement with the analytic result was obtained (see
Figure 8).
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FIGURE 7: Analytic and simulated values of the reflection coefficient for the I-D problem involving normal
incidence on a dispersive ferrite slab (PEIIBL) backed by a perfect electric conductor. Spatial cell size in simulation
was ~z=.5mm, and reflection reported at surface of slab.
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FIGURE 8: AMOS calculation vs. analytic result of the reflection coefficient in a shorted coaxial transmission
line loaded with a ferrite toroid. Ferrite used in simulation has same properties as PEIIBL listed in Table 1 and
caption of Figure 5, except that dielectric constant Er =20. Axial length of toroid L=5.0cm, inner coax radius
Ri = 6.5mm, outer coax radius Ro=8.25mm, and grid cell size was ~r=.25mm, ~z=.25mm. Reflection
reported at position just in front of toroid in coax.
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5 AMOS APPLICATION: ETA-II INDUCTION CELL

The ETA-II [11] induction linac is a high current electron machine, producing a 6 MeV,
3 KA beam for generating high power microwaves. Because of the large beam current,
the machine is subject to a possible transverse beam instability known as beam breakup
(BBU),12 and so the transverse dipole coupling impedance of the induction module is of
particular interest.

AMOS has been used to study the impedances of the ETA-II induction cell using the
dispersive ferrite model described above. A cross-sectional diagram of this cell is shown
in Figure 1. The cell is rotationally symmetric about the indicated centerline, with the
exception of pulse power feed lines whose center conductors penetrate the outer shell at
two locations 180° apart and connect to the base of the ferrite core as shown. When the
cables are ignored in the simulation (but left in during the experimental measurement) one
gets reasonable agreement between the model and the experiment for the dipole component
of the transverse (radial component) coupling impedance (see Figure 9). The technique
used to measure the impedance is the "two-wire" method described elsewhere,13 and the
experimental data presented are for two cases: (1) single cell measurement; (2) double cell
measurement, with the resulting values halved to get an equivalent single cell impedance.
Both measurements were taken with the wires in a plane 90° from the plane of the drive
rods, which show the least perturbation resulting from the rods.

The AMOS result shows best agreement with the two-cell measurement. The single-cell
measurement exhibits two features that are not present in either the two-cell data or the
.AMOS result, these being the peak at approximately 700 MHz, and an approximately 100

---- "'-gaplt meas.
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FIGURE 9: Comparison of experimental data and AMOS calculation for transverse dipole impedance of ETA-II
induction module.
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Q / m baseline impedance. The former corresponds in frequency to an m = 3 mode, and
may show up as a result of the measurement wires being too far apart in the single gap
measurement. The two-wire technique will in general yield information about coupling to
all modes with odd azimuthal symmetry, although the coupling strength falls off as the wire
separation to the power 2m - 1. For wires sufficiently close together this coupling law will
ensure that only the dipole mode contributes significantly to the measured impedance, but
increasing the wire separation will eventually lead to measurable contributions from the
higher order modes. The 100 Q / m baseline apparent in the single-cell measured data is
not understood at present, and measurements on other cells did not show this baseline.
Measurements on simple structures with known coupling impedances suggest that the
experimental data are good to ±20%.

The pulse power feed cables introduce the potential for azimuthal mode coupling and
mode splitting. At the relatively low frequencies that we are considering, the degree to
which the cables disturb the dipole modes that are important to BBU depends on the
relative impedance of the cable and the TEM line formed by the ferrite load. Experimental
measurements on similar cavities (DARHT induction modules) with and without the cables
show some differences between dipole impedance measured with the two wires in the plane
of the feed lines vs. measurements with the wires in the plane perpendicular to the feed
lines.

6 CONCLUSIONS

Time-domain simulation of media has long been hampered by inefficient methods for
including the dispersive effects of media. The recent realization that materials with
exponential response functions could be handled efficiently has revolutionized dispersive
media modeling, making it computationally inexpensive for a wide variety of materials.

An implementation ofa dispersive media model, and its application in 1and 2 dimensions,
is discussed in this paper. The PEIIBL ferrite was characterized over a broad frequency
range, and I-D numerical experiments were performed which showed excellent agreement
between simulated and analytic reflection coefficients over several decades in frequency.
The models have been implemented in the AMOS wakefield code, and calculations of
the transverse coupling impedance of an induction module in the ETA-II accelerator
was presented. These data showed good agreement with the impedance values obtained
experimentally using the two-wire measurement technique.

A dielectric dispersion model has recently been installed into AMOS in order to accurately
characterize the electrical properties offerrites and other materials, and the combined effects
of magnetic and electric dispersion in simulation will be discussed in a forthcoming paper.
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