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Superconducting accelerating cavities can be operated in the pulse mode to lower capital and operating
costs of the cryogenic plant. Some additional cost reduction is also possible when the accelerating process
takes place already during the fill time, i.e. before the accelerating structures reach the final steady state.
Such an operation needs more analysis of the transient state in multicell cavities. In this paper one
possible approach to the complete analysis of the transient state in standing wave accelerating structures
is presented. The different approach, giving envelope of the transient state, the reader can find in.! In this
paper set of equations derived from a lumped element replacement circuit model used for the analysis, is
solved in a semi-analytic way. The method of solution is based on the classical Laplace transformation aided
by some additional numerical calculations. The computed cavity response to the harmonic driving source
agrees well with measurements for various types of cavities. As an example, comparison of the transient
state measurements and calculations for a 9-cell, 1GHz copper cavity are discussed in more detail. Next,
diagrams relating cavity parameters to the time delay at the beginning of the fill and to the phase deviation
for the steady state, computed with a program written especially for this analysis are given. Finally, some
preliminary computations for structure of the future superconducting linear collider TESLA are discussed.
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1. INTRODUCTION

The behaviour of standing wave accelerating structures made up of N coupled cells
may be analyzed by considering the properties of N coupled Lumped Element Circuits
(LEC). Many problems such as correction of machining errors, field pattern sensitiv­
ity to cell frequency perturbation, transient states and power deposition by the ac­
celerated beam to parasitic modes, may be investigated by means of the LEC model
analysis. 2 ,3,4 An analogy between an accelerating structure and LEC can be estab­
lished when the eigenfrequencies of coupled cells, the losses and the cell-to-cell
coupling are known. Following, for example, the procedure presented in,3 one can
find these parameters directly from measurements of field patterns, frequencies and
Qs of all passband modes. Standing wave monoperiodic accelerating structures ter­
minated with full end cells (Fig. 1) are usually designed for operation in w-mode.
The impedance seen by an accelerated beam has the highest value for this mode
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FIGURE 1: Standing wave monoperiodic structure

compared to the other modes of the fundamental passband, thus an advantageous re­
lation between RF wall losses and the power transferred to the beam can be achieved.

7r-mode oscillation, characterized by equal field amplitudes in all cells, and 7r phase
shift between the neighbouring cells, is achievable in a monoperiodic lossless structure
with full end cells, if their eigenfrequencies are corrected to compensate for periodicity
perturbation caused by the beam tube. Fig. 2 shows fundamental passband dispersion
curves fj (f3j) of two monoperiodic capacitively coupled cavities: with N = 00 and a

p.
J

FIGURE 2: Dispersion curves of standing wave monoperiodic structures: N = 00 (solid line), N = 8 (dots)
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real cavity with finite N and corrected end cells. For the lossless case f3j 1r . -it
determines the pattern of the steady state amplitude, Xkj, for each cell k and each
resonant frequency fj, according to the expression:

X kj == B . sin(f3j . (k - 0.5)) (1)

B is a factor proportional to the power of the driving source andj = 1...N. Dispersion
curves are well approximated by formula:

(2)

where fa is the eigenfrequency of a decoupled cell and ~ is the first order coupling
between two neighbouring cells. Field pattern and frequency measurements on four
well-tuned models of 4-ce1l500MHz, 9-celllGHz, 9-celll.3GHz and 5-celll.5GHz
showed good agreement with (1) and (2).

Usually, in analogy to signal propagation in waveguides, one describes propagation
in the accelerating standing wave structures by the group velocity Vg which is propor­
tional to I 1~ I· For the structure made of very few cells such an approach seems to
be artificial. It can be seen from the dispersion diagram that for f3j ~ 1r, the group
velocity Vg ~ O. The largest value Vg is reached for f3j ~ ~. Such a different sig­
nal propagation along the structure for the 1r-mode and any mode in the middle of
the dispersion curve should cause a visible difference in time delay during the filling.
The results presented in,5 for a 9-celllGHz structure showed that this is not the case.
The time delay at the beginning of the filling between the signals in the first cell with
the driving antenna and the last cell was the same for the 1r-mode and the 5; -mode,
which lies in the vicinity of the ~-mode.

2. MODEL

In order to investigate these results we use the LEe model as shown in Fig. 3. The
electrical properties of the chain of N coupled resonant circuits are matched to the
electrical properties of the fundamental mode (TMOlO) passband of a N-cell cavity
with a cell form developed for superconducting (sc) storage ring cavities. The method
we use here holds also for any other cell shape if only the first order coupling, either
magnetic or electric, is relevant. The fundamental mode of sc storage ring structures
has a dominating electric field in the coupling iris, so only the capacitive component
of the coupling has been taken into account. The elements Lk, Ck, Rk of each circuit k
and coupling capacitors Ck,k+l may vary for different k, thus further analysis will not
be limited to monoperiodic and well-tuned cavities which here will be only a special
case. The mesh currents Xk(t) and the coupling currents Xk-l,k(t) must fulfil 2N-l
voltage mesh equations:
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FIGURE 3: LEC used as replacement of the standing wave cavity

-1 it 1 1 1 it-0 . Xk-l(r)dr + (-0 + -0-- + -0· ) . Xk-l,k(r)dr
k-l 0 k-l k-l,k k 0

(3)

-1 it 1 1 1 it-0' xk(r)dr + (-0 + -0-- + -0 ) . Xk,k+l(r)dr
k 0 k k,k+l k+l 0
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+d
N
·it

XN(T)dT =0

U-1 (t) is the step function: U-1 (t) == 0 for t < 0, U-1 (t) == 1 for t ~ O. This set
of equations can be solved by use of the Laplace method6 . The method consists of
four steps: transformation into the complex domain s == a + iw, solution of the
complex linear set of equations, fractional decomposition of the solution and inverse
transformation into the time domain. We assume that at the time when the driving
term e(t) was switched on, i.e. at t == 0, there was no stored energy in the system. The
Laplace transformation of (3) and the elimination of all transforms of the coupling
currents give a new set of N linear equations. Transforms of Xk(t) are denoted here
by Xk(s). The new set of equations is:

£, (s) is the transform of e(t). Coefficients are given by the expressions:

-1
ak == for k == 1...N - 1

1 + C k +1 + C k +1

Ck C k ,k+l

-1
dk == C C for k == 1...N - 1
1+~+~

Ck+l Ck,k+l
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where:
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1
bN == 2 - ---:::-:--------=-:--

1+-!2JL+~
CN-l CN-l,N

1
for k == 2...N - 1.

Equations (4) may be written in the matrix form:

Z(s)X(s) == E(s) (5)

Z(s) is a tridiagonal matrix, XT(s) == (X1(S) ...XN(s)) and ET(s) == (E(s), 0...0). The
solution to this-equation is the following:

(6)

fork = 1 ... N.
In (6), ~(s) and ~kl (s) are, respectively, the determinant of Z (s) and the cofactors

of the kth row and the first column. All functions Zk(S) are 2nd order polynomials, so
~(s) must be a polynomial of order 2N:

A( ) 2N 2N-lu S == 'r}2N . S + 'r}2N-l . S + ... 'r}l . S + ao

and ~kl(S) are polynomials of n = 2 (N-k) order:

(8)

where:

j=k-l

Pi == 1, Pk == II aj for k == 2...N - 1.
j=l

Two FORTRAN subroutines, have been prepared to find 'r}j and (ij from the
replacement circuit elements and to compute precisely the complex solutions Sj to
the equation ~(s)=O. The precise computation of Sj is important when a structure
has many weakly coupled cells. For such a structure the dispersion curve is flat and
differences betweeen the sequential resonant frequencies are small. Assuming that
the source e(t) == Eo . sin(wot) , Xk(S) may be expanded in a form which makes the
inverse transformation easier:

(9)

The coefficients Akj for j = 1 ... 2(N+1) are defined by (6).
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Conjugation of solutions Sj== aj + iWj == (Sj+1)* and coefficients Akj == "Ykj + i·
Xki == (Akj+ 1 )* for j = 1, 3, 5 .., 2N + 1, causes the inverse transformation into the
time domain to give the following final results:

2N+1

Xk(t) == 2 . L exp(aj' t) . ["Ykj . cos(Wj . t) - Xkj sin(wj . t)], (10)
j=1,3,5 ..

where:

a2N+1 == 0 and W2N+1 == 2 . 1r • fa represent the driving source and k = 1...N.

Here we should make two remarks. Firstly, expression (10) describes the response in
cell k of the structure for any source frequency fa and not only for one of the resonant
frequencies fj. However, the latter are the most interesting. Secondly, the driving
term coefficients: "Yk,2N+1 and Xk,2N+1 give the amplitude and phase of the steady
state signal (t ~ ex)) in cell k.

3. DISCUSSION

3.1 1 GHz structure, computation and measurement

As already mentioned, the measured response signals in a 1 GHz, 9-cell copper
structure with electric coupling K, = 1.85 and Qo = 25000 showed no difference
in time delay at the beginning of the filling for various resonant modes. Figures 4a,
5a and 6a are response signals measured in cell No.9 after the generator had been
switched off. The signals have been measured for three resonant frequencies f 1r/9 ==
982.0 MHz, f51r/9 == 992.3 MHz and fn == 999.6 MHz. The modulation we observed
here is the same as that of switching on, shifted with offset equal to the constant voltage

a. b.
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FIGURE 4: Measured (a) and computed (b) response of cell No.9 during filling of the cavity. Source
fo=lrr/9=982.0 MHz
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FIGURE 5: Measured (a) and computed (b) response of cell No.9 during filling of the cavity. Source
fo=f57r/9=992.3 MHz

a. b.

hp running

T V r----~1----:+ 1---
V

/~
V

~

1"-..---

r----
~
~ ---...,

s,,/
.,.,--.--/~

:-------- ~~

(

d
OOi)00 lS OOiiOO UlS OO,jOO U~

:lOU nS/OlV

-1
o t [IJS] 2

FIGURE 6: Measured (a) and computed (b) response of cell No.9 during filling of the cavity. Source
fo =f7r =999.6 MHz
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FIGURE 7: a. Signal delay in the last cell vs. N, ~ = 1.85%
b. Signal delay in the last cell vs. ~, N = 5.
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FIGURE 8: Measured (a) and computed (b) response in cell No.9 to switching off of the generator.
fo=f-rr=999.6 MHz

being the response of the diode to the steady state signal. This way of measurement
allows the observation of both increase or decrease of the amplitude without changing
of the sign due to the positive or negative diode characteristics. The second curve in
each graph shows the envelope of the driving source. Figures 4b, 5b and 6b present
computed signals in cell No.9. The driving source was placed, both for measurements
and computations, in the first cell. Measured and computed signal delay between this
cell and cell No.9 was T = 120ns, independent of the the source frequency. The reason
for this is the fast switching on (off) of the source which always excites all passband
modes, which decay afterwards, since finite Q makes aj < 0 for j = 1...N. The de­
lay was defined as T = tN - tl where tN is the time at which the amplitude in the
last cell, N, has the same value as the amplitude in cell No.1 after 10 oscillations, i.e.
at tl = 10/ fa. Further computation showed that the signal delay, ~ is proportional
to the number of cells N, varies strongly with ~ and has rather weak dependency on
Q for reasonable wall and external losses. Fig. 7a,b present delay versus Nand "".
In both diagrams the delay is normalized and expressed in number of oscillations.
Fig. 8a and 8b show measured and computed response in the last cell to switching off
of the driving generator for the 1f-mode over the longer time scale. The similar good
agreement of both curves for the whole transient time was also observed for all cells
and the other resonant modes. Steady state amplitudes and phases are given, as we
noticed before, by coefficients of the driving term in expression (10). Any steady state
oscillation of a real multicell cavity requires energy flow along the structure since part
of the stored energy lost in the cavity wall must be refilled. The LEe model, which
describes properly the transient state of a monoperiodic cavity, shows that energy
flow in steady state 7r-mode is only possible if there is a phase deviation from the
ideallossless case (currents should flow through coupling elements). Fig. 9 presents
computed phase deviations ~¢ for different Q values in each cell of the 9-cell struc­
ture with"" = 1.85 %. It was assumed for this computation that the source frequency
is fa == f7r·
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FIGURE 9: Phase deviation from ideal 7r-mode caused by losses in 9-cell cavity with ~ = 1.85 %.
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FIGURE 10: Voltage in cells 1,5 and 9 for t in the interval <tb-lJ.Ls,tb+lJ.Ls> , to == 0J-LS
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FIGURE 11: Voltage in cells 1,5 and 9 for t in the interval <tb-lJ.Ls,tb+lJ.Ls> , to == l0J.LS

3.2 TESLA structure

The parameters of the TESLA cavity are as follows: N = 9, QI = 3.6E6, "" = 1.87%,
f7r = 1.3GHz and ~ = 10300. It is planned that in operation each cavity will be
powered with 208kW during a 1.37ms RF pulse. Then the required accelerating
voltage of 26MV will be reached at tb=0.57ms. The rest of the RF pulse time is
used to accelerate 800 equally spaced bunches, each of 8nC charge. Fig. 10 represents
voltages of cell No.1 (input coupler side), No.5 and 9 in the time interval < tb­
IJ.Ls, tb + IJ.Ls >, computed for the driving source with infinitesimal rise time of the
pulse. The amplitude modulation observed in all cells is due to the eight other modes
of the fundamental mode passband which have not completely decayed. The strongest
contribution to this modulation is the 8; mode, the amplitude of which in both end
cells is 0.05% of the fundamental mode amplitude. It is comparable with the voltage
drop of 0.13% in these cells caused by a single bunch. Computations with 2D and
3D codes showed that for a well-tuned cavity all modes except the fundamental one
have beam impedances ~ equal to zero, so no interaction with the accelerated beam
and no energy spread between bunches due to this modulation are expected. If the
cavity is not well-tuned some energy deviation from the nominal value, caused by the
modulation, can occur. On the other hand this residual modulation may be effectively
suppressed by increase of the rise time. To simulate pulse of the klystron step function
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U- 1 (t) in the equations (3) was replaced by the function (1 - exp(-tjto)). Fig. 11
shows voltages of cell No.1, 5 and 9 in the same time interval as before, computed
for the time to == 10j.Ls. The suppression of the modulation due to the increase of the
pulse rise time is remarkable. We should also note that the mean value of the voltage
slope for both rise time values in all cells shows that 1j.Ls time spacing between the
bunches should be enough to refill stored energy in all cells of the cavity.
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