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Adiabatic theory is applied to the longitudinal dynamics ofparticles interacting with a large-amplitude wave
packet for bounce time that is short compared with the transit time. This analysis differs from previous
ones in that the Hamiltonian varies slowly with the coordinate rather than with the time. The resulting
adiabatic invariant is not equal, even in lowest order, to the usual action. This analysis correctly predicts
the basic features of the interaction observed in previous numerical studies. Furthermore, our model
captures the essential elements of the longitudinal dynamics of slow-wave structures such as radio-frequency
quadrupoles, free-electron lasers and plasma beat-wave accelerators.
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1 INTRODUCTION

We treat analytically the dynamics of charged particles trapping and detrapping in
a one-dimensional traveling wave with an amplitude that varies slowly in space. The
maximum amplitude of the wave is allowed to be arbitrarily large. Our results are rel
evant to the trapping of ions in a radio-frequency quadrupole l (RFQ), the trapping
and detrapping of electrons in a free-electron laser2 (FEL) with an appropriately ta
pered wiggler magnet, and the electron dynamics in a plasma beat-wave accelerator3,4

(PBWA). In particular, we explain how to correctly match an ion beam to an RFQ (ne
glecting transverse motion) so as to minimize growth of the longitudinal emittance
during trapping.

Wave-particle interactions are central to many physical phenomena in both plasma
and accelerator physics. Nearly resonant particles, i.e., those with velocity close to
the phase velocity of the wave, interact strongly with the wave. The large energy
exchange between a traveling wave and its associated resonant particles is important
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to plasma turbulence theory and crucial for charged-particle acceleration in slow-wave
structures such as those mentioned above.

When the wave parameters vary slowly in time, by which we mean that the time
scale for variation is long compared with the characteristic bounce time of trapped
particles, adiabatic theory can be applied to the particle motion. In this limit, there
exists an approximate invariant of the motion known as the adiabatic invariant.5 To
lowest order, the adiabatic invariant is equal to the familiar action, I == (1/21r) :f Pzdz,
with both time and the value of the Hamiltonian held fixed during the integration.
The action is proportional to the phase space area enclosed by a trajectory [see, e.g.,
References 6, 7 and 8].

Expanding on previous work,9,lO we consider the case of wave parameters that
vary slowly in space rather than time. This is the case that occurs most frequently
in accelerator physics applications. Here, the stipulation of slow variation imposes
two requirements on the wave structure. First, the length scale over which the wave
amplitude varies must be long compared with the wavelength; otherwise, there would
be no well-defined potential troughs to trap particles. Second, the transit time of
particles resonant with the wave must be long compared with the characteristic bounce
time of trapped particles.

Because adiabatic theory assumes the slow variation is in the independent variable,
we must reverse the roles of space and time, which is permissible in Hamiltonian
theory. In the resulting system, the new coordinate is the rapidly varying phase,
¢ == wt - kz, while the new time is the original coordinate z. Adiabatic theory can
then be applied directly to this system, so our analysis consists largely of finding the
new conjugate momentum and the new Hamiltonian.

We show below that the adiabatic invariant is not simply the familiar action from
time-varying systems. This result runs counter to the physical intuition firmly estab
lished in the plasma and accelerator physics communities. Furthermore, the particle
dynamics is far richer for the case of spatial variation, including phenomena such as
ponderomotive reflection and even resonant reflection.

We present in Section 2 of this paper the Hamiltonian model chosen for the
application of our new analytic methods. The two dimensionless parameters relevant
to our analysis are € and ao, where € is the ratio of the wavelength to the characteristic
length scale over which the wave parameters change, and ao (proportional to the
wave amplitude) is the maximum potential energy of a particle in the wave divided
by the average kinetic energy of a resonant particle. The two criteria for an adiabatic
analysis can be expressed simply as the requirement that € and € / a~/2 both be small.
We then show in Section 3 how to apply adiabatic theory to this model and calculate
the adiabatic invariant.

We discuss in Section 4 how contour plots of the adiabatic invariant reveal the
underlying structure of the particle dynamics. For example, such plots clearly show the
range of initial particle velocities that lead to ponderomotive reflection. In addition,
these plots show in detail how three distinct, dynamical topologies appear as the
parameter ao is increased from zero. It is seen for each of these three cases that nearly
resonant particles are trapped in the wave and that upon detrapping they ultimately
attain one of two distinct final velocities, depending upon their initial phase. It is
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furthermore shown that, for ao > aT2 ~ 0.636, there exist particles with initial
velocities well removed from the phase velocity of the wave (i.e. they are not "nearly
resonant" in the usual sense) which nevertheless interact resonantly with the wave and
are subsequently very strongly reflected.

The ideas and results of Section 4 are used in Section 5 to provide an analytic
explanation of the numerical work of Fuchs, Krapchev, Ram, and Bersll (hereafter
referred to as FKRB). FKRB studied a dynamical system very similar to ours, and

found that quasilinear theory broke down in the limit that c and c/a~/2 were both
small. This is just the parameter regime which we study here.

The adiabatic contour plots of Section 4 show that the regime of ponderomotively
reflected particles grows with ao until ao == aT2, at which point it saturates. In Section
6, we make a detailed comparison between ponderomotive theory and our adiabatic
analysis. In particular, we show that our analysis agrees with ponderomotive theory in
the limit of small ao, and that the two methods differ only slightly as ao approaches
the critical value aT2. For larger values of ao, the two analyses make sharply different
predictions, and numerical results confirm the adiabatic analysis.

This paper is a more detailed presentation of previously published work.9 ,lo,l2 In
fact, other workl3 has recently generalized certain aspects of what we present here
to the relativistic case, in order to properly treat electron dynamics in a plasma beat
wave accelerator4 in the adiabatic limit. However, here we have gone into much more
detail on the different topological cases which arise as the parameter ao is changed. In
Section 7, we discuss the relevance of our work to accelerating devices such as RFQ's,
FELS and PWB~s.

Finally, our conclusions are presented in Section 8.
Before proceeding to Section 2, we wish to emphasize that we have restricted our

analysis to zero order in the small parameter c/ a~/2 . To first order, the particle dynam
ics involve phase-dependent kicks in the value of the adiabatic invariant whenever a
phase-space trajectory crosses the separatrix. This occurs during the process of trap
ping, detrapping, and resonant reflection. Such details have been studied previouslylO
and will be published in a future paper. l4 To lowest order, these stochastic phenomena
can be ignored for a single wave-particle interaction.

2 HAMILTONIAN MODEL

The Hamiltonian governing the 1-D motion of a nonrelativistic charged particle in an
electrostatic wavepacket is

Hwp(z,pz, t) == p;/2m + e~(z, t)

== p;/2m + eA(z/L) cos(kz - wt), (1)

where z is the spatial coordinate, pz the momentum, t the time, m the particle mass,
e the particle charge,' k the wave number, w the wave frequency, ~ the electrostatic
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potential, and A the envelope function of the wavepacket. The amplitude is assumed
to have the form A(z/L) = Aof(z/L), where f is a function of unit peak and unit
width, so that Ad is the peak value of the potential and L is the characteristic length
over which the wave amplitude changes. Our analysis is readily applied to other
functional forms of the wave envelope.

We now introduce dimensionless variables in order to simplify the notation. Let
T = wt, q = kz, P = (k/mw)pz, and H = (k2/mw2)Hwp • Substituting these variables
into Equation (1) yields

1
H(q,p, T) = "2P2 + a(cq) cos(q - T), (2)

where e == l/kL and 0: = o:of(eq), with 0:0 == (k2e/mw2)Ao. The number of
wavelengths within the wave envelope is given by l/e; this number is large for a
wavepacket, so e is small. Trapped particles oscillate characteristically at the bounce
frequency, Wo == k(eAo/m)1/2 = wo:~/2. Thus the dimensionless amplitude is the
square of the ratio of the particle bounce frequency to the wave frequency, 0:0 =
(wO/w)2.

A snap shot of the potential energy for our model is shown in Figure 1a. The smooth
curve is the envelope function f(eq), which for this plot we take to be a gaussian. The
separatrices of the corresponding phase space at an instant in time are shown in Fig.
1b, with the lobes corresponding to the potential wells of Fig. 1a. As time advances,
the sinusoidal wiggles within the envelope in Fig. 1a move to the right at the phase
velocity, as do the separatrix lobes in Fig. lb. Thus, the separatrix lobes grow to some
maximum value and then shrink back to nothing as they move from left to right.

The phase-space trajectory of a nearly resonant particle would enter Fig. 1b from
the left and trap in a growing lobe. This lobe would ferry the oscillating trajectory to the
right side of the wave, where the trajectory would eventually detrap as the lobe shrank.
The characteristic time required for a resonant particle to cross the wavepacket is
kL/w = l/we.

The number of bounce oscillations executed by a resonant particle as it crosses the
wavepacket is given by the product of the bounce frequency and the time for crossing
thewavepacket: v == WO/We = 0:~/2 /e. For small v, no bounce oscillations are executed
by such a particle, and its trajectory to lowest order is a straight line. It was shown by
FKRB that quasilinear theory works well in this limit.

Except for small O(e) differences, the Hamiltonian [Eq. (2)] includes that studied
by FKRB. However, we analyze the large-v regime, where resonant particles execute
many bounce oscillations in crossing the wavepacket. FKRB studied this regime
numerically, finding the particle dynamics differed dramatically from that of the small
v regime. Our analysis explains some of their numerical results.

3 ADIABATIC INVARIANCE THEORY

Adiabatic invariance theory is useful in the limit that resonant particles execute many
bounce oscillations when crossing the wavepacket, because it allows one to average
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FIGURE 1: (a) The potential of the original Hamiltonian for ao=l and e=O.12. (b) The corresponding
phase-space.
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over these fast oscillations, thus simplifying the analysis. For adiabatic theory, the
Hamiltonian must be a slow function of the independent variable, usually time. Our
Hamiltonian has its slow variation in the spatial variable q, as is indicated formally
by the dependence of the wave envelope on eq, where e is small. Therefore, we first
transform to a new Hamiltonian where q is treated as the independent variable, then
we proceed to calculate the adiabatic invariant.

3.1 Preliminary Transformations of the Hamiltonian

We treat q as the independent variable simply by reversing the roles of the two
conjugate pairs (q,p) and (T, H). The Hamiltonian, which we denote by the symbol E
in order to emphasize its new role, becomes the new momentum and T its conjugate
variable. Physically, E is the particle energy in the laboratory frame (Le. the frame
where the wave envelope is stationary). Likewise the momentum, which we now
denote by ~l, serves as the Hamiltonian.

The functional form of this new Hamiltonian,

PI(T, E, q) = ±V2[E - a(eq) cos(T - q)], (3)

is obtained by solving the equation H(q, PI, T) = E for Pl. This Hamiltonian has two
branches: on the upper branch, where P takes the plus sign, the new time q increases
along trajectories; on the lower branch, where PI takes the minus sign, q decreases
along trajectories. As a result, phase space has two sheets - the upper sheet and the
lower sheet - corresponding to these two branches.

In most laboratory applications the momentum will be everywhere positive, and
only the upper branch of the Hamiltonian [Eq. (3)] will be used. However, the general
case is treated here. We note that transformations of the above form are commonly
used for Hamiltonian formulations of particle motion in accelerators [see, e.g., Ref.
15].

Again, adiabatic theory requires that the Hamiltonian vary slowly with the indepen
dent variable (here, q), while the Hamiltonian [Eq. (3)] has its q variation not only in
the slowly varying amplitude a(eq), but also in the rapidly varying phase (T - q == ¢).
A canonical transformation, making the phase ¢ the new coordinate eliminates this
fast variation in q. We achieve such a transformation with a generating function of the
second kind,

1
F(T, K, q) = (T - q)K - "2 q , (4)

which depends on the old coordinate T and the new momentum K.
The new coordinate is ¢ = of/oK = T - q, as desired. The momentum is actually

unchanged by this transformation, as can be seen from the relation E = of/ oT = K.
Therefore we keep our notation simple by dropping the symbol K and keeping E in
its place. The second term on the right hand side of Equation (4) is used to simplify
the physical interpretation of our new variables. The new Hamiltonian P(¢, E,'Eq) is
given by
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of
P(c/J,E,cq) = P1 [T(c/J,q),E,q] + aq [T(c/J,q),E,q]

1=-E ± J2[E - a(cq) cos(c/J)]- 2.
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(5a)

(5b)

We now pause to interpret the physical meaning of our new Hamiltonian. Restoring
physical units to Equation (5a) yields

w W 1 (W)2-P==-E±-y'2m[E-eA(z/L)cos(kz-wt)]--m - .
k k 2 k

The square root (including the ±) is equal to Pz, the momentum in the lab frame. If
we denote the phase velocity by Vc/H then we can write P == -(E/vc/> - pz + mvc/>/2) ==
-Ec/>/vc/>, where Ec/> is the energy-in the wave frame (i.e. the frame where the wave
phase is stationary). We have defined Ec/> in the usual way: Ec/> == p~/2m + eq), where
Pc/> == pz - mvc/> is the wave frame momentum.

We show the phase space of the Hamiltonian [Eq. (5a)] for a(cq) == 2 in Fig. 2.
Specifically, Fig. 2 shows contours of constant P(¢, E, cq), for a fixed value of cq, in
the E - ¢ plane. One can imagine that the figure is wrapped around a vertical cylinder,
so that ¢ == 0 and ¢ == 21r are the same point. In Fig. 2, we have inverted the lower
phase-space sheet and attached it to the bottom of the upper sheet.

We have patched the two phase-space sheets together in Fig. 2 in order to show the
phase-space topology as clearly and simply as possible. However, this gives rise to a

9.0
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0 1t 2n
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FIGURE 2: phase-space of the Hamiltonian in Eq. (5) for a(c:q)=2. The thicker line corresponding to
K=a(c:q) cos c/> divides the two phase-space sheets. The two branches of the separatrix, labeled spx, divide
the phase-space into three regions: region a above the separatrix, region b below the separatrix, and region
c inside the separatrix.
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slight complication, because a given value of E does not uniquely correspond to one
phase space sheet or another. For this reason, we introduce a new variable K : K = E
on the upper sheet, while K = 2a(cq) cos(¢) - E on the lower sheet. The thicker line
in the figure, which corresponds to K = E = a(cq) cos(¢), separates the two sheets.

In Fig. 2, the two branches of the separatrix are labeled spx. On these two curves,
E¢ = -P = a(cq). Plugging P = -a in Eq. (5a) and solving for E yields the value of
E on the separatrix:

1
Esx = a(c:q) + 2 ± y'2a(c:q)[1 - cos(¢)] , (6a)

(7)

where the + sign corresponds to the upper branch of the separatrix and the - sign
corresponds to the lower branch. Given the above definition of our new variable K,
we find that the value of K on the separatrix is K sx = E sx on the upper phase space
sheet. On the lower phase space sheet, where only the lower branch of the separatrix
appears, we find

1
K sx = y'2a(c:q)[1- cos(¢)] + 2a(c:q)cos(¢) - a(c:q) - 2' (6b)

The separatrix divides the phase space into three regions. We call the region above
the separatrix region a, and trajectories in this region are said to be passing above. In
region a, p > 1 and E¢ = -P > a(cq). We call the region below the separatrix region
b, and trajectories in this region are said to be passing below. In region b, p < 1 and
E¢ > a(cq). We call the region inside the separatrix region c, where trajectories are
trapped, and E¢ < a(cq). On the phase-space trajectories shown in regions a and b,
P = -4.2. On the contour shown in region c, P = 0.25.

3.2 Calculation ofthe Adiabatic Invariant

Given a Hamiltonian that varies slowly with its independent variable, such as P(¢, E, cq)
with E « 1, there exists an adiabatic invariant5 which can be written as a power series
in c. The lowest-order term in this series, denoted here by J, is the loop integral of the
momentum around a phase-space trajectory:

J == ~ f d¢E == ~ f d¢(Ec/> + Pc/> + ~) .
2~ 2~ 2

The second equality follows from the definition of the wave-frame energy and momen
tum in dimensionless units. The third term in the parentheses simply adds a constant
to the adiabatic invariant, so we will ignore it when calculating J below.

The value of the Hamiltonian P and the independent variable q (hence, the wave
amplitude) are held fixed during the integration in Eq. (7). Because E¢ = -P [see
the discussion below Eq. (6)], E¢ is held constant during the integration. Thus, the
first term in the integral is (E¢/2~) f d¢. This piece vanishes for trapped trajectories,
which complete a full circuit in the phase, while it is just E¢ for passing trajectories,
for which ¢ increases by 27r in one period.



ADIABATIC MOTION IN WAVE STRUCTURES 203

The second term in Eq. (7) gives the action integral familiar from the case of a
wave with time-varying amplitude: Plj> = (1/21T) f plj>d¢. This notation reflects our
interpretation of Plj> as an average momentum. For passing particles, Plj> is in fact
the average momentum on a phase-space contour of constant Elj> and fixed wave
amplitude, and we choose the convention that it takes the sign of Plj>. For trapped
particles, Plj> is not precisely an average momentum, because the range of the trapped
phase is not 271"' and the integration is effectively of Iplj> I since plj>d¢ remains positive
when integrating around a circuit in phase. (Furthermore, we divide Plj> by two for
trapped particles so that it is continuous in magnitude as the separatrix is crossed.)

The adiabatic invariant for passing particles, Jp, and for trapped particles, JT, has
the form

(8a)

(8b)

Equation (8a) holds in phase-space regions a and b, while Eq. (8b) holds in region c.
The adiabatic invariant for the case of time-varying wave amplitude can be recovered
by removing the Elj> from Eq. (8a).

The average momentum Plj> can be written as a function of Elj> and cq by explicitly
evaluating the integral which defines it. By definition, Plj> = ±[2Elj> - 2a(cq) cos¢] 1/2,
which yields

(for Elj> > a),
(9a)

(9b)

where k(Elj> ,cq) == {2a(cq)/[Elj> +a(cq)]}1/2, and the function "sign" returns the sign
of its argument with unit magnitude, while K and E are complete elliptic integrals of
the first and second kind, respectively.16 These integrals have been obtained previ
ously (Ref. 7 and p. 65 of Ref. 10). Equation (9a) holds for passing trajectories, while
Eq. (9b) holds for trapped trajectories. For P4> > 0, the function p4>(Elj>, cq) is contin
uous and smooth for all values of Elj> and cq.

The adiabatic invariant is discontinuous across the separatrix, because it is defined
by a different integral in each of the three regions of phase space. We define the
separatrix action Y(cq) to be the value of J on the separatrix. Taking the limit Elj> ~ a
of Eqs. (8) and (9), we obtain
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4
Ya(€q) == _a1

/
2 (€q) + a(€q) ,

1r

4
Yb(€q) == __a 1

/
2 (€q) + a(€q) ,

1r

8
Yc(€q) == _a1

/
2 (€q) ,

1r

(lOa)

(lOb)

(lOc)

with the subscripts on Y used to indicate the relevant region of phase space.
We now consider the form of the adiabatic invariant for passing particles far from

the wave, where the local wave amplitude is vanishingly small. Taking the limit a ---7 0
of Eqs. (8a) and (9a) yields

. 1 (2 )J==2 P - 1 , (11)

where we have used a lower case j to indicate that this result holds only in the limit
that the wave amplitude vanishes. Because momentum is conserved in this limit, it
is reasonable that the adiabatic invariant should reduce to a simple function of the
momentum.

4 UNDERLYING STRUCTURE OF THE DYNAMICS

In the adiabatic limit (Le., in the limit € « 1 and v » 1), trajectories remain
on contours of the adiabatic invariant to lowest order in €. Furthermore, this holds
true even for trajectories that approach and encounter a separatrix.17,18 Thus, a
contour plot ofthe adiabatic invariant provides the underlying structure of the particle
dynamics, without having to solve or numerically integrate the equations of motion.

4.1 Small-Amplitude Regime

We present such a contour plot in Fig. 3 for the case ao == 0.3. The adiabatic invariant
contours are plotted in the p¢ - €q plane. In order to generate such a plot, the E¢
in Eq. (8a) must be known as a function of P¢ and €q. In fact, this function is known
implicitly through the inversion of the function p¢(E¢, €q) as given in Eq. (9a). The
case ao == 0.3 is in what we call the small-amplitude regime; the topology of the
contours changes dramatically as the amplitude is increased beyond a critical value.
This issue is discussed in detail below.

The two curves forming an outline ofwhat resembles human lips are used to indicate
the location of the upper and lower branches of the separatrix, where E¢ == a(€q).
On these curves the average wave-frame momentum is p¢ == ±(4/1r)a1

/
2 (€q). The

contours above the lips correspond to trajectories in region a (passing above), those
below the lips to trajectories in region b (passing below), and those inside the lips to
trajectories in region c (trapped).
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FIGURE 3: Action contours in the p¢-eq plane, for ao=O.3, which is in the small-amplitude regime.
The two curves which resemble lips indicate when the separatrix is crossed. That portion of the plot above
the lips corresponds to particles that are passing above, while the upper half inside the lips corresponds
to trapped particles, and that portion below the lips corresponds to particles passing below. The adiabatic
invariant is undefined in the shaded area. The arrows indicate whether q is increasing or decreasing along
the corresponding trajectories. The vertical dashed lines indicate possible transitions between two regions
of phase-space upon crossing the separatrix. The contours which loop back on themselves correspond to
ponderomotively reflected particles.

The arrows on the contours indicate the direction of particle motion. The direction
on passing contours is determined at large distance, where the wave amplitude van
ishes and p</> = p</>. In this limit, the laboratory-frame momentum of each particle is
given simply by p = p</> + 1. Trapped particles move to the right (with the wave phase)
at constant P</>' which is proportional to the trapped-particle adiabatic invariant. The
region inside the lower lip is shaded to indicate that it is unphysical: for trapped parti
cles, p</> is positive by definition. The vertical dashed lines in Fig. 3 are used to connect
contours in regions a and c with those in region b.

The underlying dynamical structure predicted by adiabatic theory has an unusual
topology. Trajectories in a particular region of phase space make transitions to another
region only by passing through the separatrix, which corresponds in our figure to the
edges of the lips. At these points, transitions between any of the three regions are
possible. This topology is obtained by cutting out the lower lip, folding the plane along
the p</> axis, and connecting the plane along the edge of the upper lip, so that there are
two distinct planes emanating upward from this lip. As we are restricted from using
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pop-out figures, we must attempt to represent this topology in Fig. 3 with connecting
lines.

We refer to those contours in Fig. 3 without arrows drawn on them as critical
contours. The critical contours divide the plot into various sections in which the normal
contours exhibit a common behavior. For example, the line which just grazes the upper
lip (labeled on the right by Pmax) is a critical contour separating those contours in
region a which do intersect the upper lip from those that do not. Trajectories which
correspond to contours above this critical contour do not cross the separatrix. Grazing
the bottom lip is a critical contour (labeled on the right by Pmin) separating those
contours in region bwhich do intersect the lower lip from those that do not.

Various momentum values are listed on the right-hand side of Fig. 3. These values
indicate the momentum of trajectories corresponding to these contours when they are
far from the wave. In other words, the vertical axis on the right is obtained from the
vertical axis on the left via the relation P = P¢ + 1, which holds in th~ limit a ---+ O.

To illustrate the interpretation of Fig. 3, we discuss the contours labeled a and c,
both of which intersect the lips at the same wave amplitude. Upon encountering the
separatrix, the two classes of corresponding trajectories combine into a single trapped
class. The trapped trajectories then travel through the wave packet. Each trajectory
detraps on the right side of the wave, corresponding then to either contour b or d,
depending upon whether it is finally passing above or passing below.

Our analysis permits explicit calculation (to lowest order in c) of the possible final
values of momentum for a given value of incoming momentum. We illustrate this
calculation for a trajectory corresponding to contour a. Far from the wave packet,
a trajectory in phase-space region a has initial momentum Pi and, thus, adiabatic
invariant Ji = j(Pi) = (PT - 1)/2 as given by Eq. (11). This value of the adiabatic
invariant is conserved up to the separatrix, which is encountered when J equals the
separatrix action, Ya = (4/7r)a1/ 2+ a as given by Eq. (lOa). The trapping amplitude
ax is obtained by equating Ji with Ya , yielding

(12)

When the trajectory detraps, it is either passing above (i.e., corresponds to contour b)
with final momentum Pj = Pi, or else it is passing below (i.e., corresponds to contour
d). In the latter case, the adiabatic invariant changes to that of a trajectory on the
separatrix in phase space region b: Jj = Yb(ax ) = -(4/7r)a~/2 + ax, as given in
Eq. (lOb). The trajectory then leaves the wave-packet region, preserving the adiabatic
invariant, so that far from the wave its momentum satisfies Jj = j(Pj) = (pJ - 1)/2.
This chain of equalities gives the final momentum on contour d as a function of the
initial momentum on contour a:

(13)
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If we consider a trajectory initially corresponding to contour c, which traps in the wave
and then, upon detrapping, is passing above (Le., corresponds to contour b), then we
can follow a procedure analogous to the one above and again obtain Eq. (13).

We define Pmax to be the maximum value of Pi such that a trajectory will encounter
the separatrix. Thus P max can be found as a function of aD simply by noting that
aD == ax (Pmax) and then inverting Eq. (12) to obtain

_ . / 8 1/2
Pmax = V1 + ;ao + 2ao . (14a)

Likewise, we define Pmin to be the minimum value of Pi such that a trajectory will
encounter the separatrix. An analogous method then yields

_ . / 8 1/2
Pmin == vI - ;ao + 2ao· (14b)

We emphasize that Eqs. (13) and (14) are independent of the explicit functional
form of the wave envelope. Admittedly, we can obtain these analytic formulas only
because we chose a relatively simpl~ Hamiltonian to study. However, adiabatic in
variant contour plots like Fig. 3 would still be useful (actually more so) when analytic
formulae cannot be found, because information of this type could still be obtained
graphically or numerically.

Towards the bottom of Fig. 3 is a critical contour containing an x-point, which we
call the ponderomotive contour. The ponderomotive contour encloses all contours
corresponding to ponderomotively-reflected trajectories, and two such reflected con
tours are shown. The upper part of the ponderomotive contour is labeled Ppond,

while its lower part is labeled -Ppond. Those particles far to the left of the wave
with 0 < Pi < Ppond, as well as those particles far to the right of the wave with
-Ppond < Pi < 0, will be ponderomotively reflected. These limits are symmetric
about P == 0, because the limiting value of the adiabatic invariant j(p) is symmetric
aboutp == O.

We explain in Appendix A how to find Jpond' the value of J on the ponderomotive
contour. In general, this must be done numerically. Once Jpond is known, Ppond can
be obtained by inverting Eq. (11), then letting j --+ Jpond and P --+ Ppond:

Ppond =V2Jpond + 1 . (15)

The value of Jpond depends only on aD, not on the functional form of a(cq).

4.2 Intermediate-Amplitude Regime

When aD exceeds the critical value aT1 =4/1r2, the adiabatic invariant contours
exhibit a new topology, which we refer to as the intermediate-amplitude regime. The
reasons for this change in topology are best understood by considering the detailed
particle dynamics in the vicinity of the separatrix;1o however, such a discussion would
be beyond the scope of this paper. Fortunately, somewhat simpler considerations,
presented in Appendix B, are sufficient to determine the value of aT1. The topology
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FIGURE 4: Action contours in the p¢-eq plane for 00=0.6, which is in the intermediate-amplitude
regime.

of the intermediate-amplitude regime is shown in Fig. 4, where the maximum wave
amplitude is ao == 0.6. This topology is independent of the functional form of the
wave envelope.

The critical contour in Fig. 4 labeled Pmax is analogous to the one in Fig. 3, and Pmax

as a function of ao is given as before by Eq. (14a). Somewhat below, however, is a new
critical contour, labeled Pa, which separates two types of contours in region a. Those
contours below (familiar from Fig. 3) correspond to phase space trajectories which
invariably trap in the wave, then detrap on the other side. Those above correspond to
trajectories which, depending on their phase, either trap in the wave as before, or else
scatter off the wave into phase space region b (following the short contour just below
the lower lip), then encounter the separatrix again and scatter back into region a. For
all such trajectories, Pf is equal in lowest order to Pi.

There is another new critical contour in Fig. 4, labeled Pb, which grazes the lower
lip at the same two values of cq for which the Pa contour intersects the upper lip. This
critical contour separates those contours in region b which correspond to separatrix
crossing trajectories from those which correspond to adiabatic trajectories, thus serv-
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ing the same role as does the Pmin contour in Fig. 3. The momenta Pa and Pb are found
by using Eqs. (14a) and (14b), respectively, but with ao replaced by aTl == 4/1r2 :

Pa == VI + 24/1r2
,

Pb == VI - 8/1r2 .

(16a)

(16b)

These results are valid for all ao 2:: aTl and for any functional form of a(cq).

The ponderomotive contour exists in the intermediate-amplitude regime as well,
where we have again labeled the upper part Ppond and the lower part -Ppond. It
is larger as shown in Fig. 4 than for the case shown in Fig. 3, and it has become
distorted by the lower lip. The value of J on the ponderomotive contour, Jpond' must
be found numerically, as is discussed in Appendix A. Once J pond is known, Ppond can
be obtained fromEq. (15).

4.3 Large-Amplitude Regime

As ao increases within the intermediate-amplitude regime, the critical contours la
beled Pb and Ppond move closer together. We denote by aT2 the critical value of ao at
which these two contours overlap and become one; aT2 marks the transition between
the intermediate-amplitude and large-amplitude regimes.

The adiabatic invariant on critical contour Pb is, from Eqs. (11) and (16b), Jp ==
-4/1r2, while Jpond must be determined numerically. Thus the value of aT2 must
be determined numerically by simultaneously finding E¢ and ao such that the two
equations 8Jp /8p¢ == 0 and Jp == -4/1r2 are both satisfied (see Appendix A). This is
a root finding problem in two dimensions, and the value of ao obtained is by definition
aT2. We have obtained aT2 ~ 0.636, which is accurate to three significant figures. This
value is independent of the functional form of a(-X).

The new topology of the large-amplitude regime is shown in Fig. 5, where the
maximum wave amplitude is ao == 2.5. The critical contours labeled Pmax and Pmin are
analogous to the ones in Fig. 3, with Pmax given by Eq. (14a) and pmin given now by
the negative of the quantity on the right hand side of Eq. (14b). Likewise, the critical
contour Pa plays the same role as it did in Fig. 4 and the value of Pa is still given by
Eq. (16a).

The ponderomotive contour in the large-amplitude regime is split into two separate
contours by the lower lip. The one to the right of the lower lip is labeled Ppond at the
upper end and -Ppond at the lower end. In this regime, Ppond == Pb, which is still given
by Eq. (16b). For all values of ao greater than aT2, Ppond is equal to this fixed value.
In other words, the range of initial momenta which result in ponderomotive reflection
saturates once the large-amplitude regime is reached.

A new class of contours exists in the large-amplitude regime: those in region a
that lie between the critical contours Pa and Pmax, as well as those in region b that
lie between the ponderomotive contour and the critical contour Pmin. One such
contour, labeled a, is shown in Fig. 5 intersecting the upper lip on the left side. Upon



210 D.L. BRUHWILER

ba

,------.-----,.---------r---- --•.----.-- -"---'-- ------.. --.---

0 1

~

Ppond=Pb

-1 0

-~ond

-3 -2 -1 o
Eq

2 3

FIGURE 5: Action contours in the p<p-eq plane for 00=2.5, which is in the large-amplitude regime.
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encountering the separatrix, some of the corresponding trajectories (depending upon
their phase) trap in the wave then detrap on the other side and finally correspond to
the contour labeled b. For such trajectories, PI is equal in lowest order to Pi.

However, there exist other trajectories corresponding to the initial contour a which
can cross the separatrix from region a to region b (rather than becoming trapped) and
thus are resonantly reflected by the wave, finally corresponding to the contour labeled
c. For these trajectories, we can find PI as a function of Pi just as we did in obtaining
Eq. (13):

Pf = - P~ + ~; [1- VI + ~2 (p~ - 1)] , (17a)

which is just Eq. (13) with a minus sign. To the right of the lower lip, we show
another contour in this new regime, labeled d. All of the trajectories corresponding
to this contour, regardless of phase, are resonantly reflected by the wave and finally
correspond to contour b. For such trajectories, PI is given in lowest order by

Pf= P~+ ~; [1+Vl+ ~2(p~_1)]. (17b)

Actually, the topology of the action contours in the large-amplitude regime is
slightly more complicated than what we have presented in Fig. 5. As is explained
in Appendix C, however, the differences affect only an exponentially-small class of
trajectories. We do not show these details in Fig. 5 for the sake of clarity.

5 THE SKELETON OF A SCATTER PLOT

Here we provide a striking example of how the adiabatic-invariant contour plots are
useful for understanding particle dynamics by using the same ideas to explain the
scatter plot shown in Fig. 16b of FKRB, which is reproduced here in Fig. 6a in a
slightly modified form. This figure, which somewhat resembles a flying bird, shows
the results of a numerical simulation in which 5x 103 particles, initIally far from the
wave and distributed uniformly in Pi between -2 and 4, interact once with a gaussian
wave packet for which 00 == 2 and € == 0.1. The final momentum of each particle, PI,
is plotted vs. Pi.

We present in Fig. 6b the same scattering plot for our model Hamiltonian, with
00 == 2 and € ---+ o. In other words, we plot PI as a function of Pi according to the
lowest-order dynamics predicted by adiabatic invariance theory. Our results accurately
provide the skeleton of the "bird", even for € as large as 0.1. The spread around
this skeleton is due to phase-dependent separatrix-crossing effects. (Such effects are
beyond the scope of this paper; they have been studied in detail elsewhere.)10,17,18
When there is no interaction with the separatrix, the skeleton is precise.

Figure 6b was obtained from Fig. 5 and the results of the previous section as
follows. For Pi < Pmin, all trajectories remain adiabatic and so PI == Pi, which yields
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FIGURE 6: (a) Numerical results adapted from Ref. 11 for the final momentum as a function of the initial
momentum, with ao =2 and e=O.l. (b) The value of Pf after one wave-particle interaction as a function of
Pi, for ao =2 and e~O. Dashed lines are used to indicate that the interaction was adiabatic, including the
one with negative slope, which corresponds to ponderomotive reflection. The solid lines indicate that the
interaction was resonant, which means that the separatrix was crossed.
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the straight dashed-line segment with unit slope in the lower left-hand corner. For
Pmin < Pi < -Ppond, all trajectories are resonantly reflected by the wavepacket and PI
is given by Eq. (17b), which yields the curved line in the upper left-hand corner (i.e., the
left wing of the bird). For -Ppond < Pi < Ppond, all trajectories are ponderomotively
reflected so that PI = -Pi, which yields the straight dashed line segment with a slope
of negative unity. For Ppond < Pi < Pa, all trajectories trap in the wave and then
detrap either with PI = Pi or with PI given by Eq. (13) depending on their initial
phase, yielding the lower part of the long straight-line segment with unit slope, as well
as the intersecting curved line with negative slope. For Pa < Pi < Pmax, depending on
their initial phase, trajectories either trap in the wave and subsequently detrap with
Pi = Pi, or else they are resonantly reflected by the wave with PI given by Eq. (17a),
which yields the upper part of the long straight-line segment with unit slope, and the
curved line in the lower right-hand corner (the right wing of the bird), respectively. For
Pmax < Pi, all trajectories remain adiabatic and so Pi = Pi, which yields the straight
dashed line segment with unit slope in the upper right-hand corner. For ao = 2, we
find thatpmin ~ -1.18,pb = Ppond ~ O.435,Pa ~ 1.85, andpmax ~ 2.93.

If we were to replot the skeleton in Fig. 6b for smaller and smaller values of ao, we
would see both wings decrease in length as the range of initial momenta resulting in
resonant reflection decreased. Simultaneously the solid line in the upper right would
decrease in length and the dashed line in the lower left would extend towards the
middle of the plot, as the regime of purely adiabatic motion increased. At the point
where ao became equal to aT2, the wings would have disappeared completely. Further
decreases in ao would cause the figure to shrink further. In particular, the dashed line
with negative slope would begin to reduce in length as the regime of ponderomotive
reflection shrank. This process would continue until, when ao were zero, the plot
would consist of a single, continuous dashed line.

6 PONDEROMOTIVE REFLECTION

Now we discuss the issue of ponderomotive reflection in more detail. A ponderomo
tive Hamiltonian can be derived by transforming away rapid small-amplitude oscil
lations of the trajectories (see Eq. (59) of Ref. 19). If we assume the electric field is
longitudinal, ignore the transverse degrees of freedom, and take the nonrelativistic
limit, then, in our dimensionless variables, the ponderomotive Hamiltonian is

1 2 1 2 .2-1Hpond(q,p) ="2P + 4a (cq)(l - p) = E pond . (18)

The ponderomotive calculation requires a small-amplitude expansion, so a 3 and
higher-order terms have been neglected in obtaining Eq. (18). We have also neglected
terms that are smaller than a 2 by O(c).

The ponderomotive Hamiltonian is conserved to the extent that the ponderomotive
approximation holds, so the associated phase space trajectories are just contours of
constant Hpond. The H pond contour which delimits the phase space region where
ponderomotive reflection occurs must contain an x-point. This x-point occurs at
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• The squares indicate values ofP pond obtained from numerical simulations.

q = 0, P = 0(02 ) where both partial derivatives of Hpond vanish. At the x-point (and,
hence, on the contour containing it), E pond = (1/4)05[1 +0(00)]. Far from the wave,
however, Epond = (1/2)P;ond' Combining these two equations yields

(19)

We have obtained the same result analytically from adiabatic theory in the limit
00 « 1 (see Appendix D).

We show a plot ofPpond vs. 00 in Fig. 7, comparing adiabatic theory, ponderomotive
theory and numerical simulations. The solid line was obtained numerically from
adiabatic theory, as described in Appendix A. It shows the saturation of Ppond at Pb
(indicated by the horizontal dashed line) for 0~OT2 ~ 0.636. The dotted line was
obtained from Eq. (19). The squares were obtained by numerically integrating the
original equations of motion for c = 0.04 and determining explicitly which initial
conditions resulted in ponderomotive reflection and which did not.

For 00 < 0T2 and c = 0.04, the numerical simulations showed a definite value
of Ppond, such that ponderomotive reflection occurred with Pi < Ppond but not for
Pi > Ppond. Repeating the simulations with different initial phases indicated the size
of the error bars, which were smaller than the size of the squares used to plot the
points in Fig. 7.
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For Qo > QT2 and c = 0.04, and with Pi close to the value ofPpond given by adiabatic
theory, all particles with Pi less than a certain value (which in turn was less than P pond)

were ponderomotively reflected, and all particles with Pi greater than a certain value
(which in turn was greater than Ppond) crossed the separatrix. For Pi in between these
two limiting values, particles either crossed the separatrix or were ponderomotively
reflected, depending on their initial phase. The two squares connected by a line are
used to show the two limiting values of Pi.

These nonadiabatic effects occur for Qo > QT2, because in that case all trajecto
ries with Pi close to Ppond either cross the separatrix or else come very close to it.
Therefore, the value of J can change by O(c) and a given trajectory can be kicked
across the critical contour. As c is decreased, the two limiting values of Pi converge on
Ppond = Pb, so in this limit the horizontal solid line represents a true division between
initial momenta that result in ponderomotive reflection and those that do not.

The approximate agreement between the solid line and the squares in Fig. 7 indi
cates that adiabatic theory correctly predicts the value of Ppond for arbitrary values of
Qo, in the limit of small c. The close agreement between the solid line and the dotted
line for Qo ;S 0.2 shows that adiabatic theory agrees with ponderomotive theory in
the limit of small wave amplitude, as indeed it must. In addition, we note how closely
ponderomotive theory agrees with adiabatic theory right up to the point of saturation,
where Qo = QT2·

7 BEAM DYNAMICS IN ACCELERATING DEVICES

The Hamiltonian of Eq. (1) provides a simple model for the longitudinal beam
dynamics of ions in an RFQ, and of electrons in a Compton-regime FEL or a plasma
beat-wave accelerator (PBWA). We now briefly consider each of these accelerating
devices.

7.1 Longitudinal Matching ofan Ion Beam to an RFQ

The concept of an RFQ, which uses electric fields to both bunch and accelerate a beam
of low-energy ions, was introduced by Kapchinskii and Teplyakov1 in 1970. Ignoring
both transverse degrees of freedom, the quadrupolar component of the longitudinal
electrostatic potential is given by

<p(z; t) = -~VoF(z) Sill(! k(z)dz) cos(wt - <Po) , (20a)

where z is the distance along the axis of the device, t is the time, Vo is the voltage
applied to the quadrupole vanes, k(z) is the wave number, w is the frequency, and cPo
is a phase. The function F(z) is given by

F(z) = m(z) - 1
[m(z)]2Io(ka) +10 [m(z)ka] ,

(20b)
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where 10 is the zero-order modified Bessel function,20 and the quantities a and m(z)a
are, respectively, the minimum and maximum distances between the quadrupole vanes
and the axis of the device. Equations (20a) and (20b) are exact (for the longitudinal
motion) if the vane surfaces satisfy Eq. (10) of Ref. 1.

We now consider a specific device, the 2.0-MeV RFQ2I built at Los Alamos Na
tional Laboratory. This machine was used to accelerate negative hydrogen ions (H-)
up to energies of 2 MeV, with w =425 MHz, Vo = 111.34 kV, and with a =0.27 cm and
m = 1.83 at the end of the device. The wave number k is given locally by 1rIlc, where lc
is the length of one of the unit cells of which the quadrupole vanes are constructed.22

With 356 cells in a total length of 289.23 cm, an average value of k for this device is
k ~ 3.87 cm-I.

Given these parameters, plus the mass and charge of the H- ion and tabulated
values of the modified Bessel function,20 the maximum value of the dimensionless
amplitude in our model would be

k2eVo
ao = 2mw2 F max ~ 1.6, (21)

which is in the large-amplitude regime. As can be seen from Eqs. (20a) and (20b), the
functional form of a(cq) would be quite complicated; however, many of the dynamical
results obtained from the adiabatic-invariant contour plots are entirely independent
of the wave amplitude's functional form.

It is slightly more problematic to determine the value of the small parameter c for a
real machine. In general, c will be a local quantity which depends on the length scale
over which system parameters are changing as compared with the length of a unit
cell. For example, if one or more of the parameters changes by order unity over some
distance L in one part of the machine, then the local value of c will be 1/kL, where k
is the local value of the wave number. The trapping (and subsequent acceleration) of
ions in an RFQ is done adiabatically in order to avoid losing particles.

Given that the Hamiltonian in Eq. (1) models the longitudinal dynamics of nonrel
ativistic ions trapping in an RFQ, we now use the results of Section 4 to show how to
match an incoming beam (with some given momentum spread) to an RFQ in such a
way that the longitudinal emittance of the trapped particle bunches is a minimum. We
do this first for the case of a wave with an amplitude growing slowly in time, which
is a much simpler problem. We then point out the differences in the actual case of
spatially-varying amplitude.

We suppose that initially the amplitude of the wave vanishes, and there is a monoen
ergetic beam with momentum Pi = 1 + ~P, where 1 is the phase velocity of the wave
in our dimensionless units. The phase space corresponding to this situation is shown
in Fig. 8a, which also gives the areas of the relevant phase-space regions. The value of
the adiabatic invariant associated with the particles in this beam is the familiar action:
Ii = (1/21r) f pdq = Pi. As the wave amplitude grows, the phase space contour on
which these particles lie becomes distorted but always has below it the same area.

There eventually comes a time, which we call the trapping time tx, when the area
under the upper branch of the separatrix equals the phase-space area under the initial
ensemble of particles. At the trapping time, the value of the action on the separatrix
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(22)

- given in general by Y(ct) == 1 + (4/1r)a1/ 2 (ct) - is equal to Ii. This situation is
shown schematically in Fig. 8b. Beyond this time, there does not exist a contour in the
phase-space region of passing particles with a corresponding action equal to Ii. Thus
the particles must become trapped.

As the wave amplitude increases further, these trapped particles remain on a phase-
space contour enclosing an area 16a;/2 == 41r~p, where ax == (ctx ), since that is the
area enclosed by the separatrix at the time of trapping. In other words, the final value

of the action for these particles is If == (1/21r) f pdq == (8/1r)a~/2. This situation is
shown schematically in Fig. 8c.

We now know how to determine the phase-space area (i.e., the longitudinal emit
tance) associated with an adiabatically trapped bunch of particles, for the case of a
wave with time-varying amplitude. An initial beam of particles with momenta spread
between P == 1 and P == 1 + ~P occupies a phase-space area (per wavelength) of
21r~p. As the wave amplitude increases from zero, first the particles with P == 1 be
come trapped. As the amplitude continues to grow, the larger momentum particles
become trapped. The largest momentum particles become trapped at an amplitude ax

satisfying 21r~P == 8a;/2. After trapping, these particles are spread throughout a re
gion of area 16a;/2. It seems that phase-space area has grown. In fact, only half of this
area is populated; however, phase mixing due to the dependence of the bounce or syn
chrotron frequency on energy leads ultimately to the spreading ofparticles throughout
the entire area in a coarse-grained sense. This emittance increase is just a consequence
of poor matching between the beam and the accelerating potential of the RFQ.

If, instead, the initial beam extends from P == 1-~P to P == 1+~P, then the particles
of greatest and least momentum trap at the same time, and there is no apparent
increase of area. Such a beam is correctly matched to the RFQ, because the final
longitudinal emittance, being equal to the initial emittance is as small as possible,
given Liouville's theorem.

Now we consider the actual case of a wave with amplitude that increases slowly in
space. Just as in the time-varying case, we minimize the longitudinal emittance of each
trapped-particle bunch by requiring that the particles of greatest and least momentum
trap at the same wave amplitude. We suppose that the particles in the initial beam are
spread in momentum between a lower bound Pi and an upper bound Pf. Using the
ideas of Section 4, we readily find that the above requirement is satisfied if Pi and Pi
are related to each other by Eq. (13). The function on the right hand side of Eq. (13)
is its own inverse, so Pi and Pi can be interchanged with each other.

To illustrate how this result differs from that of the time-varying case, we suppose
that Pf == 1 + ~P and that ~P « 1. Expanding Eq. (13) in this limit yields

Pi = 1-6.p + (~2 -1) 6.p2+ O(6.p3).

Thus Pi differs from the value predicted by the analysis of the time-varying case, 1-~P,
by only a small amount when the relative momentum spread of the initial beam is
small. This difference increases as the initial beam is made warmer. For example, the
warmest beam that could be completely trapped by a spatially-varying wave, without
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FIGURE 9: The minimum (Pi) and maximum (PI) longitudinal momenta of a continuous beam, as
a function of the initial momentum spread, required for minimum emittance growth during adiabatic
trapping. The solid lines are the result for a spatially-varying wave, while the dashed lines are for a time
varying wave. The lower curves correspond to Pi and the upper curves to PI.

any of the particles being reflected, would have the upper-momentum bound given by
Pa ~ 1.853 of Eq. (16a) and the lower-momentum bound given by Pb ~ 0.435 of Eq.
(16b); these two values are not at all symmetric about the phase velocity P = 1.

Figure 9 presents these ideas graphically. Assuming an initial beam with total
longitudinal momentum spread of 2dp, the dashed lines in Fig. 9 show the values of
Pi and Pf that one would choose in order to longitudinally match a beam into a time
varying wave: Pi (dp) = 1-dp, and Pf (dp) = 1+dp. The solid lines in Fig. 9 show the
corresponding values of dp for the case of a spatially varying wave. As noted above,
the two predictions agree for small dp and diverge significantly as dp becomes of
order unity. For larger values of dp than those shown in Fig. 9, the lowest-momentum
particles would be ponderomotively reflected, while some of the highest-momentum
particles would be resonantly reflected - two physical phenomena not present in the
time-varying system.

7.2 Compton Regime FEL with a Recirculating Electron Beam

Short wavelength FE:Cs operate in the single-particle or Compton regime. Because
these devices cannot efficiently extract energy from an electron beam during a single
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pass, a recirculation scheme is desirable. For example, one could accelerate the beam
after each pass through the FEL, then reinject it once the extracted energy had been
restored.

Because the FEL interaction is a resonant process, the injected electrons must all
have an energy close to the resonant energy in order for lasing to occur. Unfortunately,
nonadiabatic effects during trapping and detrapping significantly heat the beam during
each pass through the FEL. This heating would severely limit the number of times a
single beam could be recirculated.

However, if the electron beam is trapped and detrapped adiabatically, and it is ap
propriately matched to the wave potential, then there is no increase in the longitudinal
emittance (i.e., no heating) to lowest order in the adiabatic parameter €. This issue was
addressed in detail in our discussion above regarding the trapping of ions in an RFQ.
To achieve adiabatic trapping and detrapping, the FEL wiggler magnet would have to
have tapered trapping and detrapping sections, in order to ramp the magnetic field up
and then down. Thus, the required structure would be approximately three times as
long as a standard tapered wiggler.

We now briefly consider a model Hamiltonian describing the longitudinal dynamics
of an electron in an PEL in order to point out the similarities with our model. The
relativistic Hamiltonian for a particle in a magnetic field has the form H == [1 + (P 
A )2] 1/2, where A is the vector potential, P = p + A is the canonical momentum, and
p == 'Ymv is the usual relativistic momentum. We have normalized units such that m,
c and e are all unity.

We will neglect any variation of the magnetic field along the transverse directions.
If we assume both the wiggler field and the laser field are circularly polarized, this
implies vector potentials of the form

The w subscript refers to the wiggler, the r subscript refers to the radiation field, z is
the longitudinal coordinate, and the full vector potential is A = A w + A r .

Because H is independent of the transverse coordinates, the transverse canonical
momenta Px and Py are constants of the motion. For the sake of simplicity, we
assume these constants to be zero here. Because there is no z component of the
vector potential, the canonical momentum Pz is equal to the longitudinal relativistic
momentum pz.
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Combining these various results yields the following Hamiltonian:

H(z,pz, t) ==

221

The cosine term inside the radical is known as the ponderomotive potential; it is
the traveling wave in which the electrons trap, are decelerated, then subsequently
detrap. The methods developed in this paper could be directly applied to the above
Hamiltonian.

In fact, the ideas presented here have motivated a proposed experiment23 to build
and test a prototype wiggler magnet with adiabatic ramping of the magnetic field,
which would be very advantageous, for example, for use in a storage-ring FEL.

7.3 Plasma Beat-Wave Acceleration

Bertrand et ale 3 have modeled the phenomenon of PBWA, in which a Langmuir wave
(a longitudinal electrostatic plasma wave) is driven by two incident electromagnetic
waves with frequencies that differ by the electron plasma frequency. The evolution
of the longitudinal electric field is rather complicated, but it exhibits two important
features. First, the field is very coherent throughout every stage of its evolution. In
other words, it can be approximately described by a sinusoidal function (traveling at
the phase velocity) multiplied by an envelope function. Second, this envelope function
varies slowly in time and position.

The motion of a test particle in the longitudinal electric field can be described by
the following Hamiltonian [see Eq. (20) of Ref. 3]:

Here z is the longitudinal position, pz the relativistic momentum, t the time, m the
electron mass, c the speed of light, -e the electron charge, q)o the envelope of the
electric potential, L the length scale for changes in ~o; T the tim,e scale for changes in
<1>0, k the wave number of the wave, w the frequency of the wave, Vph == w/ k the phase
velocity of the wave, and Zo a constant phase factor. If we choose units such that m, C,

and k are all unity, then we obtain the dimensionless Hamiltonian

H(z,pz, t) = Vi +p; - a(€zz,ett) sin2 [~(z - ,8ph,t - zo)] , (25b)

where a == ....... e<1>0/mc2, Cz == l/kL, Ct == l/kcT and (Jph == Vph/C.
This Hamiltonian is very similar to the wavepacket Hamiltonian of Eq. (2). The

important differences are that it is relativistic, the amplitude envelope depends slowly
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on time as well as position, and there is an additional dimensionless parameter (3ph.
For the simulations presented in Ref. 3, c ~ ct ~ 0.02, (3ph ~ 0.88, and the maximum
amplitude of the wave envelope is ao .~ 0.29.

The analytic techniques developed in this paper represent a good starting point
for solving more complicated systems such as the Hamiltonian of Eq. (25), because
the wave parameters are varying slowly and· the dimensionless wave amplitude is a
significant fraction ofunity. The lower box in Fig. 6c of Ref. 3 shows part of the electron
fluid detrapping from the plasma wave with momentum greater than the resonant
momentum of the wave. This fluid consists of electrons that were trapped out of the
(low momentum) thermal distribution, then subsequently detrapped with significantly
larger momentum.

Of greater relevance to our work, which deals with test particles rather than fluid
motion, are the electrons which would be accelerated by such a plasma wave. The goal
in plasma beat-wave acceleration is to inject the electrons at a momentum (energy)
below the resonant momentum of the plasma wave, such that they are all trapped, then
to have the electrons detrap further down the device, with a momentum above the
resonant value. The energy of the electrons can be increased significantly in this way.
In otherwork,4 extensive 1-D, 2-D, and 3-D numerical simulations were conducted to
examine the test-particle dynamics of electrons injected into a PBWA.

In Ref. 4, however, the wave was assumed to be of constant amplitude. However,
abrupt trapping and detrapping of the electrons would result in such large longitudinal
emittance growth that only a small fraction of them would reach the desired energy.
Instead, one must have a wave that rises and falls adiabatically along the length of the
PWBA, as does the wave seen in the numerical simulations presented in Fig. 6 of Ref.
3. Then the acceleration process would be analogous to that shown schematically in
our Fig. 3; the electrons would be initially following trajectories that correspond to the
adiabatic-invariant contour labelled c, then after detrapping would follow trajectories
corresponding to the adiabatic-invariant contour labelled b.

In fact, our techniques have recently been applied13 to a relativistic version of the
Hamiltonian in Eq. (2) in order to properly treat electron dynamics in a PBWA in the
adiabatic limit. It was shown in that work that correctly treating the plasma wave as a
spatially-varying structure (rather than time-varying or constant-amplitude) resulted
in significantly different predictions for the electron dynamics.

8 CONCLUSIONS

We have shown in this paper how to correctly apply adiabatic theory to the prob
lem of charged particles interacting with a simple spatially-varying wave structure of
arbitrarily-large amplitude, in the limit that the bounce time of trapped particles is
short compared with the transit time of a resonant particle moving through the wave.
We found that the adiabatic invariant is not equal, even in lowest order, to the action,
which is the familiar invariant from the time-varying case. The general ideas developed
here can be straightforwardly applied to more complicated spatially-varying systems.

We showed that contour plots of the adiabatic invariant provide an understand-
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ing of the underlying structure of the particle dynamics, without having to solve any
differential equations or numerically integrate any equations of motion. The topol
ogy of the adiabatic-invariant contours is quite rich, and this topology changes dra
matically as the maximum wave amplitude Ao increases through the critical value
ATI = (4/1r2 ) (mw2/k2e), then again as it increases through the critical value AT2 ~

O.636(mw2 / k2e). Using the lowest-order dynamical picture provided by adiabatic the
ory, we correctly predicted the basic features of the wave-particle interaction as ob
served in the previous numerical work of Fuchs, Krapchev, Ram, and Bers.II

In the limit ofsmall wave amplitude, our analysis overlaps with that of nonrelativistic
ponderomotive theory. We have shown that these two theories agree in this limit
in their prediction of the range of initial momenta (when far from the wave) that
result in the ponderomotive reflection of particles. As the maximum wave amplitude is
increased, the range of momenta predicted by adiabatic theory falls slightly below that
predicted by ponderomotive theory, and finally saturates for Ao 2:: AT2 . Numerical
simulations have verified the adiabatic prediction. This is the first result of which we
are aware that treats ponderomotive reflection for arbitrarily large wave amplitudes.

The model Hamiltonian that we treat here, given in Eqs. (1) and (2), is relevant
to the longitudinal beam dynamics of ions in an RFQ. In particular, we explain
how to correctly match an ion beam to an RFQ (neglecting transverse motion) so
as to minimize growth of the longitudinal emittance during trapping. Our model is
also relevant to the longitudinal dynamics of electrons in an FEL or a plasma beat
wave accelerator. In order for the trapping and detrapping of electrons in an FEL
to be adiabatic, the wiggler magnet must have. appropriately tapered trapping and
detrapping sections - our results suggest that such a wiggler would be useful for a
Compton-regime FEL with arecirculating electron beam.
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APPENDIX A

Finding the adiabatic-invariant contour with an x point:
We explain here how to numerically find the value of the adiabatic invariant on

the one adiabatic-invariant contour with an x point. We call this value Jxb , because it
corresponds to trajectories in phase-space region b. In the small- and intermediate
amplitude regimes, the x point contour is the ponderomotive contour and Jxb =
Jpond .

In order for a contour of constant J(p</> , ,\ == cq) to have an x-point, certain criteria
must be satisfied. First of all, the partial derivatives of J with respect to p</> and ,\ must
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both vanish at the same point. In addition, because an x point is a saddle point, the
second-derivative test of differential calculus (see, e.g., Ref. 24) must be satisfied at
this point. We evaluate all of the first and second derivatives of Jp (p¢ , ..\) in region
b and consider whether or not the above criteria can be satisfied. The same criteria
could be applied to Jp in region a, as well as to JT , and one would find that none of
the corresponding contours can have an x point.

The function Jp(p¢, ..\), as determined by Eqs. (8a) and (9a), depends on the
function E¢(p¢, ..\), which is implicitly defined as the inversion of Eq. (9a). We need
to evaluate the partial derivatives of Jpep¢,..\) with respect to p¢ and ..\ in order to
determine whether or not they vanish at the same point. Before doing this, we must
learn how to differentiate the implicit function E¢.

If we differentiate both sides of the equation p¢ == p¢(E¢(p¢, ..\),..\) with respect to
P¢ and ..\, treating p¢ and ..\ as independent variables, we obtain

In order to use Eqs. (Ala) and (Alb), we must know the partial derivatives of
p¢(E¢,..\) in region b, which can be obtained by straightforward differentiation of Eq.
(9a):

(A2a)

where 0' is the derivative of 0 with respect to ..\, and the function k(E¢,..\) is defined
below Eq. (9b).

Using the chain rule and the results above, we obtain the partial derivatives of Jp:

(A3a)

(A3b)

The requirement 8Jpj8..\ = 0 can be trivially satisfied by choosing ..\ = 0, for which
0' = 0 (because the maximum value of 0 occurs, by assumption, at ..\ == Cq = 0).
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It is not obvious under what conditions this requirement can be satisfied for A =I 0;
however, the only x point does lie on the line A == 0, and we will use this fact to simplify
further analysis. Consideration of the requirement aJpiap</> = 0 is somewhat more
involved.

We can show that aJpiap</> vanishes at least once on the line A == 0, for any finite
value of ao, by showing that it changes sign from positive to negative as p</> is decreased

from its value on the lower lip, -(4/7r)a~/2, towards -00. Because E</> ~ ao as

p</> -+ -(4/7r)a~/2 (for A == 0) in region b, we can find a value of E¢ such that
(E</> - ao)1ao « 1 for any finite value of ao. In this limit, Eq. (A3a) becomes

aJp 21rQ~/2
op</> = 1 ~ InI32ao/(E</> _ ao)1 {I + O[(E</> - ao)/ao]} . (A4a)

For a small enough value of (E</> - ao), the right hand side of (A4a) will be positive.
Furthermore, because E</> ~ 00 as p</> -+ -00 in region b, we can find a value of E</>
such that aolE</> « 1 for any finite value of ao. In this limit, Eq. (A3a) becomes

aJp . . 1/2 [9 2 ( . .. 3]op</> =1-(2E</» 1-16(ao/E</» +Oao/E</». (A4b)

For a large enough value of E</>, the right hand side of (A4b) will be negative. There
fore, there is at· least one point along the line ,X == 0 where both partial derivatives
of Jp vanish. [We keep the O(aolE</»2 term explicitly in Eq. (A4b) because it will be
useful in App. D.]

According to the second-derivative test, the point where both partial derivatives
vanish is a saddle point if the function D2(p</> , ,X) is negative at that point. This function
is defined as

_ . a2Jp _ a2Jp _ [a2Jp _ ] 2
D2(p</>, >..) == op~ (P</>, >..) 0>..2 (p</>, >..) - op</>o>..(P</>' >..). (AS)

We are interested in the value of D2(p</>, A) for A == 0 and for p</> such that
aJoblap</> (p</>, 0) = O.

Further differentiating Eqs. (A3) yields:

(A6a)

(A6b)

(A6c)

where a" is the second derivative of a with respect to A. The right-hand side of
Eq. (A6a) is a positive definite quantity. The mixed partial derivative of Jp vanishes
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identically at ,\ == 0, because it is proportional to a'. Thus, any point where both first
derivatives vanish is an x-point if o2Jp/O,\2 < 0 at that point. We have found that,
for any value of ao, the equation ojp /op</> == 0 can be satisfied for one and only one
value of E</> and that this point is in each case an x-point.

APPENDIX B

Finding aTl, the transition between the small- and intermediate-amplitude regimes.
As the maximum wave amplitude ao increases through the critical value aTl ==

4/7r2 , the topology of the adiabatic-invariant contour plot changes from that of the
small-amplitude regime shown in Fig. 3 to that of the intermediate-amplitude regime
shown in Fig. 4. We determine the value of aTl by considering the critical contour
labeled P min in Fig. 3. This contour grazes the lower lip, so the adiabatic invariant
associated with it is Jmin == Yb(ao). Trajectories corresponding to this contour have
momentum Pmin when far from the wave, so we also have Jmin == j(Pmin).

These two functions and their derivatives have the following form:

/I _ 1 -3/2.JIb (aO) - -aO ,
7r

j'(p min) == P min;

(Bl)

(B2)

(B3)

As ao increases from zero, Yb decreases from zero and reaches its minimum value
of -4/7r2 when ao == 4/7r2 , then begins increasing towards zero. The value of P min

corresponding to ao == 0 is P min == 1, and P min decreases towards zero as ao increases.
As this occurs, j decreases from zero very much as Yb does.

Thus we have a one-to-one correspondence between Yb(ao) and j(Pmin) for ao ~

4/7r2
, and the Jmin contour exists as shown in Fig. 3. The value of Pmin corresponding

to ao == 4/7r2 is Pmin == (1 - 8/7r2)1/2 == Pb, for which j == -4/7r2
. However, j(Pmin)

becomes even more negative as Pmin approaches zero, where it reaches its minimum
value j(O) == -1/2.

Therefore, the Jmin contour as drawn in Fig. 3 cannot exist for ao slightly larger
than 4/7r2 • For ao > 4/7r2 , the contour with Jp == JPb == -4/7r2 must still touch the
lower lip where a(cq) == 4/7r2 , while contours with Jp slightly more negative than
JPb (Le., Pi slightly less than Pb) must not touch the lower lip at all. Continuity thus
requires that the critical JPb contour graze the lower lip where a == 4/7r2 and lie below
the lower lip where a > 4/7r2 • Continuity also requires that there be other contours,
with values of Jp between Jpb and Yb(ao), that lie between the Jpb contour and the
bottom of the lower lip.

This topology is in fact what is observed in Fig. 4. Thus, the critical value of ao
separating the small-amplitude and intermediate-amplitude regimes is aTl == 4/7r2 .
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Details of the large-amplitude regime.
For ao > aT2, the ponderomotive contour is split in two by the lower lip and no

longer has an x point (see Fig. 5). However, as we have stated above in Appendix
A, there persists a contour with an x-point below the lower lip. This critical contour,
which we call the Jxb contour, is shown schematically in Fig. Cl: in addition to having
an x-point, it intersects the lower lip in two points. We denote the wave amplitude at
these points of intersection by axb. Just below the Pmax contour in region a, there is
another critical contour, also shown schematically in Fig. Cl, which we call the Jxa
contour.

Of those trajectories corresponding to contours in between the Jmax and Jxa COl}

tours, some trap in the wave and then detrap back into region a, while others cross
the separatrix into region b, remain briefly in this region (the corresponding adiabatic
invariant contours lie between the lower lip and the x-point of the JXb contour), then
cross the separatrix back into region a. The topology of these contours is analogous
to that of the contours in Fig. 4 lying between the critical contours Pa and Pmax.

These details regarding the topology of the large-amplitude regime were not shown
in Fig. 5, because they affect only a very small class of trajectories. We can justify this
assertion in two ways. First, we show that the differences Jmax - Jxa and Jmin - Jxb
vanish exponentially fast as ao increases beyond aT2. [We define Jmin == Yb(ao),
Jmax == Ya(ao), Jxb == Yb(axb), and Jxa == Ya(axb)'] Second, we show that axb, the
wave amplitude at which the JXb contour intersects the lower lip, differs from ao by
an amount that also vanishes exponentially fast as ao increases.

When numerically solving for aT2, we also found that (E¢ - ao) ~ 0.126 at the
x-point. Therefore (E¢ - ao)/ao ~ 0.198 is small for ao ~ aT2. If we expand Jp in
this limit, we find that

(Cl)

Furthermore, the expansion of 8Jp/8p¢ in this limit is given by Eq. (A4a). If we
demand that 8Jp/8p¢ vanish, then we find the approximate value of E¢ - ao at the
x point:

E¢ - ao = 32ao exp( -27ra~/2) {I + O[(E¢ - ao)/ao]}. (C2)

From Eq. (C2), we see that the ratio (E¢ - ao)/ao gets rapidly smaller as ao increases.
Plugging Eq. (C2} into Eq. (Cl) yields Jxb:

Jxb = ao - ia~/2[1 + exp(-211"a~/2)1 + o [exp(-411"a~/2)1. (C3)
7r
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FIGURE Cl: This figure is a schematic presentation of certain details regarding action contours in the
PcP-eq plane, for ao in the large-amplitude regime. Two new critical contours, labeled J xa and Jxb, are
shown. In addition, it is shown that there exists a class of contours between the x-point of the J xb contour
and the bottom of the lower lip.

Now we can use Eq. (C3) to find axb, the value of ax at which the Jxb contour intersects
the lower lip, by letting Yb = Jxb and using Eq. (lOb) to solve for ax. Having done this,
one finds

16 1/2 1/2 [( 1/2)]Jmin - Jxb = Jmax - Jxa = -an exp( -21rao ) + 0 exp -41rao ,
1r (C4a)

( 1/2)
_ _ 16 ao exp -21rao O[ (-4 1/2)]

ao axb - 1/2 + exp 1rao .
1r a o - 2/1r

For ao = 2.5, as is the case in Fig. 5, the right-hand side ofEq. (C4a) is approximately
3.9xlO-4 , and the right-hand side of Eq. (C4b) is approximately 6.5xlO-4 • Thus,
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(D2)

(D3)

given the thickness of the lines used to plot the contours in Fig. 5, we see that the
Jrnax and Jxa contours would essentially overlap, and the Jxb contour would be
indistinguishable from the artificial Jrnin contour.

APPENDIX D

Finding the ponderomotive contour analytically in the limit of small wave amplitude.
We find Jxb = Jpond analytically in the limit of small ao in order to compare with

ponderomotive theory, which requires a small-amplitude expansion. Ifwe expand Jp
in the limit ao/E</> « 1, we obtain

Jp(E¢, O) = E¢ - J2E¢ [1- 11
6

(ao/E¢)2 + O(ao/E¢)3] . (Dl)

Furthermore, 8Jp/8p</> is given in this limit by Eq. (A4b). Requiring 8Jp /8p</> = 0
yields the value of E</> at the x-point in this limit:

1 9 2 3
E</> = 2+ 4ao + O(ao) .

If we now insert Eq. (D2) into Eq. (Dl), we obtain Jpond in the limit of small ao:

11 2 3
Jpond = -2 + 4aO + O(aO) .

Finally, we can use this result in Eq. (15) to obtain Ppond in the limit of small ao:

Ppond = 2-1j2aO[1 + O(ao)] . (D4)

Comparison of Eq. (D4) with Eq. (19) shows that adiabatic theory agrees with pon
deromotive theory in the limit of small ao, which indeed it must.
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