
Particle Accelerators, 1993, Vol. 43(1- 2), pp. 1-39

Reprints available directly from the publisher

Photocopying permitted by license only

©1993 Gordon & Breach Science Publishers, S.A

Printed in the United States of America.

THE THIN LENS MODEL IN THE
SECOND ORDER AND SOME EFFECTS

DUE TO LINEAR COUPLING*

\Z GARCZYNSKI

Alternating Gradient Synchrotron, Brookhaven National Laboratory,
Upton, NY11973, USA

(Received 14April 1992; infinalfonn 21 July 1993)

The Thin Lens Model is extended to higher order in the skew-quadrupole strengths and is applied to a
discussion of various effects due to linear coupling. Beta-function distortions, tune splitting, and tune shift
are calculated up to the second order in the skew-quadrupole errors. The single-turn transfer matrix, to the
second order, is given. The Thick Ellipse Effect as a possible tool for the coupling diagnosis is elaborated
in some detail, to the first order. The well known Brown and Servranckx treatment of the emittance change
in a transfer line is extended to include a ring case as well.
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1 INTRODUCTION

The Thin Lens Model (TLM) is useful in describing and in correcting effects of
skew-quadrupole errors in large circular accelerators.1- S Usually the linear, in the
skew-quad strengths approximation works well.6- 8 However, in case of rings made of
superconducting magnets, which are prone to larger errors, the higher-order terms,
it seems, should be also included. In RHIC, for example, a residual tune-splitting,
quadratic in skew-quadrupole errors, was found in computer simulations.9

In the paper we describe an extension of the TLM to higher orders, using the
so called "projection" approach.6 - 7 The second-order terms are displayed in detail,
while the path to higher-order terms is clearly outlined. A different approach to the
TLM in higher-orders was proposed by Ruggiero,10 who also considered the stability
and the tune-splitting problems. Because of this we shall just mention these two topics
briefly, using our notation, and proceed with a discussion of the other linear coupling
effects.II -

12 The emittance growth due to linear coupling13 and the Thick Ellipse
Effect14 will be treated to first order only.

*Work performed under the auspices of the U.S. Department of Energy.
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2 THE TLM IN THE SECOND-ORDER

Consider a ring of circumference C containing N thin skew quadrupoles of strengths
q1, . .. ,qN and locations

o< Sl < ... < SN < C . (2.1)

Assume that a transfer matrix of an ideal ring (that is, a ring without the skew
quadrupoles) is known, and is of the (decoupled) form

To (s" , s') == [ Tax (s" , s') 0 ]

o Toy(s", s')

Passing to the circular representation (normalized coordinates), ~ == Bz, we get

o
To (s", s') == B-1 (s") To (s", s')B(s'),

where

B= [~],

[
(3-1/2 0] [(31/2 0]

Bx,y = a(3-1/2 (31/2 ,B;,t = -a(3-1/2 (3-1/2 '
x,y x,y

and

To (" ') _ [R['¢x(s"'S')] 0 ]os,s - . ,
o R['¢y (s" , s')]

R('¢x,y) are rotations

R('¢) == [COS('¢) Sin('¢)],

~ sin('¢) cos('¢)

and '¢x,y are the phase advances

8"(" ') J ds'l/Jx,y 8,8 = (3x,y(8)'
8'

The lattice functions o:.x,y, (3x,y are C-periodic in their argument.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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The single-turn transfer matrix

o 0

T=T(C,O),

where we took s = 0 as a reference point, can be written as follows:

T== [M ~] = BTB-1 = [Bx MB;l BxnB:;;l] =~ f(k)
00 B B 1 BNB1 L.J 'm N ym -; y:;; k=O

(2.9)

(2.10)

o (k)
where T is a k-th order, homogeneous polynomial in the skew-quadrupole strengths.

For instance, the 2 x 2 submatrices M,~,mand Iv can be written through the first
order d(l) and second-order d(2) driving terms as follows:

and

d (2) d(2) . ( 4)
COS J-lx - se cos J-lx + ee SIll J-lx + 0 q ,

. d(2) d(2) . O( 4)
SIllJ-lx - ssCOSJ-lx + esSIllJ-lx + q ,

. d(2) d(2) . O( 4)
- SIll J-lx + ee COS J-lx + se SIll J-lx + q ,

d (2) d(2) . ( 4)
COS J-lx + e s COS J-lx + sS SIll J-lx + 0 q ;

(2.11)

(2.12)

(2.13)

(2.14)

and

k,l = 1,2; (2.15)

and

Here the notation is:

d (l) d(l) . ( 3)- se COS J-lx + ee SIll J-lx + 0 q ,

d (l) d(l) . ( 3)
- SS COS J-lx + e s SIll J-lx + 0 q ,

d(l) (1) . . ( 3)ee COS J-lx + dse SIll J-lx + 0 q ,

d (l) d(l) . ( 3)
e s COS J-lx + sS SIll J-lx + 0 q ;

k, l = 1,2.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

N

=Lqr
r=l

SillJ-l~ SillJ-l~

sinJ-l~ cos J-l~

COSJ-l~ SillJ-l~

cos J-l~ cos J-l~

(2.21)
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and for the second-order driving terms,

L qrqs sin(Jl~ - Jl~)
l~r<s~N

sin Jl~ sin Jl~

sin Jl~ cos Jl~

cos Jl~ sin Jl~

cos Jl~ cos Jl~

(2.22)

where Jl~, Jl~ are phase advances

and similarly for the Jl~'

The thin skew-quadrupole strengths are

The "v" operation replaces x with y and x' with y'.

For example, for the first-order driving terms we get

(d(l) )V - d(l)
ee - ee'

(d(l))V - d(l)ss - ss,

(d(l))V - d(l)
es - se'

(d(l))V - d(l)
se - es·

(2.23)

(2.24)

(2.25)

Similar but less symmetric results follow for the second-order driving terms. In par
ticular, the relations hold:

_ (1) (1) (1) (1) (2) (2) v(2) v(2)
detn = Inl = dssdee - dsedes = dse - des =dse - des· (2.26)

The outline of the derivation of these results is given in Appendix A. In the next
chapters we shall consider some applications of the TLM.

Assuming that the q's are normally distributed random variables, i.e., that

(2.27)

and

(2.28)
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and also assuming that, for both x and y directions,

(2.29)

and

(2.30)

while the averages of mixed products assumed to vanish, we get for the averages of
the driving terms

(d(l»)

(d(2) )

(d(l)2)

0,

0,

G6/4,

(2.31)

(2.32)

(2.33)

v
and similarly for the d-driving terms.

The averages of the squares of the second-order driving terms are small,and the av
erages of products of the different first-order driving terms vanish. Thus, for example,
we get the results

0+ ... ,

1 4
SGo +···

(2.34)

(2.35)

The parameters Go takes on these values for the Relativistic Heavy-Ion Collider and
the Superconducting Super Collider:

Go ~ 0.25, for RHIC,

and

Go ~ 0.5 - 1.0, for SSC.

3 THE STABILITY PROBLEM

If T is the single-turn symplectic transfer matrix of the form

(2.36)

(2.37)

(3.1)
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Ak = Ak + Ak1
, k = 1,2

are given by the well-known formulae1

(
2)1/2

A1,2 = 2 cos JL1,2 = ~TrCM + N) ± UTrCM - N)] + 1m + nl ,

(3.2)

(3.3)

where J-L1,2 are, called the "new" tunes. All the elements appearing there can be easily
expressed through the driving terms (see Appendix B).

The stability conditions

1° Ak - real, (3.4)

(3.5)

can be satisfied most easily near the resonance, J-Lx = J-Ly, because the determinant
1m + nl is positive in this case.

4 THE TUNE SPLITTING

Let the new tunes J-L1,2 differ slightly from the old ones:

J-L1 = J-Lx + 27r~lJ1 ,

From Equation (3.3), one·then gets

1 1
~lJ1 = -2 cotJ-Lx - . Tr(M + N)

7r 87r SIll J-Lx

(4.1)

(
2)1/2

- .~ [!TrCM - N)] + 1m + nl + ... ,
47r SIll J-Lx 2

and

1 1
~lJ2 = -2 cotJ-Ly - 8' Tr(M + N)

7r 7r SIll J-Ly

+ -4-~- ([-21TrCM - N)] 2 + 1m + nl) 1/2 + ....
7r SIll J-Ly

(4.2)

(4.3)
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The leading terms, on the resonance Mx == {ly, are

. 1 [( (1) (1))2 ((1) (1))2]1/2
~lJ1 == - sgn(SlllMx) 41r dse + des + dee + dss . + ... ,

and

(4.4)

(4.5)

(4.6)

Here we used Equation (B.13) (see Appendix B) for the determinant 1m + nl. This
can be viewed as a generalized "Golden Rule,,4 since the above combination of the
first-order driving terms is of the first-order in the q's:

[(d~b + dg1)2 + (dgb + d~~)2] 1/2 = It, qkei(I'~-I'=) I.

The higher-order terms in the expansions of ~Tr(M ± N) contribute to the "residuaF'
tune-splitting, which persists after all the first-order driving terms are corrected:

and

1 ( (2) (2) v(2) V(2))
- 871' dee +dss+ dee + dss +

1 I (2)(2) . v(2) v(2) I
- sgn(sillMx) 81r dec + dss - dee - dss + ... , (4.7)

___ 1 (. (2) . (2) v(2) . V(2))
~lJ2resid - - 81r dee + dss+ dec + dss

1 I (2) (2) v(2) V(2) I+ sgn(sillMx)81r dec + dss - dee - dss .··· . (4.8)

In-order to correct the tune-splitting up to the second order, one requires that: the
local correction scheme at s == 0 satisfy

and

and

d(l) - d(l) --- d(l) ~ d(l) - 0
ss - se --'"- es - ee --- ,

d(2) +. d(2) - 0ee ss --- ,

V(2) v(2)

dce+ dss= o.

(4.9)

(4.10)

(4.11)



8 V. GARCZYNSKI

Clearly, the tune splitting vanishes under these conditions. The last two conditions can
be expressed through the q's as follows:

(2) (2) v(2) v(2) .
dee + dss - dee - dss == L qrqs sln(8r - 8s ) == 0,

r<s
and

(2) (2) v(2) v(2) _ . _
dee + dss+ dee + dss- - L qrqs sln(ar - as) - 0,

r<s

and

5 THE TUNE SHIFT

(4.12)

(4.13)

(4.14)

(4.15)

Owing to the basic formulae of Equations (2.11)-(2.15), one finds for the traces of the
submatrices M and N the expressions

and

1
-TrM
2

1
-TrN
2

( 1) 1((2) (2)).1- "2/n / cosJ-Lx +"2 dee + dss slnJ-Lx + ...

cos(J-Lx + dJ-Lx) ,

( 1) 1(V(2) V(2))
1- "2 lnl cosJ-Ly +"2 dee + dss sinJ-Ly + ...

cos(J-Ly + dJ-Ly).

(5.1)

(5.2)

Hence for a small tune shift dJ-Lx, dJ-Ly we obtain

dJ-Lx 1 1 ((2) (2») (5.3)"2 lnl cotJ-Lx -"2 dee + dss +"',
and

dJ-Ly
1 1 (V(2) v(2) )

(5.4)== 21nl cotJ-Ly - 2 dee + dss + ....

Notice that the tune shift vanishes at the point where the tune-splitting correction was
done.



SECOND ORDER AND SOME EFFECTS DUE TO LINEAR COUPLING 9

6 THE BETA FUNCTION DISTORTIONS

The new beta functions are given by (cf. Equations (B.9) and (B.ll) in Appendix B)

(6.1)

and

(6.2)

where ~(3x,y are the beta-function distortions. Taking into account Equations (B.8)
and (B.lO), we get the results

~f3x = -1 + ((3x sin Mx) -1M 12 - 21r~ZJ1 cot Mx
f3x

+[(3x sin Mx(t + 8)]-1[(m + n)m]12 + ... ,

and

The leading terms, on the resonance J-Lx = My, are

and

(6.3)

(6.4)

(6.5)

(6.6)

The residual beta-function distortions remain after the tune-splitting is locally cor
rected:

and

~(3x I
(3x ~v=o

(2) (2)
dee - dsscotMx + ... ,

V(2) v(2)

- des - dss cot My + ....

(6.7)

(6.8)
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From Equations (6.5) and (6.6) we get the following rms estimates of the leading-order
beta-function distortions (on the resonance J.Lx == J.Ly):

( ~{3x) (~{3y) 1 I I
-(3 == ~ == 2Go cotJ.Lx .

x rms fJy rms

Substituting the relevant RHIC parameters,

J.Lx 21T x 28.827, J.Ly == 21T x 28.823

(6.9)

Go 0.25, (6.10)

we get

( ~) rms = 0.14,

7 THE THICK ELLIPSE EFFECT

(RHIC). (6.11)

Coupling between the transverse x and y degrees of freedom causes phase plots
(x, x') or (y, y') that are thick ellipses (the Thick Ellipse Effect). This effect is seen
in computer simulations of the x-y coupling existing in RHIC: a smear of the familiar
Courant-Snyder ellipses (or, rather, circles in suitably normalized coordinates) is
produced in both the (x, x') and the (y, y')-planes. The smear presented in Fig. 1
corresponds to plotting of the (x, x'), and (y, y') components of a finite number of
points (1000) in a discrete set of points:

T(zo), T(T(zo)), ... , T (... T (T (zo)) ... ) ,
~

1000

(7.1)

where T is a single-turn map that includes all the x-y coupling, not just the linear
one. Thus the example is not a perfect one for comparison with our results presented
below, which do not take into account the coupling produced by sextupoles and higher
order multipoles. Also, we do not stick to just one initial vector Zo as in the example.
Presumably more of the phase space would be covered if a variety of initial vectors
were employed and a larger number of turns considered.

In this paper we examine the linearly coupled motion produced by thin skew
quadrupoles distributed around a ring and determine their contribution to the Thick
Ellipse Effect. We reveal the main driving terms responsible for the spread of the
invariant curves. We also show that the spread is removed at the point where the tune
splitting correction is made.

In-order to be able to accommodate any trajectory, corresponding to any choice
of initial conditions and number of turns, we are looking for the total areas in the
physical subspaces, i.e., the (x, x'), (y, y') and (x, y) subspaces, that are available for
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FIGURE 1: The Thick Ellip:;e Effect in computer simulations of the x-y coupling in RHIC (courtesy of
G. Fritz Dell).
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the motion. They are given by projections of the invariant 4-ellipsoid that replace the
familiar Courant-Snyder curves when the linear coupling is present. We study this
rather novel object in some detail first.

As usual, 8£4 denotes a two-dimensional surface of the solid four-dimensional £4;
similarly for the lower-dimensional geometric objects appearing in the sequel. We
will estimate the effect to the first-order in the skew-quadrupole strengths since it
is, usually, sufficient. We hope that the detailed treatment of the effect will result in a
tool for diagnosis of the linear coupling.

We consider the betatron motion under presence of the linear coupling produced
by skew-quadrupole fields. The Hamiltonian of the system is quadratic with the C
periodic coefficients

(7.2)

Corresponding coupled Hamilton's equations are linear, and their solution can be
written in the form

z(s) = T(s, so)z(so). (7.3)

It is well known2 that there exists a real symplectic matrix R such that when passing
to new variables w = R-1Z

u

u'
w=

v

v'

(7.4)

the motions decouple, i.e.,

w(s) = U(s, so)w(so),

and, cf. Equations (B.l)-(B.ll),

(7.5)

The submatrices A, B are real 2 x 2 symplectic matrices describing uncoupled normal
motions. In particular their powers are given by

enj.tlJl = 12 cos(njLl) + J 1 sin(njLl),

en
j.t2

J
2 = 12 cos(njL2) + J2 sin(nJ,t2),

(7.6)

(7.7)
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where the matrices J k are C-periodic and symplectic:

( ak ~kak) ,Jk (7.8)
-,k

IJkl 13k,k - o~ == 1, (7.9)

and

J% == -lk , k == 1,2. (7.10)

The Ok, 13k"k and J-lk are called the new (Twiss) parameters and the new tunes.
It follows from the properties of the single-turn transfer matrixT(s) that the bilinear

forms

z(s) STn
(s)z (s) , n == 1, 2, ... (7.11)

are independent of the s- variable; they are invariants. There are two independent
invariants WI, W2 such that

zSTnz WI Sin(nJ-ll) + W2sin(nJ-l2), (7.12)

where

WI -('lu2 + 201UU' + 131u,2) == -El < 0, (7.13)

and

W2 == - (,2v2 + 202vv' + 132v,2) == -E2 < o. (7.14)

When the tune splitting is corrected, i.e., when J-ll == J-l2 == J-l, the invariants for
different n became proportional to one another. In particular, we have the relations

(7.15)

where

(7.16)

Thus it is sufficient to study only the linear in T invariant, as all other invariants yield
the same family of surfaces

zSTz == A. (7.17)

We shall consider, in some detail, the case of A positive as it is related to the case of
RHIC, for example. Hence, we consider the invariant 4-ellipsoid, 8£4, defined by the
above equation.
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8 THE MACHINE 4-ELLIPSOID

It is convenient to employ the normalized coordinates ~, cf. Equation (2.4), and write
equation (7.17) in the components

where the coefficients are

(8.1)

k,R,==l, ... ,4. (8.2)

They can be expressed through the driving terms using Equations (2.11)-(2.20). It
appears useful to consider also the symmetrized coefficients defined by the expansion

o 00 2' ,
Z S Tz== Fxxx + 2Fxx'xx + 2Fxyxy + 2Fxy'xy

+ Fx'x'X'2 + 2Fx'Yx'y + 2Fx'y'x'y' + Fyy y2 + 2Fyy'YY' + FY'y,y,2 == A .
(8.3)

We have dropped the little circles since we will work, exclusively, with the circular
representation. The new coefficients are:

o v
a. Fxx == M 2l == F yy ,

o 0 v
b. 2Fxx' == M 22 - MIl == 2 F yy"

o 0 v
c. 2Fxy == n2l + m2l == 2 F xy,

o 0 v
d. 2Fxy' == n22 - mIl == 2 F yx' ,

o v
e. Fx'x' == - M l2 == Fy'y"

f·
o 0 v

g. 2Fx'y' == - n12 - m12 == 2 Fx'y"

o v
h. Fyy == N 2l == F xx ,

o 0 v
i. 2Fyy' == N22 - NIl == 2 F xx"

o V

j. Fy'y' == - N 12 == F x'x'

(8.4)
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One notes that Equation (8.3) of the invariant 4-ellipsoid stays unchanged under
the transformations

1° z ---+ -z,

v v (8.5)
2° z ---+z, F ---+F,

where

y

v y'
(8.6)z==

x

x'

v
and F is obtained from F by the replacement x ~ y. The first symmetry means that
the [JE4-ellipsoid is centered around the origin. Any plane, passing through the origin,
divides [JE4 into the upper, [JEd+) , and the lower, [JEd-) , parts, which both project onto
the same sets. This may be seen clearly on the models in two and three dimensions, in
Figure 2. The second symmetry reduces the algebra involved by half, since the other
half of the quantities of interest follows from the first by the v operation.

9 THE PROJECTIONS OF THE [JE4 ONTO THE (X, X'), (Y, Y'), AND (X, Y)
PLANES

Projecting the 8E4-ellipsoid onto, say, (x',y,y') space means finding a domain on
which the coordinate x+ of the upper branch [JEi+) (or, equivalently, the lower branch
[JEd-») is defined. There are four distinct projections, since the 4-ellipsoid's equation
can be solved for the x±, x± and the y±, y± coordinates. In-order to see this, let us
write Equation (3.3) in the four distinct forms:

ax2 + bx + c == 0,

v v v
(ax2 + bx + c)V == a y2+ b y+ c== 0,

px,2 + qx' + r == 0,

2 V 2 V V
(px' + qx' + r)V ==p y' + q y'+ r= 0,

where the coefficients are

(9.1)

b== 2Fxx'x' + 2Fxy y + 2Fxy'y', (9.2)

c== Fx'x,x'2 + 2Fx'Yx'y + 2Fx'y'x'y' + Fyyy2 + 2Fyy'yy' + FY'y,y,2 - A,
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z

B

B' x

z =z+ -

y

FIGURE 2: Projections of the upper y+ (z+ ), and the lower y_ (z_) branches of the ellipse, a, and
ellipsoid, b, coincide, and are symmetrically centered around the origin 6.
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and

p= Fx ' x "

q= 2Fx'xx + 2Fx'Y y + 2Fx'Y'y', (9.3)

r= Fxxx2+ 2Fxyxy + 2Fxy'xy' + Fyyy2+ 2Fyy'yy' + FY' y,y,2 - A.

Hence we find for the upper and the lower branches,

x±= fa (-b ± Jb2 - 4ac) = x±(x', y, y'),

Y±= (x±)v = y±(y',x,x'),

x±= 2~(-q± Jq2 - 4pr) = x±(x,y,y'),

y'±= (x±)v = y,±(x,x',y).

It is understood that the solutions are real, which means that the following inequalities
hold:

b2-4ac 2 0,

v2 vv
b -4 ac2 0,

q2-4pr 2 0,

v2 vv
q -4pr2 0.

They define the domains, four solid 3-ellipsoids, on which the solutions x±, etc. live.
v v

Hence, we found the projections of the 4-ellipsoid, 8£4, onto £3, £3 and M 3 , M 3 ,

which are 3-ellipsoids, as shown in Figure 3. The surfaces, 8£3 etc., of these 3-ellipsoids
correspond to loci of points on the 4-ellipsoid, 8£4, where the solutions x+ and x_,
etc., coincide. They determine the boundaries of the projections, cf. Figure 2.

In the next step, we project these 3-ellipsoids onto the (x, x'), (y, y') and (x, y)
planes. That is, we use only four out of the twelve distinct possibilities to project
the 3-ellipsoids onto the various coordinate planes, cf. Figure 3. In principle, to find
the projections one could repeat the above construction; however, another way of
projecting seems more appropriate in these already imaginable cases. In-order to
project, for example, the surface 8£3 (x', y, y') onto the (y, y') plane, we slice it first
with the planes

x' = c, (9.6)

where the parameter c varies as indicated in Figure 4, and project the intersecting el
lipses onto the (y, y') plane. Taking the envelope of the projected ellipses 8£2 (c, y, y')
with the respect to the parameter c, one gets the ellipse 8£2(y, y'). The final solid el
lipse £2(y, y') is now called the projection of the 8£4 ellipsoid onto the (y, y') plane. To
find the envelopes, one has to eliminate the parameters x', y' from the supplementary
conditions.
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FIGURE 3: Projections of the 8£4 onto the three-dimensional ellipsoids, and the ellipses of interest, as
indicated by the arrows. Eight unused possibilities are indicated by the broken arrows and circles.

z

y

'" tangential to projected ellipse. having
maximal y-coordinate, at the point (x t, Yt )

FIGURE 4: Slicing of the 3-ellipsoid with the planes z=c,-co~c~co and projecting the intersecting
ellipses onto the (x,y) plane. The projected ellipses possess the elliptics' envelope.
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~(b2 - 4ac) = 0ax' ,
2a v vv

ay' (b -4 ac) = 0,

a~' (q2 - 4pr) = 0,

a v 2 vv
ax' (q -4 pr) = O.
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(9.7)

Substituting the solutions back into the conditions of Equation (4.5), with the equal
v

ity signs, we get the equations of the ellipses aE2(y, y'), aE2(x, x') and aM2(x, y),
v

8M2 (y,x),:

Eyyy2+ 2Eyy'yy' + EY'y,y'2 = A,

v 2 V ,v '2
Eyy x + 2 Eyy' xx + Ey'y' x = A,

Mxxx2+ 2Mxyxy + Myyy2 = A,
v 2 V V 2

M xx y + 2 M xy yx+ M yy x = A,

(9.8)

where the coefficients are given in terms of the initial coefficients F up to second-order
in the q's:

Eyy = Fyy + (sin/Lx)-1(F;y + F;,y) + ... ,

Eyy' = Fyy' + (sin/Lx)-1(FxyFxy' + FX'y,Fx'y) + ... ,
Ey'y'= Fy'y' + (sin/Lx)-1(F;y' + F;,y') + ... ,

v
Mxx = Fxx + (sin/Ly)-1F;y' + ... =Myy ,

v
Mxy = Fxy + ... =Mxy ,

v
Myy = Fyy + (sin/Lx)-1F;,y + ... =Mxx .

Another, perhaps shorter method of projecting is described in Reference 16.

10 POSSIBLE MEASURES OF THE THICK ELLIPSE EFFECT

Let us denote the projected emittance, in absence of the linear coupling, as

- '( . )-1f.x= .1\ - SIn /Lx ,

f.y= A(- sin /Ly)-1,

(9.9)

(10.1)
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and let us rewrite Equations (9.8) as follows

2+ 2 '+ 12a. eyyY eyy' yy ey,y'y = Ey ,

c. m xx X2E;1 + m Xy 2XY(ExEy)-1/2 + myyy2E:;;1 = 1,

d. ;h,xx y2 E:;;1+ ;h,Xy 2XY(EXEy)-1/2+ ;h,yy X2E;1 = 1,

where the new coefficients are

b. V 2 V 1 V 12
eyy x + eyy' 2xx + ey,y' x = Ex,

eyy == Cyy (- sin J-ly)-l,

eyy' == Cyy' (- sin J-ly)-l,

ey,y'== CY'y' (- sin J-ly)-l,

(10.2)

(10.3)

(10.4)

and

m xx == Mxx (- sin J-lx)-l,

m xy == Mxy(sinJ-lx sinJ-ly)-1/2,

m yy == Myy(-sinJ-ly)-l.

Setting the skew quadrupole strengths q equal to zero, we get from Equations (8.4)
and (8.9) the results

eyy 10 = 1, eyy' /0 = 0, ey,y' 10 = 1,

mxxl o = 1, mxyl o = 0, myyl o = 1.
(10.5)

Hence we recover the familiar Courant-Snyder circles (in the normalized coordinates)

(10.6)

(10.7)

and the ellipse in the (x, y) plane (from the last two parts of Equation (10.2)),

For the averages of the coefficients e and m we get the results

(eyy ) = (ey,y') = 1 - /'\,/4,

(mxx )= (myy ) = 1 - /'\,/8,

(eyy') = (mxy ) = 0,

(10.8)

(10.9)
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where the parameter ~ is

G2( . . )-1
~ == 0 SlnJ-lx SlnJ-ly . (10.10)

For the averages of the conjugate coefficients, one has, in general the relations

Equation (10.2) yields

y2 + y/2== E~,

x 2 + X
/2

== E~,

where

E~== (1 + ~/4)€y,

E~== (1 + ~/4)Ex.

Equations (10.2c) and (10.2d), after the averaging, yield the same equation

where

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)
E~= (1 + ~/8)Ex,

E~= (1 + ~/8)€y.

It seems that the areas enclosed between the ellipses of Equations (10.2a) and (10.6)
and the corresponding curves of Equations (10.2b) and (10.7) can be considered as
measures of the Thick Ellipse Effect. They are available for a spread of a trajectory
when linear coupling is present. The characteristic dimensions, b of these areas are
related to the coefficients e and m (in the same-order as shown in Figure 5):

a. by == [(eyy )-1/2 - l]yIE;,

b. bx == [(~yy)-1/2 - 1]~,

c. bx == [(mxx )-1/2 - 1]~,

by' == [(ey,y' )-1/2 - l]yIE;,

_ [(v )-1/2 ]bx , - ey,y' - 1 ~,

by == [(myy )-1/2 - l]yIE;.

(10.16)

The areas between the curves in case a. are

and are similar for other cases.

(10.17)



22

(a)
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(b)

(c)

x

x

FIGURE 5: The Thick Ellipse Effect produced by the linear coupling. The outer ellipses correspond to
Equations (8.2) - (8.4), while the inner curves correspond to Equations (8.13) - (8.15).
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If one performs the averaging procedure first, and then calculates the relevant
characteristic dimensions, one gets the results

- - 1
a. by = by' = 8~~'

- - 1
b. bx = bx ' = 8~yE;,

- 1 - 1
c. bx = 16~yE;, by = 16~~'

(10.18)

where the scale ~ of the Thick Ellipse Effect is given by Equation (10.10). In the case
of RHIC it is equal to

~RHIC = 0.007 . (10.19)

This is a rather small value to explain the observed effects as shown in Fig. 1: only a
fraction of the effect can be attributed to the linear coupling alone. It seems that the
bulk of it is produced by sextupoles and, possibly, by higher-multiplicity fields.

The very shape of the projected ellipses can be used for diagnosis of the linear
coupling. For instance, the rotation angle ¢y, ¢x of the (y, y') and (x, x') ellipses are
related to the coefficients eyy' etc., as follows:

eyy'tan¢y = ---,
ey,y'

y

eyy'tan¢x = --y- .

ey,y'
(10.20)

They can be expressed through the driving terms using Equations (10.3), (9.9), (8.4)
and (2.11)-(2.20).

The projected Equations (10.2) could be useful when matching the linearly coupled
beam in a machine to another one - at the injection point, for example. The coeffi
cients e yy , e yy', ey,y' should be identified with the 7y, Qy, {3y lattice functions of the

matching beam. Similarly for the coefficients ~yy= 7x, etc.

11 EMITTANCE CHANGE DUE TO LINEAR COUPLING

This problem was considered earlier by K. Brown and R. Servranckx15 for the case
of a transport line, and we follow their method supplemented, by our treatment of
~ terms, (see below). We also consider a ring case, which requires an extension of
their formalism. When linear coupling is present, one considers a single 4-dimensional
ellipsoid instead of two separate invariant ellipses:

(11.1)
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where

x

x'
Z==

y

y'

and

a== [~x :J

(11.2)

(11.3)

is a symmetric and positive definite matrixwhile ax, a y are symmetric, positive-definite
2 x 2 submatrices describing projected emittance, and X represents the linear coupling.
When passing from a point 8 0 to another 81 in a ring, the a matrix transforms as
follows:

(11.4)

when

Zl == T Zo°

Assuming that the initial beam is decoupled (Xo == 0), one gets the relations

rv

axl == M axo M +nayo n,
rv

ayl == N a yp N +maxo m,
and

(11.5)

(11.6)

rv

Xl == Maxo m+nayo N . (11.7)

The initial condition XO == 0 is pertinent to a transport line. For a ring, a periodic
boundary condition is appropriate; this requires suitable extension of the formalism
as given below. Denoting the initial projected emittance as Exo , Eyo , we have at the
point 8 0

E;O == Det (axo ), (11.8)

and

E;o == Det (ayo ), (11.9)

and at the point 81

E;l == Det (axl), (11.10)

and

E;l == Det (ayl), (11.11)
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where O"x1, O"y1 are given by Equations (11.5) and (11.6) respectively.
Let the initial beam ellipses be upright and match perfectly the machine ellipses:

and

0"yo = [0"33 0] = Eyo [{3YO 0],
o 0"44 0 f3;;

where we have assumed, for simplicity, that a xo = a yo = o.
Using the identity

[

All A12] + [B11 B12] ,Det (A + B) = Det (A) + Det(B) +
B 21 B 22 A 21 A 22

one finds for the projected emittance at some point 81 downstream,

(11.12)

(11.13)

(11.14)

E;l = E;oDet
2
(M) + E~o(n) + Llx , (11.15)

and

E~l = E;oDet2 (m) + E~o(N) + Lly , (11.16)

where

[Ml1 r [ n12rnIl MIl
Llx = 0"110"33 + 0"110"44

M 21 n21 M 21 n22

[M12 r [ N12r,nIl M 21
+ 0"220"33 + 0"220"44 (11.17)

M 22 n21 M 22 n22

and

r [ N12r[ml1 NIl mIl
Lly = 0"110"33 + 0"110"44

m21 N 21 m21 N 22

r [ N12r·[m12 NIl m21
+ 0"220"33 + 0"220"44 (11.18)

m22 N 21 m22 N 22
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It follows from the symplecticity of the matrix T that

Det (m) == Det (n) == K,

Det (M) == Det (N) == 1 - K,

and

~x == ~y ==~.

Thus the projected emittance at the point 81 is

2 (1 )2 2 2 2 AEx l == - K Exo + K Eyo + U,

and
2 2 2 (1 )2 2 AEy l == K Exo + - K Eyo + U,

where8

(11.19)

(11.20)

(11.21)

(11.22)

(11.23)

(11.26)

As a result we obtain the relation15

E;1 - E~1 == (1 - 2K)(€;o - E~o). (11.25)

Brown and Servranckx15 consider simple consequences of this relation for a transport
line, and we refer the reader to their paper for details. Instead we would like to expand
their formalism to include a ring case.

Inside a circular accelerator, the proper condition in constraining the beam ellipsoid
matrix is the periodic condition. In other words, Equation (11.4) now becomes

. rv [o-x X]
0"1 == T 0" T== 0" == rv . '

X O"y

where now T stands for a single transfer matrix T(O), and the subscript "0" at 0" was
dropped since now 8 0 == 0 can be any point in a ring, (which we also choose as a
reference point in our calculations). As a result, 0" is determined, and thus it is no
longer possible to assume that the submatrix X vanishes, as it was for the transfer line
case.
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Solving the above equation (see Appendix C for details), one finds in particular the
expressions

fry = g2(py + RAPx RA),

and for the submatrix X, which describes the coupling, one gets the result

Here we use the notations:

(11.27)

(11.28)

(11.29)

Px = €A [f3A
-QA

(11.30)

is a symmetric and positive definite matrix, and similar for Py, with A replaced by B,
and

and

2 . t + 8
9 =2"8'

(11.31)

(11.32)

with all the quantities being calculated at the reference point s = 0.
Notice that ax and ay agree with those given previously, cf. Equations (11.12) and

(11.14), when the coupling is absent. This is so because g2 == 1, and RA,B == 0, and
the new Twiss parameters coincide with those of the ideal lattice when the coupling
vanishes. The same is true for the parameters €A,B, which coincide with the projected
emittance €x,y. The X submatrix vanishes, obviously, when the coupling is absent.

Equations (11.27) and (11.28) enable us to calculate the projected emittance, at the
point s = 0, using Equations (11.8) and (11.9) and the identity (11.14):

€; = g4 (€~ + IRBI2€~ + ~~) , (11.33)

and

€; == g4 (€~ + IRAI2€~ + ~~) , (11.34)

where

~~ == ~~ = ~'. (11.35)



28

In the Thin Lens Model we find,

~ GARCZYNSKI

where

Also, using Equations (2.16-2.19) we find,

~ ~ L qkql sin(Jl~ - Jl~) sin(JlZ - Jl~).
l~k<l5:N

Denoting

t-8
(=28'

we get from Equations (B.6), (11.31), and (11.32) the results

g41RAI2 = (2

and

Thus, we finally obtain the projected emittance at some point s = 0 in a ring:

and

(11.36)

(11.37)

(11.38)

(11.39)

(11.40)

(11.41)

(11.42)

E; = (1 - ()2E~ + (2E~ + ~'. (11.43)

Subtracting both equations, one gets a relation analogous to that for a transfer line,
cf. Equation (11.25), only now ( is the relevant parameter instead of ~:

E; - E; = (1 - 2()(E~ - €~). (11.44)

Therefore, one may repeat the analysis and consider different cases of interest,

Case 1. If the new emittances are equal,

EA = EB ,

then, at any point in the ring the projected emittances coincide:

Ex = Ey .

(11.45)

(11.46)
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Case 2. If at s = 0

then, at this point

[
1 ( 2 2 ) ,] ~

Ex = Ey = 4 EA + EB + il .

Case 3. If

EA =1= 0 but EB = 0 ,

then

il' = 0 ,

and

and

If

0~(~1,

then

Ex = (1 - ()EA' Ey = (EA ,

and, as the result, the sum becomes constant:

Ex + Ey = EA •

However, if at s = 0

«0,

then

Ex = (1 - ()EA' Ey = -(EA ,

and the difference becomes constant:

Ex - Ey = EA •

Hence the projected emittance can become large.

(11.47)

(11.48)

(11.49)

(11.50)

(11.51)

(11.52)

(11.53)

(11.54)
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Similarly, if at the point S = 0

then

V. GARCZYNSKI

(>1, (11.55)

Ex = -(1 - ()EA' Ey = (EA ,

and again the projected emittance can be large:

Ey - Ex = EA .

(11.56)

(11.57)

Similar situation arises when EA = 0 but EB =1= o.
The sum of projected emittances can only exceed the sum of new emittances - in

general, in accordance with inequalities analogous to Equation (58) in Ref. 15.
We can also perform relevant calculations of the projected emittance at some other

point Sl in a ring with the known emittance found for position SO. See Reference 19
for some details.

ACKNOWLEDGMENTS

I would like to thank Sandro Ruggiero for suggesting the linear coupling problem
in higher orders, and for discussions during early stages of my work. I thank Harald
Hahn for suggesting the Thick Ellipse Effect problem and Fritz Dell for providing his
results on the computer simulations of the effect in RHIC. I am thankful to Bill Weng
for fruitful discussions and critical remarks.

REFERENCES

1. E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958).

2. D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci., NS-20(3), 885 (1973).

3. L.C. Teng, Springer Lecture Notes in Physics, 343(4), (1989).

4. R. Thlman, Springer Lecture Notes in Physics, 343(133), (1989).

5. L. Schachinger, 1: Sun, and R. Talman, Manual for the TEAPOT Program, SSC Central Design Group
(1990).

6. Y. Kobayashi, Nucl. Instrum. Meth. 83, 77 (1970).

7. S. Peggs, Part. Accel., 12,219 (1982).

8. H. Zyngier, IEEE Trans. Nuc!. Sci. NS-32(5), 2282 (1985).

9. G. Parzen, BNL Report AD/RHIC-102 (July 1991).

10. A.G. Ruggiero, in Proceedings of the 5th ICFA Advanced Beam Dynamics Workshop (Corpus Christi,
Texas, 1991). See also BNL AD/AP Technical Note No. 29 (1991), and Talks at Accelerator Physics
Division Meetings (1991).

11. v: Garczynski, "Beta-function distortions due to linear coupling", BNL AD/AP Technical Note No.
24 (1991).

12. v: Garczynski, "The tune shift due to linear coupling," BNL AD/AP Technical Note No. 25 (1991).

13. v: Garczynski, "Emittance change due to linear coupling: possible correction scheme of emittance
growth," BNL AD/AP Technical Note No. 28 (1991).



SECOND ORDER AND SOME EFFECTS DUE TO LINEAR COUPLING 31

14. \Z Garczynski, "The Thick Ellipse Effect due to linear coupling, and projections of the invariant 4
ellipsoid onto the (x,x'), (y,y') and the (x;y)-planes" BNL AD/AP Technical Note No. 33 (1991).

15. K.L. Brown and R.\Z Servranckx, "Cross-plane coupling and its effects on projected emittance,"
SLAC-PUB-4679 (1989).

16. K.L. Brown, Adv. Part. Phys. (1967) 711.

17. K.L. Brown, D.C. Carey, Ch. Iselin and F. Rothacker, SLAC 91 (1973 Rev.), NAL 91 and CERN
80-04.

18. \Z Garczynski, Nuc!. Instrulli. Meth. A 324 7--13 (1993).

19. \Z Garczynski and ~1: Weng, "The tUne splitting and the emittance change caused by random
twists of quadrupoles and random vertical displacements of sextupoles in the AGS Booster," Booster
Technical Note No. 223; BNL AGS, (1993).



32 ~ GARCZYNSKI

APPENDIX A Extension of the TLM to Higher Orders

The single-turn transfer matrix, in the circular representation, is given by the product

o 0 0 0 0 0 0

T (C,O) ==To (C, SN) TSQ (SN) To (SN' SN-1)··· To (S2' Sl) TSQ (81) To (81,0),
(A.l)

o

where T SQ (sk) represents the transfer matrix of the kth skew-quadrupole

(A.2)

and the 2 x 2 matrix t is

where

q(Sk) == fi:1((3x(3y)1/21 .
Sk

(A.3)

(A.4)

Equation (A.1) can be rewritten in a rather remarkable way, as it can be verified by
induction, for example,4,5

00 0 0 0 0 0 0

T ==TN (TO)-l TN-1 (TO)-l ... T 2 (TO)-l T 1,

where
o 0 0 0 0

T k =To (C, Sk) T SQ (Sk) To (Sk' 0) -=To Pk,

where we have denoted

(A.5)

(A.6)

(A.7)
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and

(A.8)

and

(A.9)

where F means a symplectic conjugate of F, cf. Equation A.33.
The 4 x 4 matrices Pk are symplectic under these conditions. Taking into account

o
that the inverse matrices (TO)-l cancel inside of the product in Equation (A.5), we
get finally the main formula

o 0

T=To PN ···P1 =

Performing the matrix multiplication we obtain for the 2 x 2 submatrices

~ = R(J-lx) ( t FSI + ... ),
81=1

m=R(J-lY)( t GSI + ... ) = (~)V.
81=1

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

The higher-order terms are easy to find. They are products of even or odd numbers of
o

the F's and G's intertwined. For instance, the next terms in the expansions of M and
~ matrices are, respectively,
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L FS4GS3Fs2GS1'

l~Sl<S2<S3<S4~N

L FS3GS2Fsl·

l~Sl<S2<S3~N

(A.16)

(A.17)

Since Fj , Gk are linear in q, the expansions, Equations (A.12)-(A.15) are, in fact, Nth
order polynomials in the skew-quadrupole strengths.

Further manipulations with products of 2 x 2 matrices, and with their sums, are
facilitated by the fact that for any 2 x 2 real matrix A the following decomposition is
valid,6

A~ [: ~] ~A++A_J,

where the matrices A± are proportional to rotations

A+ =.

_
1 [a + d - (c - b)]
2 c-b a+d ~AR(<p+),

and

A~ = ~ [a - d -(c + b)] = ~R(<{J-),
2 c+b a-d

and the matrix J is of the form

[1 0]J= o -1 .

The matrices A± have positive determinants

and

and

TrA=TrA+ =a+d=2Acos<{J+,

Tr(AJ) = TrA_ = a - d = 2~COS<{J_.

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

Applying the decomposition to the t-matrix for the Fk and Gk building blocks, we
obtain,
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(A.26)

v
Gk = qk/2R(-7f/2) [R(M~ -M~) + R(-M~ - M~)J] =Fk, k = 1, ... ,N

(A.27)

Hence, all the products involve only the rotation matrices R and the J matrix. They
can be readily performed since the properties relate in this way:

R('Pl)R(<P2)=R(<PI + <P2),

JR(<p) = R(-<p)J,

J2 = 14 . (A.28)

In this way one can easily construct the products of F's and G's and obtain the

submatrices iI, :i to any-order in q. In particular, we can derive in this way the results

o

M = R(fLx)

+ L 1!4qrqs {[R(px +M~ +M~ - M~ - J-L~) ..... R(Mx + M~ ..... M~ ..... M~+ M~)]
l~r<s~N

+[R(Mx - M~ + M~ - M~ - M~) - R(Mx - fL~ - M~ ..... M~ + M~)]J} + ... ,
(A.29)

and

N

~= L Ij2qr(R(/Lx - /L~ + /L~ - ~) + R(/Lx - /L~ - /L~ - ~ )J] + .... (A.30)
r=1

Using Equations (A.13) and (A.1S), one gets Nand mmatrices by replacing x and y

indices inside of iI and n, respectively. Thus the results shown in Equations (2.11)
(2.20) follow. One can also obtain the T matrix by applying the B-1 and B matrices
[cf. (2.10)]

o
T = B- 1 T B. (A.31)

A complex notation suggests itself here, since one can associate with the compo
nents of A± of matrix.A the complex numbers

A± = AR(<p±) +--t Ae-i<f?±, (A.32)

while the J -matrix becomes equivalent to a complex conjugation. The relevant calcu
lations can thus be performed on the isomorphic complex numbers, before returning
to the matrix notation.8
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APPENDIX B The Universal Parameterization of the Single-Turn Transfer Matrix

It was shown by Edwards and Teng,2 and by Talman,3 that the single-turn transfer
matrix T can be brought to a quasidiagonal form as follows. If

is 4 x 4 real, C-periodic and symplectic, single-turn transfer matrix, then

U = R-1TR = [~ ~],

where A, Band R are symplectic and

R==g[ ~ 2:],-2: 1

and

and

1
t == 2Tr(M - N),

1
D= (t2 + 1m + n1)1/2 = 2Tr(A - B),

and

(B.l)

(B.2)

(B.3)

(B.4)

(B.5)

(B~6)

(B.?)

This parameterization of the matrix R is universal in the sense that it holds at any
point of a ring. The 2 x 2 symplectic submatrices A and B can be parameterized in
the usual way:

and similarly

[

cos ILl + ~1 sin ILl (31 sin ILl ]

-/'1 sm ILl cos ILl - a1 sin ILl '

B == N - (t + 8)-1(m*n)n

(B.8)

(B.9)

(B.lO)
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[

COS /-L2 + Q2 sin /-L2 132 sin /-L2 ]

-"'12 sin /-L2 cos /-L2 - Q2 sin /-L2
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(B.11)

where Qk, 13k, 'Yk == 13;1(1 + Q~) and /-Lk are called the "new" Courant-Snyder param
eters and "new" tunes, respectively.

Using Equations (2.11)-(2.20) it is straightforward to derive the expansions

t = ~Tr(M - N) = (Inl - 2) sin[1r(vx + vy)] sin[1r(vx - vy)]

1 (2) (2) v(2) v(2)
+ 2(dec + dss+ dec + dss) cos[7r(vx + v y )] sin[7r(vx - v y )] (B.12)

1 (2) (2) v(2) v(2)
+ 2(dec + dss - dec - dss) sin[1r(vx + vy )] cos[1r(vx - vy )] + O(q4),

and

1m + nl == [(d~b + dg1)2 + (dgb + d~1~)2] sin2 [7r(vx + v y )]

- [(d~b - dg1)2 + (dgb - d~1~)2] sin2 [7r(vx - v y )] + O(q4).
(B.13)

The corresponding expansions of the 8 and 9 parameters can be obtained from them.
It follows that, on a resonance /-Lx == /-Ly, the determinant 1m + nl is positive, for small
q's, so the betatron motion can be made stable.
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APPENDIX C Solution of the Equation for a

Using the Edwards-Teng decomposition, Equation (B.2), one may transform the
equation fora,

rv

a == TaT,
rv-l

into the equation for p == R-Ia R as follows:

where

and

(C.l)

(C.2)

(C.3)

(C.4)
[.

1.. RB]....R == 9 .,
RA 1

with RA,B given by Equation (11.49), and 9 by Equation (11.50), while A and Bare
given by Equations (B.8) and (B.lO), respectively. Equation (C.2) is equivalent to the
following set of equations for submatrices of p:

rv

Px == A Px A,

rv

Py == B Py B,

and

rv

'f] == ATJ B.

Passing to the circular representation, we get

A == B"A I R(/-lA)BA,

B == BB I R(/-lB)BB,

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

where BA,B and B"A,~ are given by the new Twiss parameters, cf. Equation (2.5), and
R(/-lA,B) are rotations.

Equations (C.5) and (C.6) yield for the matrices

(C.10)
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and

the conditions

and

f'V

Wx = R(/-lA)Wx R (/-lA)

f'V

wy = R(/-lB)Wy R (/-lB).

(C.II)

(C.12)

(C.13)

It follows now that both matrices wx , wy are proportional to the unit, since the angles
J-lA,B are arbitrary. Hence the results

Wx = EA . 1, wy = EB . 1, (C.14)

where EA, €B are some non-negative numbers since Px and Py are positive-definite
matrices. As a result, we get from Equations (C.IO) and (C.II) the formula

Px = ••[. f3A.
.....aA

(C.15)

and similarly for Py, with A .~ B.
The analysis of the Equation (C.7) yields only trivial solutions for 'fJ since the

relevant determinant does not vanish; in general

'fJ=o.

Having p, one finds (f and Equations (11.45)-(11.47).

(C.16)




