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A radiofrequency system with a passive higher-harmonic cavity is considered for the prevention of coupled­
bunch instabilities in an electron storage ring. Expressions are presented for the synchrotron frequency,
the synchrotron frequency spread, the bunch length, the onset of the equilibrium phase instability, and
the frequency and damping rate of the Robinson instability. These expressions are incorporated into
an algorithm to predict parameters for the stable operation of a storage ring. The stability predictions
are in good agreement with experimental results at two facilities. The algorithm predicts that a passive
third-harmonic cavity can be successfully employed in a current-generation electron storage ring for the
production of synchrotron radiation.
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1 INTRODUCTION

The performance of an electron storage ring may be limited by longitudinal oscilla­
tions and emittance growth from coupled-bunch instabilities, l as well as particle loss
from Coulomb scattering, characterized by the Touschek lifetime.2 A second radiofre­
quency (RF) cavity with resonance near a harmonic of the fundamental RF cavity may
be used to increase Landau damping of synchrotron oscillations and/or increase the
bunch length.3,4,s This can prevent coupled-bunch instabilities and increase the Tou­
schek lifetime, providing two important benefits. When this can be achieved with a
passive higher-harmonic cavity (a cavity with no external power supply), the difficulty,
expense, and time of implementation are greatly reduced.

To counteract the coupled-bunch instability, a higher harmonic cavity must increase
Landau damping without causing unwanted side effects - in particular, the equilib-
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82 R.A. BOSCH and C.S. HSUE

rium phase and Robinson instabilities. We consider these instabilities in Section 2,
including the effects of beam-loading and finite bunch length. Double-cavity systems
that are stable to these instabilities may be usefully employed to increase bunch length
and/or Landau damping of synchrotron oscillations. In Section 3, formulas for estimat­
ing the Landau damping rate and bunch length in the double-cavity system are pre­
sented. An algorithm for using these formulas to evaluate a passive higher-harmonic
cavity is presented in Section 4; the algorithm's application to storage rings for syn­
chrotron radiation is presented in Sections 5 and 6. We use the notation of Sands.6

2 THE ROBINSON INSTABILITY IN A TWO-CAVITY SYSTEM

Let Cavity 1 be the fundamental RF cavity with resonant frequency WI near wg , the
generator frequency. Let Ql be its quality factor, R1 its impedance at resonance (one­
half of the "accelerator" definition of shunt impedance), and cPl its tuning angle,
defined by tancPl =: 2Ql(Wg - Wl)/Wl. This tuning angle is the same as that used
by Sands6 and Marchand,7 and the negative of that used by Wilson.s The cavity
impedance at wg is R1cos cPl ei¢l. R1 and Ql describe the loaded cavity, i.e., the
effective impedance and quality factor of the cavity coupled to the transmitter, which
equal 1/(1 + {3) times the unloaded values, where {3 is the RF coupling coefficient.6 ,s

Cavity 2 is a higher harmonic cavity with resonant frequency W2 near 1/Wg , where 1/

is its harmonic number. Q2 is its quality factor, R2' its resonant impedance, and cP2 its
tuning angle, given by tan cP2 =: 2Q2 (1/W9 - W2) / W2·

Robinson instability is the growth of a rigid-dipole synchrotron oscillation in which
all of the bunches are in phase. We consider symmetric oscillating bunches with
equilibrium bunch separation 10. With symmetric bunches of finite length, we obtain
the lowest-order effects of finite bunch length. The current in Cavity 1 from pointlike
bunches can be represented by:

00

I(t) =: -Ne L 8[t - nlo - Asin(Onlo )] .

n=-oo

(1)

Here, N is the number of electrons per bunch, e> 0 is the magnitude of the electronic
charge, A is the (small) amplitude of the oscillation in units of time, and 0 is the
angular frequency. In the frequency domain, we have:

Ne ~ wA
I(w) =: -211"- ~ {8(w - pwo ) + -[8(w - pwo + 0) - 8(w + pwo - O)]} (2)

10 2
p=-oo

where W o =: 211"/10. The terms proportional to A are sidebands resulting from the
oscilllation. Keeping only the dominant terms, the wakefield from the oscillating
bunches in Cavity 1 is given by:
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+w~A [cOS<pl- cOS(Wgt - Ot - (h-) - COS <PH cOS(Wgt + Ot - <PH)]}, (3)

where tan<PI± == 2QI(Wg ± 0 - WI)/WI, and I > 0 is the average beam current
magnitude. The wakefield in Cavity 2 is given by the same expression with subscript
"I" replaced by "2", and Wg replaced by lJWg • For symmetric bunches that are not
short compared with the RF cavity periods, Vfl (t) is modified by the form factor,8 F I

where F I == exp(-w~o-;/2) for a Gaussian bunch with rms bunch length at. Vf2(t) is
modified by the form factor F2, which for Gaussian bunches equals exp(-lJ2w~a;/2).

In addition to the wakefield from the passing beam bunches, the effective generator
current [6, 8] of magnitude i gl causes a voltage contribution in Cavity 1. We let Ofl

be the angle by which this current lags the sinusoidal beam current component at
frequency wg ; the voltage contribution from the generator current thus lags the wake
by the same angle:

(4)

A similar expression holds when Cavity 2 has external power, with subscripts "I"
replaced by "2" and wg replaced by lJWg • Summing the voltages encountered by an
electron which passes through Cavity 1 at time t, we have:

For a Robinson oscillation with a growth or damping rate that is small compared
to the filling rate of the RF cavities, the above expression will be approximately true
when the amplitude A is a function of time.

In a ring far above transition energy, the m-th arrival time, tm , of an electron in
Cavity 1 obeys this equation:9

d(tm - mTo) Ton
dm == EEm , (6)

where n is the momentum compaction, E is the equilibrium electron energy, To is the
revolution period, and Em is the energy deviation of the electron. Differentiating the
above equation with respect to m, and averaging over all the electrons in the bunch
we have:

d
2

< tm > == Ton dEm == Tone [ V( ) _ ]
dm2 E dm E < tm > Vs , (7)
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where Vs > 0 is the synchronous voltage. We evaluate the left-hand side for the slowly
growing or decaying oscillation < tm >== mTo + A(mTo ) sin(OmTo ), evaluate the
right-hand side (RHS) using our expression for V(t) and a symmetric bunch shape,
and equate them to obtain:

(8)

0 2
= e;i {R1F1igl COS cPl sin(cPl + Of!) + RIFf I[sin 2cPl - ~ (sin 2cPl- + sin 2cPl+)]

o

+vR2F2i g2 cos cP2 sin(cP2 + (12) + vR2FiI[sin 2cP2 - ~ (sin 2cP2- + sin 2cP2+)]} , (9)

and

4oe1 2 2 2 2 2 2= ET
o

[F1 R1Ql tan cPl cos cPl+ cos cPl- +F2R2Q2 tan cP2 cos cP2+ cos cP2-], (10)

where OR is the Robinson damping rate, positive for a damped case. In the absence
of Robinson oscillations (A == 0), the total voltage at the bunch center (t == 0)
given by equation (5) differs from the synchronous voltage, Vs, for bunches of finite
duration.8 For the case ofa passive higher harmonic cavity (ig2 == 0) and short bunches
(FI == F 2 == 1), the above expressions for the Robinson frequency and damping rate
agree with a prior calculation. lo However, for finite length bunches, equations (8)
and (9) differ from the prior calculation, because our calculation does not linearize
the contribution to V(t) that is independent of A in equation (5).

In order to prevent the equilibrium phase instability (also known as the zero­
frequency Robinson instability), we must have 0 2 > o. This ensures that there is
a restoring force for the coherent phase motion of the bunches.6 At the instability
threshold, the RHS terms multiplied by 1 are zero in equation (9), so the stability
requirement may be written as:

FIRligl cos <PI sin(<pI + Ojl) + VF2R2ig2 cos <P2 sin(<p2 + Oj2) > o. (11)

For short bunches with F I == F2 == 1, this stability requirement has been given
in references 5 and 6. The total voltage in Cavity 1, in the absence of Robinson
oscillations, may be written as:

VTI cos(wgt + 'lfJI) == - R I[igl cos <PI cos(wgt - Ojl - <PI) + 21F I cos <PI COs(wgt - <PI)],
(12)
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where VT1 is the magnitude of the voltage in Cavity 1, and 1/;1 is the phase of the bunch
centers, which equals zero for a bunch passing through the cavity at the peak positive
voltage. For short bunches with F 1 == 1, this phase angle equals the synchronous phase
angle used by Sands6 and Wilson,8 and is the complement of the angle ¢s used by
some authors, for which zero phase corresponds to no energy gain by the bunch. An
analogous equation holds for Cavity 2.

For the case of a passive second cavity, i g2 == 0, and 1/;2 == 1r - ¢2. The equilibrium
phase stability criterion may then be written as:

(13)

For F1 == 1, this is identical to the result of Robinson11 for a single-cavity system.
Energy dissipation in a passive higher harmonic cavity affects stability by decreasing
the synchronous phase angle, thereby lowering the current threshold for a given
voltage and tuning angle in Cavity 1.

For an active second cavity, the equilibrium phase stability criterion may be written
as

This expression has been previously given for short bunches whose form factors equal
one.7

Robinson stability is provided by a positive value of O'-R:

Typically, R 2 < R 1 , Q2 < Ql, and F2 < F1 , helping to provide stability for a higher
harmonic cavity with a negative tuning angle. However, if the Robinson frequency n
is large compared with Wl/2Ql, or if ¢1 is small, the product tan ¢1 cos2¢1+ cos2¢1­
may be small. In this case, the contribution towards Robinson damping from Cavity
1 will be small, so that Robinson instability may easily result from a negative tuning
angle in the higher harmonic cavity.

If a passive higher-harmonic cavity is brought on line by slowly adjusting its tuning
angle from a large positive or negative value, or if current is accumulated with a fixed
tuning angle in the passive cavity, the equilibrium phase and Robinson instabilities
may occur in an intermediate state, preventing the cavity from being brought on line.
Thus, it is useful to consider the stability properties of the intermediate states as well
as the intended final state.

The previous calculations yield two additional quantities. The analogue of equation
(12) for Cavity 2 gives the peak voltage in a passive cavity as:

VT2 == 2IF2R 2 cos¢2,

while the dissipated power is given by V,f.2/2R2.

(16)
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3 THESYNCHROTRONFREQUENCY,SYNCHROTRONFREQUENCY
SPREAD, AND BUNCH LENGTH

In the absence of the equilibrium phase and Robinson instabilities, the voltage expe­
rienced by an electron from the cavity fields is given by equation (5) with A == O. This
can be written as:

(17)

Letting T be the arrival time of an electron relative to the synchronous phase, the
synchrotron motion obeys:

(18)

where eVs is the energy lost per electron while transiting the ring, and t s is the time
difference between the bunch center and the synchronous time, satisfying V(ts) == Vs.
The RHS of equation (18) can be written as the derivative of an effective potential
U(T), which can be expanded in powers of T:

cPT dU d 2 3 4
dt2 == - dT == - dT (aT + bT + CT + ... ).

The coefficients obey:

2
W s aewg(. .)2 =a = 2ET

o
VTl sm'l/Jls + lIVT2 sm'l/J2s ,

(19)

(20)

(21)

(22)

where'lfJls == 'lfJl + wgts, and 'lfJ2s == 'lfJ2 + l/Wgts are the synchronous phase angles, and
W s is the synchrotron frequency when a is positive.

We first consider the case where a is positive and the potential well is approximately
quadratic in the region occupied by the bunch. Perturbed harmonic motion in the
above potential well may be represented by sinusoidal motion about a nonzero equi­
librium value ofT, plus higher harmonic terms. Substituting this form into the equation
of motion and keeping the lowest order terms gives the frequency as a function of the
amplitude T s :

(23)
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(26)
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Thus, for a Gaussian energy distribution,9 the synchrotron frequency spread obeys:

Here, (jE is the energy deviation of the bunch, and (jt the rms bunch length. In the
absence of a second RF cavity, this reduces to:

2 1 1 2
(jw s = ws(wg(jt) (8 + 4cot 'l/J1s).

For the case where Vs is a small fraction of the RF voltage, the cot2 'l/J1s term can be
ignored, giving the "octupolar" approximation for the synchrotron frequency spread.

The above results are accurate when the synchrotron frequency spread is small
compared to the synchrotron frequency. In this case, when evaluating the coefficients
a, b, and c, to neglect the difference between 'l/J1s and 'l/J1, and the difference between
'l/J2s and 'l/J2 will not cause significant error.

The above formulas allow a calculation of the synchrotron frequency - and thereby
the bunch length - for a system with a higher harmonic RF cavity. The growth rate
and coherent frequency shift from the coupled-bunch instability can also be estimated
with the knowledge of the synchrotron frequency and impedance of the RF cavity
parasitic modes. The resonant dipole interaction of short bunches with a longitudinal
cavity mode of impedance Z(WCB) at frequency WC.B. is:1

lli.w ,C.B.= elawc.B.Z(wc.B.)F~c.B. ,
2ETows

where FWC . B . is the bunch form factor at the frequency WC.B .. Because of the large
number of parasitic modes in an RF cavity, resonant or near-resonant dipole interac­
tion may be a probable occurence in a typical storage ring with multiple bunches.12

In addition, the variation in parasitic mode frequencies with cavity tuning angle and
temperature, as well as variations in storage ring parameters, may result in occasional
or frequent resonant interactions even when the instantaneous chance of resonant in­
teraction is low. Radiation damping is expected to reduce the resonant frequency shift
by the longitudinal radiation damping rate.

The resonant frequency shift may be compared with the calculated synchrotron
frequency spread to determine whether Landau damping is sufficient to ensure sta­
bility. For example,13 a growing dipole mode in a Gaussian bunch with rms bunch
length shorter than approximately one-sixth the cutoff period will be Landau-damped
when the magnitude of the coherent frequency shift is less than 0.78(jws ' Experi­
mental thresholds for coupled-bunch instability are consistent with this instability
criterion;14,15 an experiment in which radiation damping is expected to exceed Lan­
dau damping at threshold also supports the validity of equation (26) for estimating
coupled-bunch instability growth.4

When operating the second RF cavity so that a = 0, the potential well occupied by
the bunch is not quadratic. This potential well is given by:
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(27)U(T) = - ae I ts
+

T

[V(t') - ~]dt'
ETo t s

and will be occupied to the filling height Uo = ~2 (~ )2. From equation (27), one
can estimate the bunch length O"t in the non-quadratic well. The typical oscillation
frequency obeys:

a O"E 1 /OiT
Wtypical ~ - - = - V 2Uo ·

O"t E O"t
(28)

Because the confining potential is provided by the CT4 term, we use the following
results for a biquadratic well:3

(29)

and: 16

(30)

where W at is the angular frequency of synchrotron oscillations of amplitude O"t. In the
biquadratic well, the angular frequency of synchrotron oscillations is proportional to
their amplitude.

With a biquadratic well, the longitudinal coupled bunch instability is most easily
driven at a frequency near 1.7wat . Landau damping is overcome17 when the coherent
frequency shift (calculatedfor perturbed synchrotron oscillations with W s = 1.7wat in
equation 26) has magnitude greater than 0.3wat . (Chin16 obtains a similar criterion
of 0.2wat .) The formulas for a biquadratic well can be used to estimate the behavior
when the potential well is not approximately quadratic. Because the bunch may be
quite asymmetric in a nonquadratic well (for b =1= 0), the Robinson frequency and
damping rates calculated earlier are approximate.

4 AN ALGORITHM FOR ANALYSIS OF A PASSIVE HIGHER-HARMONIC
CAVITY

For beam current levels high enough to make the wakefields from the beam compara­
ble to the fields provided by the generator current, a passive higher harmonic cavity is
capable of significantly modifying the beam behavior. We consider a ring with a pas­
sive higher-harmonic cavity in which the RF voltage of Cavity 1 is maintained at a
specified value, and Cavity 1 is operated in the "compensated condition",6 in which
the tuning angle is adjusted so that the generator current is in phase with the voltage.
Alternatively, the tuning angle of Cavity 1 may be specified. We neglect the possi­
bility of turbulent bunch-lengthening from the microwave instability and restrict our
analysis to the case where the single bunch currents are so small that turbulent bunch­
lengthening is not a concern.
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As input to the analysis, values for the following variables must be specified:

VTI : the peak RF voltage in Cavity 1 (or effective voltage if there are multiple
fundamental cavities or a finite transit time correction).

Q1: the unloaded quality factor of Cavity 1.

R1: the unloaded impedance of Cavity 1 at resonance (or effective impedance if there
are multiple fundamental cavities).

(3 : the RF coupling coefficient for Cavity 1.

n : the momentum compaction.

To : the revolution period.

wg : the generator angular frequency.

E : the electron energy.

O'E : the electron energy spread resulting from synchrotron radiation emission.

1 : the average beam current magnitude.

Vs: the synchronous voltage.

v : the harmonic number of Cavity 2.

Q2 : the quality factor of Cavity 2.

R2 : the impedance at resonance of Cavity 2.

cP2 : the tuning angle of Cavity 2.

TL : the longitudinal radiation damping time.

Z(We.B.) : the parasitic impedance driving coupled bunch oscillations.

We.B. : the frequency of the parasitic mode.

The calculated bunch length depends upon the form factors F I and F2 , which are
themselves functions of bunch length. We initially let F I = 1 and F2 = 0.1 and
proceed until the bunch length is determined. We then calculate the form factors
from the bunch length. If the newly calculated form factors differ significantly from
their previous values, we take a weighted average (0.9 times the previous form factor
plus 0.1 times the most recently calculated form factor), and repeat the process. In
this way, the influence of the higher harmonic cavity on the computed dynamics is
gradually increased until the bunch length converges.

Our algorithm proceeds as follows.

Step 1. Calculate 'l/JI, the phase angle of the bunch center, which is given by equation
(8) for the case of a passive higher harmonic cavity:

lI:s = F IVTI COS'l/JI - 21R2Fi cos2 cP2. (31)

If this equation can only be solved with I coS'l/J1 I> 1, then there is no possible
equilibrium phase of the bunch in Cavity 1. This occurs when the sum of synchrotron
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radiation losses and losses to Cavity 2 exceeds the possible energy gain from Cavity 1.
If so, discontinue the calculation.

Step 2. Calculate the tuning angle of Cavity 1 for operation in the compensated
condition:6

2FI IR I .
tan <PI == V SIn 7/JI .

TI
(32)

Alternatively, this tuning angle can be specified if the compensated condition is not
utilized.

Step 3. Calculate the coefficients a, b, and c, neglecting the phase difference between
the bunch center and the synchronous phase. For a passive higher harmonic cavity,
the values are:

(33)

(34)

(35)

Step 4. a) If a is positive and c < O.45[a/(aaE/E)]2, then the synchrotron confining
potential is mostly quadratic. The synchrotron frequency and bunch length obey:

W s ==~ and

aaE
at == --.

Ews

The synchrotron frequency spread follows from equation (24).
b) OthelWise, the confining potential is mostly biquadratic so that:

at = O.69( Uo )1/4 and
c

(36)

(37)

(38)

(39)

where Uo == ~2 (~ )2. The most unstable frequency is 1.72wat •

We have chosen the dividing line between quadratic and nonquadratic potentials
so that the bunch lengths determined by equations (37) and (38) are equal, stabilizing
the iteration of bunch length.
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Step 5. Use the bunch lengths to estimate the form factors: F1 == exp(-w~a; /2) and
F2 == exp(-lJ2w~a;/2).

Repeat steps 1-5 if the form factors differ greatly from the previous input values.
For new input values, use a weighted average of the two most recent calculations of
the form factors.

After several iterations ofsteps 1-5, we have quantities calculated using form factors
that are consistent with the bunch length.

Step 6. Determine if the dipole longitudinal coupled bunch instability is damped.
For a mostly quadratic synchrotron potential, the coherent frequency shift is given by
equation (26). To account for radiation damping, TL1 is subtracted from this frequency
shift. If the resulting frequency shift is less than O.78aW s ' Landau damping will prevent
growth. For the case of a nonquadratic synchrotron potential, eq. (26) can be used with
the most unstable frequency 1.72wat in place of W S • Landau damping is sufficient to
prevent the coupled bunch instability growth if the coherent frequency shift is less
than 0.3wat •

At the chosen dividing line between the quadratic and nonquadratic regimes,
the bunch lengths calculated in the two regimes are equal, while the most unsta­
ble frequency and coherent frequency shift are equal within 2 percent. However,
the calculated Landau damping rates for the quadratic and non-quadratic regimes
may be discontinuous across the dividing line. This is a result of the inaccuracy
in using estimates for almost-quadratic and purely biquadratic potentials in the
two regimes.

Step 7. Determine if the equilibrium phase instability will occur. Stability is assured
if:

F I
VTl sintt/Jl

1 < .
R 1 sin 2¢>1

Step 8. If the previous inequality is satisfied, calculate the Robinson frequency:

(12 eawg {F TT • ,,/, RIFf I (. 2A.. . 2A.. )
~[; == ToE 1 VTl SIn 0/1 - --2- SIn V'l- + SIn V'1+

(40)

+vR2Fi I sin2(P2 - vR2r?I (sin 2(h- + sin 2</>2+)}. (41)

This calculation requires iteration. One can start by evaluating the RHS with zero
beam current, and then iterate using a weighted average of the most recently com­
puted value of n and the previously computed value.

Step 9. Once the Robinson frequency is known, the Robinson damping rate can be
calculated; a positive value gives stability:

4aeI [ 2 2 2 2 2 2
OtR = ETa F1R 1Q1 tan </>1 cos </>l+COS </>1- + F2 R 2Q2 tan</>2 COS </>2+ COS </>2-J.

(42)
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The desirable tuning angles ¢2 are those which provide stability against the Robin­
son, equilibrium phase, and coupled bunch instabilities. It may be preferable to have
a positive value for the coefficient a in order to avoid a double-peaked bunch shape.
We have found it convenient to evaluate the expected behavior of a higher harmonic
cavity by performing the above calculation for a sequence of values of ring current
and tuning angle. In iterated calculations, the iteration is concluded and a flag is set if
convergence does not occur within a reasonable number (rv 500) of iterations.

Generally, there is uncertainty in the input value of the parasitic mode impedance,
which changes with tuning angle, beam current, temperature, etc. The uncertainty
in this input parameter leads to uncertainty in the calculated threshold for coupled­
bunch instability. The calculated bunch lengths in the presence of the coupled-bunch
instability do not include any lengthening that may result from the instability.

S APPLICATION TO THE STORAGE RINGS AT MAX-LAB AND BESSY

As an application of our algorithm, we considered experiments with a third-harmonic
cavity at the SOO-MeV storage ring MAX-lab in Lund, Sweden. With a Cavity 1
effective voltage of rv6S kV and (3 = 3, the coupled-bunch instability was suppressed
in experiments with negative tuning angles (bunch-lengthening) in a passive third­
harmonic cavity for currents of 80-190 rnA, and with positive tuning angles for smaller
currents. Stable operation required that the Cavity 1 tuning angle be positive relative
to the compensated condition. With a Cavity 1 voltage of 180 kV and (3 = 2, use of
the third-harmonic cavity was unsuccessful, and observations suggested that this was
a result of the Robinson instability. 14

We first modeled a worst-case scenario: resonant interaction with a parasitic
impedance of 0.2 MO and resonant frequency 1.5 times the fundamental frequency,
corresponding to an unattenuated parasitic cavity mode. 12,18,19 We found that the
third-harmonic cavity could not suppress the coupled-bunch instability in this case.
However, the fundamental cavity at MAX-lab has spurious-mode attenuation, which
results in order-of-magnitude reduction of about 80% of the parasitic modes. The res­
onance width of an attenuated mode will also be increased by an order of magnitude,
so that coupled-bunch instability driven by an attenuated mode is about 40 times as
likely as that from an unattenuated mode. Thus, we next considered interaction with
an attenuated impedance of 0.02 MO, which is more likely to correspond to the ex­
perimental conditions.

In Fig. l(a), a stability plot is shown for operation of the fundamental cavity at 65
k~ with the Cavity 1 tuning angle 3 degrees positive of compensated condition. The
remaining parameters are shown in Table 1. In the absence of the passive cavity, the
coupled-bunch instability is present for all currents shown, as indicated by the results
for passive cavity tuning angles of ±90°. For currents of 40-200 rnA, stable operation is
shown when the tuning angle of the passive cavity is negative. For currents of 70 rnA
or less, stable operation occurs with a positive tuning angle. For currents exceeding
40 rnA, passive cavity tuning angles near 0° are not possible because the equilibrium
-phase is unstable or does not exist.
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TABLE 1: Parameters for Figure 1

Figure Figure Figure Figure

l(a) l(b) l(c) l(d)

storage ring MAXlab SRRC SRRC SRRC

E 500 MeV 1.3 GeV 1.3 GeV 1.3 GeV

aEIE 4xlO-4 6.6xlO-4 6.6xlO-4 6.6xlO-4

~ 5keV 73keV 73 keY 73keV

To 1.lxlO-7 s 4.0xlO-7 S 4.0xlO-7 S 4.OxlO-7 s

a 0.04 6.8xlO-3 6.8xlO-3 6.8xlO-3

wg 3.14 GHz 3.14 GHz 3.14 GHz 3.14 GHz

R1(unloaded) 3.5MO 6MO 6MO 6MO

Q1(unloaded) 40,000 37,000 37,000 37,000

f3 3 1.24 1.24 1.24

VT1 65kV 800kV 800kV 800kV

1/ 3 3 3 3

R2 0.6MO 1.2MO 0.6MO 1.2MO

Q2 10,000 10,000 10,000 10,000

Z(We.B.) 0.02MO 0.2MO 0.02MO 0.02MO

We.B. 4.8 MHz 4.8 MHz 4.8 MHz 4.8 MHz

TL 50ms 8.7ms 8.7ms 8.7ms

Similar results were obtained when the Cavity 1 tuning angle was 0-100 positive of
the compensated condition. When the Cavity 1 tuning angle is more than 10 negative
of the compensated condition, the equilibrium phase instability prevents stable op­
eration for currents exceeding 100 rnA. These results indicate that the compensated
condition is marginally stable; the Cavity 1 tuning angle must be positive relative to
the compensated condition to ensure stable operation at the higher currents utilized.

We also considered a Cavity 1 voltage of 180 kV and (3 of 2. For currents less than
200 rnA, the Robinson instability onsets as the cavity tuning angle is increased from
-900

, before the coupled bunch instability is stabilized. This may prevent tuning in
the cavity to the small region of stable negative tuning angles indicated for currents
exceeding 150 rnA, precluding successful use at MAX-lab.

Comparing the results of the analysis with the experimental observations at MAX­
lab, we note excellent qualitative and good quantitative agreement when we assume
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that the coupled-bunch instability results from a suppressed parasitic RF cavity mode
with an impedance of 0.02 MO. The analysis predicts the approximate conditions
where the passive cavity can be successfully employed.

We then considered parameters corresponding to an experiment with a passive
eighth-harmonic cavity at BESSy.4 In this experiment, a passive cavity was success­
ful up to a current of 220 rnA. In modeling this case, coupled-bunch modes driven by
the higher harmonic cavity appeared the most difficult to suppress. Thus, we assumed
that the coupled bunch instability was driven by an attenuated impedance of 0.02 MO
at one and one half times the higher harmonic resonant frequency. The analysis al­
gorithm predicted stable operation in the "bunch lengthening" mode with negative
tuning angle for currents of 0-160 rnA. With a parasitic impedance that is 20% lower
(0.016 MO), stable operation is predicted for currents of 0-220 rnA, identical to the
experimental results. This comparison with BESSY gives excellent qualitative agree­
ment, and demonstrates that precise quantitative agreement is dependent upon the
assumed value of the parasitic impedance driving the instability. Because precise val­
ues of this quantity are usually not available, one expects uncertainty in the predicted
range of stable operation.
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FIGURE lea): Stability plot for MAX-lab with the fundamental cavity 3° positive of the compensated
condition. Instabilities are predicted for a range of storage ring currents and tuning angles of a third
harmonic cavity. -: coupled-bunch instability. I : Robinson instability. /: equilibrium phase instability. \:
there is no equilibrium phase. Stable operation is indicated by the absence of these sYmbols.
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FIGURE l(b): Stability plot for SRRC with an unattenuated parasitic mode and two third-harmonic
cavities. See Fig. 1(a) for an explanation of symbols.
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FIGURE l(c): Stability plot for SRRCwith an attenuated parasitic mode and one third-harmonic cavity.
See Fig. 1(a) for an explanation of symbols.
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FIGURE 1(d): Stability plot for SRRC with an attenuated parasitic mode and two third-harmonic cavities.
See Fig. l(a) for an explanation of symbols.

6 APPLICATION TO THE SRRC STORAGE RING

In the 1.3 GeV storage ring under construction at the Synchrotron Radiation Research
Center (SRRC), the coupled bunch instability is expected.12,18,19 It is thus desirable to
determine if a passive higher harmonic cavity is capable of preventing this instability.
Because the beam pipe aperture and RF frequency of SRRC are nearly the same as
those of MAX-lab, we expect that a third harmonic cavity at SRRC would have prop­
erties similar to those of MAX-lab; therefore we used the same values of impedance
and quality factor. The parameters used are shown in Table 1. We considered a Cav­
ity 1 voltage of 800 ke~ with Cavity 1 operated in the compensated condition so that
its voltage is in phase with the generator current. The loading of the fundamental is
provided by an RF coupling coefficient, {3, equalling 1.24, which is near the optimum
for full current (200 rnA) operation.8 We first considered a worst-case scenario: res­
onant interaction with an unattenuated cavity mode whose impedance is 0.2 Mn12 .

With a single third-harmonic cavity in the ring, the coupled bunch instability could
not be suppressed. We then considered two such cavities operated with the same tun­
ing angle, effectively doubling the impedance of the passive cavity. The results of our
stability analysis for two third harmonic cavities are shown in Fig. l(b). Stable oper­
ation is possible at currents comparable to the desired maximum current of 200 rnA.
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At lower current levels, the wakefields in the passive cavity are too small to suppress
coupled-bunch instabilities. However, operation of the passive cavity with a negative
tuning angle can still cause the Robinson instability, which may be a problem if elec­
trons are accumulated with the passive cavity on line. If the Cavity 1 voltage is reduced
from 800 kV to 600 k~ and {3 increased to 1.43 (its optimum value for 600 kV and a
200 mA ring current), stability can be achieved for a larger current range of 100-200
mAo

Next, we considered a parasitic impedance of 0.02 Mn, corresponding to a mode
in the fundamental cavity which is attenuated by an order of magnitude. Based upon
our modeling of the MAX-lab and BESSY experiments, we expect that this will better
represent instability caused by a fundamental cavity with spurious mode attenuation.
Results are shown in Fig. l(c) for the case of a single passive cavity. For a ring current
of 60 mA or less, the combination of radiation and Landau damping is sufficient to
prevent the coupled bunch instability in the absence of a higher harmonic cavity, as
shown by the results for passive cavity tuning angles of ±90°. With a single third­
harmonic cavity, the coupled-bunch instability can be suppressed at all currents up to
the desired maximum current of 200 mAo

Two third-harmonic cavities with the same tuning angle were also predicted to be
effective, as shown in Fig. 1(d). As the passive cavity tuning angle is increased from
-900

, the coupled bunch instability is expected to disappear, reappear, and disappear
again. The reappearance occurs when (3b/2a)2 becomes larger than 3c/2a; where
these two quantities are nearly equal, the Landau damping rate is small according
to equation (24). The SRRC instability behavior was little changed for Cavity 1 tuning
angles slightly negative or positive of the compensated condition, unlike the MAX­
lab results. Thus, we expect that one or two passive higher-harmonic cavities may be
utilized at SRRC while Cavity 1 is operated in the compensated condition.

In Figure 2, we consider the same parameters as Figs. l(c) and l(d), and show the
bunch length as a function of passive cavity tuning angle, for a ring current of 200
mAo The calculated bunch lengths in the presence of the coupled-bunch instability do
not include any increase that may result from the instability. For stable operation, the
bunch length can be modified in the range of 21-35 picoseconds with a single passive
cavity, and from 18-60 picoseconds with two passive cavities. We estimate that the
calculated Touschek lifetime2 is proportional to the bunch length within about 10%.

With a current of 200 mA and an attenuated parasitic mode, stabilization of the
coupled-bunch instability with a single passive cavity requires a tuning angle magni­
tude less than about 40 0

• According to equation (16), the effective RF voltage of the
passive cavity will then exceed 175 kV while the power dissipation exceeds 25 kW If
this power cannot be effectively dissipated, one may use two passive cavities with tun­
ing angles of -600 and effective RF voltages of 110 kV for stable operation, reducing
the power dissipation to about 10 kW per cavity. If a tuning angle of -420 is employed
to maximize the bunch length with two passive cavities, each passive cavity will have
an effective RF voltage of 150 kV and 20 kW power dissipation. By using two passive
cavities, the Touschek lifetime may be substantially increased, and stable operation is
expected in the worst-case scenario where coupled-bunch interaction results from an
unattenuated parasitic cavity mode.
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FIGURE 2: Bunch length versus tuning angle for a 200 rnA ring current at SRRC. The dashed line shows
the results of a single third-harmonic cavity, while the solid line describes two third-harmonic cavities.

7 SUMMARY

Formulas to determine the presence or absence of the equilibrium phase, Robinson,
and coupled-bunch instabilities were presented. These results were incorporated into
an algorithm to analyze the behavior of a storage ring with a passive higher harmonic
cavity. Comparisons with the results of experiments at MAX-lab and BESSY suggest
that our model gives quite good predictions of stability.

For the electron storage ring at SRRC, our results support the feasibility of using
one or two passive third harmonic cavities to suppress coupled-bunch instabilities.
Two cavities may be used to substantially increase the bunch length and Touschek
lifetime. The results suggest that passive higher harmonic cavities may find application
in current generation electron storage rings. The algorithm described above may be
used to evaluate the performance of such cavities.
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