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BEAM LOADING OF AN ACTIVE RF CAVITY
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Electron beam loading of a single-pass active cavity coupled with an external generator is considered in a fixed
current approximation. The loading effects can be controlled by proper choice of a generalized scattering matrix
describing the feeder-cavity coupler. By varying phase shifts at the coupler and its transparency, one can minimize
the backward wave, which is a coherent sum of a reflected wave and a beam radiation field. Thus, the accelerating
field and/or the limiting current can be increased. Moreover, the phase shift optimization can sustain efficient
acceleration over a wide range of loading current variations. The same approach can be useful for lasertron systems
and for autoacceleration regimes.
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1 INTRODUCTION

Optimization of various resonant linear accelerators loaded with intense electron beams
has been considered in many publications (see, for example,1,2). Here we shall investigate
a particular case of a standing wave structure formed by a chain of electrodynamically
independent single-gap cavities with external phasing. The system provides additional
control flexibility for variations of an accelerated current and is of special interest for free
electron laser drivers, as has been described in3 .

A general approach to single-cavity matching can be formulated as minimization of
power reflected from the coupler back to the generator. For ideal coupling of an unloaded
cavity, i.e. for a vanishing backward wave amplitude, the load impedance from the feeder
side must be real. Besides, an optimal coupling coefficient must be provided to transmit
the power being dissipated inside the cavity. Then, the load impedance will be equal to the
wave impedance of the feeder.

If the cavity is loaded with an electron beam current of the same frequency, there appears
an additional field source, which provides coherent radiation that changes the phases and
amplitudes of the backward wave and the total accelerating field. The total accelerating
voltage across the gap decreases (beam-loading effect) of course, and ideal matching,
meaning a zero amplitude backward wave, is generally impossible. However, the radiative
field remains coherent with the reflected wave, so the coupler parameters can be chosen
to minimize the total backward wave amplitude and the beam loading effect. In other
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words, proper variation of independent coupler parameters as functions of the current can
sustain the total accelerating field and/or increase the limiting current for which acceleration
vanishes. Note that the load impedance of the cavity is not necessarily real in this case,
and corresponding phase shifts which can be provided by proper dielectric inserts or by
other distributed elements are of importance. A similar approach can be used for radiating
systems in lasertrons or choppertrons to maximize the power irradiated by the beam.

2 CAVITY DESCRIPTION

For present purposes, the resonator can be treated as a device that transforms the electric
field wave coming from the generator into standing oscillations of the field in the accelerat
ing gap. Without specifying its geometry and assuming only that the dimension of the gap is
considerably less than the distance from the gap to the coupler, one can consider the system
as a succession of two linear transformations described by the scattering matrixes Sand
C. The former refers to the coupler and the latter is related to the finite distance between
the coupler and accelerating gap, as schematically shown in Fig.l. Denoting the complex
amplitudes of the field on the external and internal sides of the coupler by the indexes 0 and
1, respectively, and the directions of propagation from and to the generator by the upper
indexes ±, one can write from the definition of scattering matrix:
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FIGURE 1: A model of an active cavity.
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(~~) = s (~f).
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If losses in the coupler are neglected and the transformation is considered reciprocal,
the matrix S should be unitary and symmetrical, which yields four relations between its
complex elements:

SllSr1 + S21S~1 = 1,

S12Sr2 + S22S~2 == 1,

Sr1S12 + S22S~1 = 0,

S12 - S21 = 0

and leaves free only three real parameters:

S = (-x eXkP(ia) k )
X exp(-ia) exp(ij.L),

(1)

(2)

o< k < 1.

Here, k = VI - X2 is the coupling coefficient, JL the phase shift of the transmitted wave
and JL - a the phase shift of the reflected wave. The transformation matrix of the resonator
itself should take into account the phase shift 8 during propagation of the wave from the
coupler to the gap (dependence of the field on time is chosen rv e-iwt ), irreversible ohmic
damping of amplitude described by the coefficient q < 1, and reversible coefficient of
amplitude transformation from coupler to gap G. In general form

where

(E1) = c (Et)
Et E2 '

(3)

c= (. 0
q G exp(i8)

G- 1 eXP(i8))o .

There still remains to relate the amplitudes of waves E~ leaving and coming to the gap
(Fig. 1). In the absence of a beam, the assumptions of standing oscillations in the gap would
mean automatically that Et = E2, which in the presence of losses could be realized
physically for cophasal excitation of the resonator by two couplers symmetrically located
relative to the gap. To avoid complicated calculations, we limit ourselves to the case of
symmetrical excitation.

A modulated beam passing through the gap in the plane of symmetry creates an additional
field of radiation E r coherent with the other fields and propagating from the gap to the
couplers. Therefore,

E2 = Et +Er

and E a, the total accelerating field in the gap will be

(4)
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(5)

Using the algebraic linear relations (3) - (5), we now can express the amplitude of the wave
leaving the resonator Eo and the accelerating field Ea in terms of the amplitude of the
radiation field Er and the amplitude of the incident wave Et, which we shall consider real
for determining the beginning of phase reckoning. Thus, we obtain

where

z+ == 2qk exp( iJ-l + i8)
° 1 - Xq2 exp(i~) ,

Z- = [q2 exp(i~) - X] exp(ijl + ia)
° 1-xq2exp(i~)'

z _ 1 + Xq2 exp(i~)

r - 1 - Xq2 exp(i~)'

~ == 28 - ex + J-l.

(6)

(7)

Returning to what has been discussed above one can see that in the absence of the loading
current the standing wave coefficient Z == (Et +Eo) / (Et - Eo) is equal to unity when
Zo == O. The latter means that two requirements mentioned above:

(8)

must be satisfied. The first shows that the cavity is tuned, and the second indicates that the
coupling coefficient must be small for small ohmic losses.

The coefficient of ohmic damping q introduced above is closely related, of course, to the
inherent Q-factor of the resonator. To elucidate this relationship, we note that the square
of the modulus of the resonance denominator in the expressions for impedances (7) can be
written in the form

(9)

and becomes small for Xq2 ---+ 1, ~ ---+ O. The total phase shift ~ is, of course, a function
of the frequency wand becomes zero for w == wo, where Wo is the fundamental frequency
of the operating mode. In the neighborhood of this resonance value,

(10)

where
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The quantity Qo

D
Qo = (11)

2(X-1/ 2q-1 - X1/ 2q)

can be identified as a quality factor of the resonator, determined by the width of the
resonance curve. In the limit, k ~ 0; q ~ 1

(12)

where the two r.h.s. terms determine the Q-factors connected with extraction of power and
with ohmic losses, respectively. The coefficient of proportionality D- 1 , the value of which
is of the order of unity, depends, of course, on the concrete geometry of the resonator.

3 OPTIMIZATION OF THE ACCELERATING FIELD

To determine the power transmitted to the beam, one has to know a relation between the
current I ei , and the radiation field Er . For a narrow accelerating gap, one can suppose that
E r = -pIei " i.e., the field is out of phase with the current, exciting a TEM radiation wave
in the line with wave impedance p. Then, the power is

W = Re(EaIe-i,) = I Re(GZtEte-i , - ZrpI). (13)

One can see that an effective accelerating voltage Va = WIIGEt (in units of Et) can be
optimized with variation of the injection phase ry to match it with the phase of the effective
accelerating field. Then

Vo = zt - Re(Zr)J = 2qk [(1- Xq2}2 +4xq2sin2(~/2)J-1/2 - (14)

-J(l - X2q4) [(1 - Xq2)2 + 4Xq2sin2(~/2)J -1 .

where J = pIIGEt (remember that Et is supposed to be real and positive, defining
relative phase shifts).

Eq.(14) describes a two-parameter family of straight lines. Each shows a linear decrease
in the accelerating voltage with current starting from a "cool" cavity value and vanishing
at a certain limiting current. The value at J = 0 is maximized with ~ = 0, and with the
optimal coupling coefficient k = J1=Q4 = Q-1/2:

(15)
2q

Vmax = . ;:;---::;r.
V 1- q4

(Of course q ~ 1 means an infinitely large Q-value of the cavity and hence makes equation
(15) not valid). For larger coupling, the field amplitude decreases because of radiation
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through the coupler; for smaller ones - because of ohmic losses. Note that k == Q-l/2
provides at the same time a maximal sensitivity to loading, i.e., this choice minimizes the
limiting current to the value J == 2q/ (1 + q4).

According to the above considerations, one can optimize the loading characteristic in
Fig.(2), changing Ll from 0 at J == q/ (1 +q4) to 1r at J == q/yI1=q4. At the left boundary
of this interval, the optimized voltage is Vo == qjyI1=q4, at the right side it is equal to
q/(l + q4). (Note that all curves in Fig.(2) are symmetric with respect to the bisectrix
Vo == J). Within the optimization interval

q2
VoJ == -----

(1 + q4)yI1=q4'
(16)

so the transmitted power and acceleration efficiency are independent of the loading current.
For larger currents, i.e., for q/yI1=q4 < J < 2q/yI1=q4, the voltage is low and again
decreases linearly with current when Ll == 1r. Note that for an arbitrary coupling coefficient
the phase optimization is available in the interval

qk J qk---. < <---
1+ Xq2 1- Xq2

Vo
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FIGURE 2: Accelerating voltage vs beam current (q=O.9):

1.- ~=O,2.- ~=7r,3.- ~=~opt,4.-k=kopt '

J

(17)
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FIGURE 3: Optimal coupling coeffcient k and detuning ~ vs beam current (q=O.9).
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FIGURE 4: Transmitted power vs beam current (q == 0.9): 1.- ~=~oPt, 2.-k=kopt .
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FIGURE 5: Reflected power vs beam current (q=O.9):

1.- A=O, 2.- A=1r, 3.- A=Aopt , 4.- k=kopt •
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FIGURE 6: Accelerating voltage vs beam current for Q»l:

1.- A=O, 2.- A=Aopt, 3.- k=kopt '



and yields the voltage
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(18)
q2k2

Va = J(1 _ X2q4) ,

which has an upper limit Va == q for k == 1, when the interval shrinks to a point J == q.
The existence of the upper limit indicates that one can optimize Va with k. Its value has

to drop from~ at J == 0 down to zero at J == q and then to increase with ~ == 1r

up to~ when the current approaches the maximal limiting value J == 2q/~.
The corresponding envelope equation can be written in a parametric form:

(19)

o< X < q2.

Thus, optimization with phase shift and with coupling coefficient can increase the acceler
ating voltage and/or the limiting current. Moreover, the phase optimization allows constant
efficiency while the current varies over wide limits. The corresponding dependencies are
shown in Figs.(3), (4),(5). Note, however, that to use effectively the resonant properties of
the system and to keep Va >> 1 one has to deal with Q >> 1 and J << 1.
The optimization in this limit gives:

txtfor ~ == 0, X == q2;

Va == 1/4J (20)

for ~==O, X==X(J).
Ql/2

Va = JQl/2 + (PQ + 1)1/2

The corresponding universal curves are shown in Fig. (6).

4 RADIATION REGIMES

The above considerations can also be applied to systems where the modulated beam-cavity
interaction is used to obtain RF power. In these cases, the backward wave power P and the
beam radiation losses are the objects of optimization. The optimal choice of the injection
phase "y gives:

(21)
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Taking into account that according to (7)

Iz-12 == 1-IZ+121- q4
o 0 4q2

one can easily get the maximal value

(22)

(23)Pmax = 1 + q2J2
~t2 (1 - q4)'

which can be reached with a certain optimizing value (J, ~). In the limit ~t == 0 when
the second term in (23) dominates Pmax == q212 /G2(1- q4). Thus introducing an external
wave for additional deceleration of the beam, one cannot get back more than the injected
power plus the "natural" radiation power.

In the case of an autoacceleration regime, or two-beam acceleration scheme, the internal
field amplitude ~a is to be maximized irregardless of the exciting beam phase. According
to (7) the maximum of Zr can be reached with ~ == 0 and X == 1 and

(24)

Note, however, that all calculations above are relevant mainly to relativistic electron beams
because in a fixed current approximation particle energy variations in the gap should be
small enough not to change essentially a particle velocity.

5 CONCLUSIONS

The model considered above indicates that an accelerating voltage across a cavity gap
can be optimized by proper choice of coupler phase shift ~ and coupling coefficient
k, depending on the accelerated current. Phase shift optimization can provide constant
efficiency of acceleration over a wide range of beam current variations. The maximized RF
power which can be obtained from modulated beams in lasertrons or choppertrons cannot
be increased by external deceleration.
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