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The sensitivity of RF phase to current and energy errors in a multistage klystron-like free-electron laser
is analyzed theoretically, using the macroparticle approach. Theoretical results are confirmed by compar­
ison with numerical simulations and the importance of detrapped beam fraction is noted. An example of
gigantic K-band RF source with output power of 600 MW/m and total length of 150 m is given. This is
shown to have an acceptable phase sensitivity for 100 multistages.

1 INTRODUCTION

Since the first proposal of a two-beam accelerator! based on free-electron lasers
(TBA/FEL) by Sessler, its output RF phase's sensitivity to injection errors has been
one of principal key issues for a practical RF source of a future TeV class linear
collider. Although the new version2 of TBA/FEL (TBA/KFEL)3 seems to eliminate
the complicated RF phase control4 as proposed in the original version, there has
been no work which clearly show physical insight into this problem in the TBA/
KFEL.

Pulse-to-pulse phase drift caused by injection jitters in beam current or energy has
been independently considered by LBL/MIT5 and KEK6 in a conceptually similar
framework which may be called the macroparticle approach3. Introducing three
single-period functions determined by numerically integrating the single particle FEL
equations of motion and linearizing them with respect to displacement from the
designed values, the former has evaluated a set of linear evolution equations for phase
and given a condition for less sensitiveness. One example of single particle FEL
simulations which supports the theory has been presented in Ref. 5. Unfortunately,
it is not so easy to find the FEL parameter dependence of phase drift, by using this
theory. Employing the universal gain function introduced in Ref. 3, meanwhile,
Takayama has attempted to develop a full set of evolution equations for energy,
ponderomotive phase, and output RF phase in the recursion form with a mathematic­
ally much simpler structure. The attempt of Ref. 6 has been not completed because
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the dependence of the universal gain function on the initial value of ponderomotive
phase was ignored.

In this article, a theory as a further development of the original idea6 is presented
which delineates the spatial-evolution of beam energy, ponderomotive phase, and
output RF phase from period to period in a set of recursion forms. The model is
based on the macroparticle approach (MPA) in Ref. 3 which is briefly summarized
in Section 2.

The model is applied to the case of well bunched beam where an injected beam
current is conserved through more than 100 periods. The set of coupled recursion
equations is exactly solved and its solution is compared with the spatial evolution
of bunch center and output RF phase by multiparticle simulations (MUS)7. As a
result, steady-state characteristics of this case is elucidated in an equilibrium solution
for the set of recursion equations. The RF phase's sensitivity to injection errors such
as possible current error is assessed, based on the equilibrium solution and shown
to be consistent with results of the realistic MUS. In addition, the theory will give
a clear answer to the unsolved question how the output RF phase's sensitivity to
injection errors depends on the magnitude of input RF power.

An important aspect that the output RF phase rapidly changes because of a sizable
amount of current loss due to longitudinal mismatching in the early transient stages
of a TBA/KFEL where bunching still does not evolve sufficiently is pointed out as
a. result of the realistic MUS. The necessity of a long buncher section for a desired
TBA/KFEL is suggested.

2 MACROPARTICLE MODEL AND UNIVERSAL GAIN EQUATION

In the KFEL, a small RF signal is fed in at the start of each period and amplified
by the FEL. Near the end of period the RF signal is removed. The electrons of the
driving beam go on from period to period. It is noted that the signal phase is well
adjusted at the injection of each stage, as mentioned later. Motion of the particles
through a period may be well understood by the concept of synchrotron oscillation:
At the initial stage of the period, the injected RF amplitude is small and most of the
particles are outside a bucket. The rapidly increasing RF bucket begins to capture
the particles performing synchrotron oscillation. After RF extraction, the particles
enter into the energy recovery section with a small acceleration gap at its ends. Their
motion in this section is characterized by drift along the ponderomotive phase axis
and abrupt energy change.

A magnitude of the amplified RF signal is dominated by the overall behavior of
the particles; the RF wave in the KFEL strongly couples with the collective motion
of the particles. In the MPA, the behavior of the bunch center is assumed to represent
a collective motion of the bunch and the bunch center has been called the macro­
particle (MP).

We consider the motion of an electron in the planar wiggler field which is
characterized by wiggler wave number kw and normalized wiggler field bw • The
electron is strongly coupled with the RF field which is characterized by wave number
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(la)

ks and angular frequency W S ' FEL equations for the· MP have been originally given
in Ref. 3 which can be straightforwardly written from the standard FEL formulation 8

.

The field equations are written in terms of slowly evolving normalized amplitude es

and phase shift <fJs of the signal wave. The particle equations describe the motion of
the MP which is represented by terms of energy Ya in rest-mass units and ponderomo­
tive phase cPa = (ks + kw)z - wst + <fJs' The MP FEL equations for a TEOt mode in
a rectangular waveguide (a* x b*) are

dYa = _ esbw sin ¢
dz kwYa a

(Ib)

(Ic)

(Id)

where we assume the particles are initially bunched with half phase spread ~cP,

J = 21ja*b* (I: beam current) is the current density averaged over the effective area
of the TEOt mode, and Zo(377 Q) is the value of resistance in vacuum. From (Ic),
we have straightforwardly

A. . -t[ Ya . ] (_ d)
o/a = SIn KKb

w

es ,'=dz (2)

(3)

where K == eZoJj2mc 2 kw ' Differentiation of (2) with respect to z leads to

· 1 d [Ya · ]
¢a = cos 4>a dz KKb

w
es

Substituting (3) and (ld) into (Ib), we obtain the second-order differential equation
for es ,

(4)

where aw == bwjkw~ 1 and IcP aI~ nj2 are assumed. Equations (Ia) and (Ic) give an
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(5)
me2

Ya +-- e; = const.
eZo JK

Once Eq. (4) is solved under the initial conditions, eiO) = eo and es(O) =
(eZoJaw Kj2me 2)(sin ¢a(O)jYa(O)), the motion of the MP is easily reconstructed from
(2) and (5).

Introducing an assumption of implicit taper, YajKbw == a = const, and the change
of variables

(6)

where

Equation (4) reduces to

X" = - [1 - (X')2] 1/2 + [1 - (X')2]jx (7)

By further transformation, y = In X, we arrive at the so-called universal gain
equation (UGE),

y" = _ [e - 2y _ (y')2] 1/2 + e- 2y - 2(y')2 (8)

with the initial conditions, y(O) = In[aIbIes(O)jK] and y'(O) = (K sin ¢a(O)jaIbIes(O)). Its
solution y(s) has been called the universal gain function (UGF). Generic properties
of the UGE and UGF have been in detail discussed in Ref. 3.

3 RECURSION FORMULA

Using the UGF, we can develop the recursion formula which describe the period­
to-period evolution of the MP in the phase space and the output RF phase, as
depicted in Figure 1. From the energy conservation law we have the discrete evolution
equation for Ya'

y~+1 = y~ _ ~ [eZoJ] a~(O) exp[2y(lb(y~)ILw)]+ i\y +~ P(O) (9a)
4 me2 (y~)2 I b(y~) 1

2 me2 I

where the second term in the right-hand side represents the energy converted to the
RF power, the third term is the energy replenished at each accelerating gap depicted
by I in Figure 1, the last term is proportional to the input RF power P(O), and L w

denotes the wiggler length per period. The continuity9 of beam phase, () = (ks +
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FIGURE 1 A sequence of regular wiggler and accelerating unit in a TBA/KFEL.

kw)z - wst, at boundary gives the discrete equation for <Pa'

<P:+ 1 = O~ut + (<p~+ l)in

By using the MP's variables, this relation is rewritten in the more convenient form,

<P: + 1 = (<p:)out - (~<ps)n + ~(== (<p~ + 1lin - (<P~)in)

(9b)

(9c)

where ~ is externally controlled by adjusting the input signal phase. Integrating the
first-order differential equation (ld) for the signal phase, we have the increment in
the RF phase through period,

/f'b()I/1)'LW
(~<ps)n = - Je- 2y(s) - (y')2 ds

/0 0

where lois the designed beam current.
Assuming an input beam current error, ~/ = 1 - 10 , the recursion formulae are

written in the terms of the small deviation from the designed energy, bn = Y: - Yo,

where

_ n 0 ~I e P(O)
bn+1 - (1 - Jl)bn+ cx(<Pa - <Pa) - ~Y - + -2 -

/0 me /0

<P:+ 1 = <P: + f3bn+ (~ - So)

(A<pst ~ (1 + ~:)[ -<b: - f3f(so)Jn + const.]

So = Ib(Yo)ILw

2~y [ , 1 + Y5/Y;] 2 1 (Ws) a~(O)
Jl = - Yof3y(so) + 1 _ 2/ 2 ,Ys =:2 k k - Jk

Yo Yo Ys s w s

I(s) == Je - 2y(s) - (y'(S))2

(lOa)

(lOb)

(lOc)
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FIGURE 2 lal vs. the input power P(O) at 4>~ ~ 90°.

Ys may be called the resonant energy in a formal sense. The expression for damping
parameter J1 has been evaluated in Ref. 3. The term related to cP: in (lOa) is originated
from the initial condition of the UGF, and the coefficient a must be numerically
determined. It is noted that a depends on the input RF power because of

es(O) oc JP(O). Figure 2 shows the absolute value of a derived from the MPA and
obtained by the MUS as a function of the input power for the FEL parameters listed
in Table 1, which are referred by a MPA and aMUS' respectively. Both as agree to each
other within a factor of two in a large scale. In the figure, the smallness of a in
magnitude is notable for the kilowatt input power level. This simply means the almost
one-way coupling between Ya and cPa in such low input power level. The feature is
serious in a practical RF source, as will be discussed later.

TABLE 1

FEL Parameters

Injection beam current
for a well bunched beam
for an unmatched beam

Beam energy
Energy gain per period

Wiggler field

Wiggler wave length
Wiggler length per period
RF frequency
RF input power
RF output power
Waveguide dimension
Phase control parameter

for a well bunched beam
for an unmatched beam

mc2 yo
mc2 L\y

j2mc
--bw

e
2n/kw

Lw

ws/2n
P(O)
P(Lw)

a* x b*
L\

1.802 kA
3.0 kA
12.1 MeV
0.5 MeV

3.85 - 3.6 kG

0.26 m
0.7 m
17.1 GHz
10MW
900MW
0.2 x 0.03 m2

3.405
3.0 (stage 1-11)
3.27 (stage 12-29)
3.33 (stage 30--100)
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The validity of the recursion form has been confirmed by comparison with the
MUS for a typical example, FEL parameters of which are given in Table 1. Two
cases of 10 MW and 100 kW as the input power have been chosen which give the
relatively large and small a. A t5-function like error in energy is introduced at the
50th stage. Then, the evolution in the resultant energy deviation, ponderomotive
phase, and output RF phase are calculated over 50 stages downstream there. The
behavior of y:, 4J: and (~q>s)n predicted from (lOa), (lOb), (lOc) was shown to be
qualitatively and quantitatively in good agreement with the result of the MUS for
both cases. The comparison in the case of the large input power is given in Figures
3a,b.
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FIGURE 3a Energy deviation vs. the stage number.
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In order to analytically estimate effects of the injection errors, we solve the coupled
recursion equations (lOa) and (lOb); introducing Xn = ¢~ - ¢2, their solutions are
given by

(11a)

(lIb)

with

~1 e P(O)
<5 2 = (1 - J-l)<5 l + exXl - ~y - + -2 - (12)

10 me 10

ex(~ - so), q2 - 1 (13)
p=- ,p=p--

q2 - 1 ql - 1

r = _ Jl(A - so) + PC -AyMIJo + (elmcZ)P(O)1 JoJ, f = r qz - 1 (14)
q2 - 1 ql - 1

where ql and q2 are solutions of the quadratic equation,

x 2 - (2 - J-l)x + (1 - J-l - ex[3) = O.

In a case of lexl < J-l2/4[3, ql( < 1) = 1 - /l - ex[3//l + 0(ex2) and q2( < 1) = 1 +
ex[3//l + 0(ex2). For the case of the input power less than 100 kW where lexl < 10- 2

as shown in Figure 2, the magnitudes of /l and [3 are of order of half of unity and unity,
respectively. Thus, q2 takes a value very close to unity. This results in a long damping
time which may be beyond a desired stage number. This discouraging feature has
been really observed in the MUS. Setting qi in (lla) and (lIb) to be zero and
substituting into (10c), we have (~qJs)n in the terms of qi,

(AqJs)n = (AqJs)AI=O + [(AqJS)AI=O + PAyL~ (-1 + q~-l) + f~o) q~-l}] ~: (15)

where the terms originating from the current error are isolated in the bracket. In
most of cases, the first term in the brace is dominant; in the limit of ex -+ 0,

n n [3Lly LlI ( /l )
(~qJs) = (LlqJs)AI=O + -- (n - 1) -, n < 1 + -

/l 10 ex[3
(16)

Accordingly, it turns out that the phase drift of the output RF caused by the current
error at injection linearly grows with stage number up to some extent. This fact
seriously limits a possible stage number or an acceptable size of the current error.
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(18)

(17)

(19)

o

Since in practice we require a high number of stages and a large tolerance in current
error, the case of low input power is ruled out in the following discussions.

Meanwhile, in the case of 1lJ.1 > /12/4[3, q1 and q2 are a pair of complex conjugate.
Their absolute value Iqll = Iq21 = (1- /1-lJ.[3)1/2 is much less than unity for the
megawatt input power level where 1lJ.1 '" 10 - 1 as shown in Figure 2; therefore; bn and
¢~ damp to reach to an equilibrium state,

b = P - P = _ ~ - So

00 q2 - q1 [3

cf>:O = cf>~ - ~ [/1(~ - So) + [3{-AY AI + -; P(O)}]
lJ.[3 10 me 10

A problem which arises at this point is that the above equilibrium state scatters shot
by shot. The output RF phase determined by (10c) which is a function of bn and ¢~

will scatter in the similar way. To manifest the sensitivity of the output RF phase to
injection current error ~1, the steady-state output RF phase is described in the similar
form to that of the previous case, Eq. (16),

[ ~y] ~1
(Aq>st' = (Aq>sm=o + (Aq>s)AI=O - ~ 1;;

The theoretical prediction from Eq. (19) for the example of Table 1 which gives
/1 = 0.65, CXMUS = -0.13(lJ.MPA) = -0.18), and [3 = 1.0704 is compared with results of
the MUS in Figure 4. In most cases, the magnitude of the first term in the bracket
of (19) is much smaller than that of the second term; in the example it is actually
negligible. Substituting of ~y = 1 and cx = -0.18 into the expression, we have the
gradient of [(~qJs)oo - (~qJs)rl = o]/(~1/10) ~ 5.5. (~qJs)l~O - (~qJs)l~~ 0 is plotted
against ~I. The MUS apparently shows its linear dependence as anticipated from the
theoretical prediction. Their magnitudes agree with each other within a factor of 1.8.
Here is again a notable 'peculiarity of the coefficient lJ.. As has been seen in Figure
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FIGlJRE 4 Deviation in (~qJs)" vs. current error; the solid line represents the result of the MUS and
the broken line is the theoretical prediction.
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at Injection into the first stage
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FIGURE 5 Bunch shape at the entrance into the first stage and at the exit of the lOOth stage.

2, lJ. is a function of the input power; roughly proportional to - JP(O). A large input
power is apparently advantageous to minimize the sensitivity of output RF phase to
the injection error.

5 DISCUSSIONS

Energy deviation in a high energy linac due to phase error may be described by
-![(L\qJs)AI - (L\qJs)AI=O]2. The size of acceptable energy deviation 11 mainly depends
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on the design of the final focus. If it is typically 0.5°A», the output R~ phase jitter
must be less than 5.7°. Fortunately, the theoretical prediction (19) and extensive MUS
have indicated that this requirement can be satisfied with a well bunched beam with
a small current error (~ 10/0) and a large input RF power (~MW).

There is another aspect on the RF phase's sensitivity to injection errors in a more
realistic situation that must be considered, because it seems impossible to produce a
perfectly matched beam with a buncher wiggler of finite length. In Figure 5 typical
bunch shapes are· shown at injection into the first period and at exit of the lOOth
period. In these MUS I2 one third of injected particles was lost through early 20
stages. Figure 6 shows the output phase (~qJs)n and trapping ratio versus the stage
number for the case of designed current and the case with current error of 0.5%. For
both cases, the large change in ~qJs at early stages apparently arises from the rapid
substantial current loss. Noteworthy is the fact that they reach an equilibrium state
beyond the 20th stage where the number of trapped particles almost saturates with
the same trapping ratio. This is completely consistent with the qualitative prediction
by the theoretical model. The extension of the present model to the transient region,
however, poses formidable difficulties for theoretical analysis. The magnitude of
cumulative ~qJs deviation in the example through the entire stage, 4°, is close to the
limit. We have observed that a large fraction of it is generated in the transient region.
To reduce the sensitivity to injection errors there, a long buncher FEL would be
helpful.

Results of the present theory and that given in Ref. 5 are not compared because
both theories have been developed in different regimes. The present theory has been
applied to the maximal power extraction regime where the wiggler length is adjusted
to produce the almost maximum RF power at its end. The other has chosen its
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application in the over-rotation regime where the wiggler is much elongated so as to
provide sufficient bunch-rotation in the RF bucket.

6 CONCLUSION

A simple theoretical model for the spatial evolution of the MP and RF signal has
been presented which can manifest the output RF phase's sensitivity to the injection
error and its FEL parameter dependence, particularly the input power dependence.
As a result of theoretical and numerical studies on the RF phase drift, an example
of gigantic K-band RF source with output power of 600 MWjm.and total length of
150 m 13 was demonstrated with the acceptable phase sensitivity for 100 multistage,
provided well bunched beams. The importance of the detrapped fraction in a more
realistic situation was pointed out and the necessity of a complete buncher FEL was
suggested to mitigate the effects of the injection current error.
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