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This paper is intended to demonstrate the feasibility of unconventional accelerating structures that fully sup-
press higher-order modes (HOMs). In these structures, unlike conventional cavities, the interaction region
communicates through very large apertures with waveguides connected to absorbing terminations. The special
geometry of the structure permits to trap in the interaction region a single high-Q resonating mode. For this
reason these structures can be called ‘Single Trapped Mode Resonators’ (STMRs). After a discussion of the
basic ideas underlying the operation of an STMR, an algorithm is presented that permits wideband calculation
of the longitudinal and transverse beam-coupling impedances. Some numerical simulations are reported and
compared with the experimental results from a model of an S-band STMR. Both numerical and experimental
results show that, with careful dimensioning of the structure, very good HOM suppression is obtained, and
that the shunt impedance and Q of the trapped mode are only slightly reduced compared to conventional
accelerating cavities.

1. INTRODUCTION

The beam current circulating in synchrotrons operating with many bunches is limited by
the longitudinal and transverse coupled-bunch instabilities. Bunch-to-bunch coupling is
mediated by the electromagnetic oscillations generated by the beam in its environment,
particularly via excitation of the higher-order modes (HOMs) of the accelerating cavities.
The conditions for the instabilities are given in terms of the longitudinal and transverse
beam coupling impedances,! whose frequency behavior is of paramount importance in
this context. In particular these conditions show that instabilities are highly probable
when the impedances exhibit crowds of sharp resonant peaks, like those determined by
the HOM s of the accelerating cavities. Therefore the primary cure for preventing coupled-
bunch instabilities consists of eliminating or smoothing these peaks without lowering the
longitudinal impedance of the fundamental (accelerating) mode. The damping of HOMs
is also a prerequisite for the cavities to be used in future TeV e* linear colliders, where
wakefield modes propagating in the periodic cavity chain must be heavily attenuated.
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Many HOM dampers have been described in the recent literature, both for synchro-
trons? 34 5 and for linear accelerators.® Most of them consist of absorbing loads con-
nected to the cavity through waveguide sections whose cutoff frequency is between the
frequency of the accelerating mode and the frequency of the first HOM. In this way the
Q of the fundamental mode is substantially unaffected by the absorbers, whereas the Qs
of the HOMs are lowered to different extents, depending on the coupling of these modes
with the waveguides.

All dampers presented thus far have been conceived as extra devices added to a con-
ventional cavity in such a way as to suppress a limited number of HOMs. Furthermore,
in some cases, no definite strategy appears to underlie the number or positioning of the
dampers or the design of the coupling region between the cavity body and the waveg-
uides. For this reason the coupling of the HOMs to the absorbing loads is far from
optimized, so it is not surprising that the experimental results show that a lot of HOMs
resist the cure.

In a recent work’ we suggested a strategy for realizing nonconventional resonators
that are practically HOM-free. In designing these structures, which are more similar to
symmetric waveguide junctions terminated by absorbing loads (Fig. 1) than to cavities
with dampers, the absorbers are considered as a fundamental part rather than as a cure
to be added afterwards, thus permitting optimized results. The central region of these
structures, where the beam interaction takes place, communicates with the waveguides
through very large apertures. If judiciously dimensioned, this region can trap a single
high-Q resonating mode (used for acceleration); yet, due to the strong coupling between
the central region and the loads, no other high-Q resonance above the frequency of
this mode will be possible. As a result, the longitudinal and transverse beam-coupling
impedances are small at any frequency, except for a single peak exhibited by the longitu-
dinal impedance at the resonating frequency of the trapped mode. Due to the presence of
a single high-Q mode, these structures were named ‘Single Trapped Mode Resonators’
(STMRs).

The basic principles underlying the operation of STMRs are illustrated qualitatively
in Section 2, which constitutes also an overview of our previous paper.’ For simplicity,
cylindrical or quasi-cylindrical structures are considered in this section. The definitions
of the beam-coupling impedances for STMRs are presented in Section 3, and the theory
for their calculation is developed in Sections 4-6. The specialization of this theory to the
case of cylindrical structures is discussed in Section 7, where some numerical examples
are reported together with other results for a quasi-cylindrical structure.

2. QUASI-CYLINDRICAL STMRs

First we consider the cylindrical structure shown in Fig. 2, consisting of a circular
inner body connected through very large apertures to three rectangular waveguides, ra-
dially oriented and symmetrically placed around the z axis. This structure has threefold
symmetry and exhibits three symmetry planes passing through the z axis.

At the beginning let us suppose that the waveguides are shorted at the ports Sy, Sa,
and S3 so that our structure becomes a cylindrical cavity having transverse cross section
S (Fig. 2b) and height L. A beam traveling parallel to the z axis would excite only TM
modes, which interact with it via the z component of the electric field. This component
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FIGURE 1 A possible STMR accelerating structure.

FIGURE 2 The cylindrical structure used for discussing the feasibility of an STMR.
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has the product form

E, = Ay cos(qrz/L) (¢=0,1,...) (1)

where A is an arbitrary constant and ¥ = (z,y) is an eigenfunction of the two-
dimensional eigenvalue problem

V2 +x%=0 in S
Pv=0 over the boundary Ci.
It is well-known that the eigenvalues x are real and positive and that they determine
the resonating frequencies of the modes. The resonant frequencies are given by

f= x* + (qm/L)? (2)

c
2m
where c is the speed of light.

Due to the complicated shape of S, the eigenfunctions and eigenvalues must be deter-
mined numerically. The symmetry of the structure permits to infer some particular prop-
erties of the modes, which are summarized as follows. With reference to the zz plane, the
eigenfunctions can be classified as even or odd. Furthermore, some of them have the same
threefold symmetry as the structure (others do not). For these reasons we can consider

four groups of eigenfunctions and eigenvalues, denoted by ¥5%, E SO 1A% and

XfE , Xfo, X;f‘E s XAOp respectively, where the superscripts denote the symmetry (S =

rotationally symmetric, A = rotationally asymmetric, £ = even, O = odd) and the
index p =1, 2, ... represents the position of the eigenvalue, assuming that in each group
the eigenvalues are numbered in ascending order. Asymmetric eigenfunctions occur
in degenerate pairs, i.e., xﬁE = X;‘O. The four groups of eigenfunctions give rise to
four classes of TM modes with the same symmetries, labeled with the symbols TngE S
TMSC, TMAE, and TM/AC. All pairs of TMAF and TMAC with the same indices are
degenerate.

The features of the mode patterns are better understood by considering Fig. 3, which
shows the contour lines of some eigenfunctions calculated in the case r = 30 mm, a
= L =35 mm, and d = 73 mm. The 5% eigenfunctions have a maximum on the 2
axis, unlike all the other eigenfunctions, which are zero on the z axis. Therefore the
only accelerating modes are those labeled with TMZi.‘!LJ , since only these modes have a
nonzero axial electric field on the z axis. Moreover, in asymmetric eigenfunctions Vi
differs from zero at the z axis, so in the TM;;‘qE and TM;‘qO modes the transverse gradient
of E, differs from zero there. This means that the action of asymmetric modes on the
beam results in a transverse force® and that the TMAE and TMAC modes deflect the
beam. Finally, the 1/)50 eigenfunctions have a saddle point at the z axis, so both 9
and Vv are zero there and TMﬁqO modes do not interact with the beam, at least to the
first order. The values of the resonating frequencies of the first modes associated with
the eigenfunctions are also given in Fig. 3. Note that the fundamental mode is TM$F,
which, in the example considered, resonates in the S band (3.349 GHz).

Looking at the eigenfunctions of Fig. 3, we see that the eigenfunctions wISE are
evanescent inside the lateral waveguides, whereas all others are not. This result was
obtained with a cut-and-try procedure involving the choice of the ratio a/r.
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FIGURE 3  Numerically evaluated eigenfunctions and eigenvalues for the cross section of Fig. 2b, in the
case 7 = 30 mm, a = L = 35 mm, d = 73 mm. The contour lines of the eigenfunction are shown. The
resonating frequencies of the first associated modes are also listed.
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FIGURE 4  Contour lines for the ¥ eigenfunction in the limiting case a/r = /3 (symmetric Y-junction).
These lines correspond to the magnetic field mode pattern of the first trapped mode.

The modes depending on the evanescent eigenfunction (i.e., all TquE are nearly
confined in the central region of the structure. They can be viewed as standing waves
generated by the total reflection occurring at the coupling region between the central
body and the waveguides, where only evanescent fields are excited. By contrast, the
modes depending on the other eigenfunctions are not confined in the central region and
can be viewed as standing waves resulting from total reflection at the terminating shorts.

Now replace the shorts with matched loads. It is evident that the modes produced
by the reflection from the shorts no longer exist, whereas all the TMISf modes that are
evanescent in the waveguides are practically unaffected. The trapped mode with the
lowest frequency is the TMS¥ mode. This mode, if excited by an external rf generator,
is suitable for acceleration because F, is at a maximum and is z-independent at the beam
axis.

The ¢ eigenfunction is still evanescent in the lateral waveguides when the ratio
a/r reaches its maximum value of v/3 (symmetric Y -junction of waveguides; see Fig.
4). It is evident that as the a/r ratio is decreased, other eigenfunctions can be made
evanescent, giving rise to other families of trapped modes. Numerical experiments reveal
that the TM; 7 modes remain the only trapped modes down to a/r ~ 1. Below this
value the asymmetric eigenfunctions 1/1{”5, 1/){‘0 become evanescent in the waveguides,
so all the deflecting modes TM{F and TM{:® remain trapped too. Therefore, in the
cylindrical structure we have considered thus far, the condition

1<a/r<V3 (3)

must be fulfilled in order to suppress as many HOMs as possible.

The residual higher-order modes that remain trapped, together with the fundamental,
should be suppressed in order to make an STMR. It is interesting to note that the resonant
frequency of the fundamental mode is below the cutoff frequency of the waveguides
(4.286 GHz in the example), whereas the resonating frequencies of all TMEIE HOMs are
larger. Thus the residual HOMs remain trapped in spite of the fact that their frequency
is high enough for waveguide transmission. To understand this point, consider Fig. Sa,
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FIGURE 5 Electric field mode patterns in the zz plane for the first trapped modes in cylindrical (a) and
quasi-cylindrical (b,c) structures. a) Due to the symmetry with respect to the « plane, all TquE modes are
trapped. b) The offset § perturbs the symmetry and permits the excitation of the fundamental mode in the
lateral waveguides. c) The waveguides with increased height permit the propagation of higher-order modes.

showing the E-field mode patterns in the zz plane. It is evident that, due to their z-
dependence, modes other than TM5¥ do not excite the fundamental TE;o mode of the
waveguide, so no energy flow can take place through this mode. On the other hand,
the waveguide modes excited by residual HOMs are below cutoff; for instance, the
lowest guided modes excited by the TMf]E resonance are TE;; and TM;;, whose cutoff
frequency (6.06 GHz) is higher than 5.432 GHz - that is, the resonant frequency of the
TMZFE mode.

These considerations suggest two possible methods of suppressing residual HOMs:
a) perturbing the symmetry with respect to the a plane (see Fig. 5a), for instance, by
offsetting the lateral waveguides in the z-direction, as shown in Fig. 5b; or b) increasing
the height of the lateral waveguides (see Fig. 5c). Method a) permits the excitation
of the fundamental mode in the waveguides; method b) can lower the cutoff frequency
of the z-dependent guided modes below the resonating frequency of the exciting cavity
mode. Both methods affect the resonant frequency of the fundamental TM;¥ mode only
slightly, since the perturbations are located in regions where its fields are quite small;
therefore this mode remains trapped, its frequency lying below the cutoff frequency
of the waveguide. In conclusion, cylindrical structures cannot achieve complete HOM
suppression, whereas quasi-cylindrical structures, such as those resulting from methods
a) or b), can become STMRs.

To demonstrate the feasibility of HOM suppression, measurements were carried out
on an S-band experimental model having the same dimensions as the ones considered
in the example of Fig. 3. Method a) was chosen to suppress residual HOMs; thus in
the model the waveguides were displaced by a variable offset é in the z direction. The
occurrence of the resonances of the accelerating modes was detected through observation
of the transmission spectrum between two small probes lying on the z axis and placed
on the opposite plane walls of the central body. The results are shown in Fig. 6, which
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gives the transmitted power in dB, using as a reference the power transmitted at the
resonant frequency of the fundamental mode. The spectrum in Fig. 6a was measured on
the conventional cavity that was obtained by closing the central body by means of shorts
at the planes where the waveguides would be inserted. This spectrum, considered for
a better appreciation of the mode suppression, exhibits the familiar crowd of resonant
peaks depending on the high-Q HOMs of the cavity. The spectrum in Fig. 6b was
obtained after replacing the shorts by matched waveguides without any offset. This
spectrum confirms the suppression of all accelerating modes except the TquE family,
whose survival is revealed by the peaks at 3.345, 5.432, 9.191, 13.265, and 17.443
GHz. (Note the closeness of these values to those calculated; see Fig. 3). Apart from
these resonant peaks, the transmission spectrum is very broad as a result of the effective
damping of all other accelerating modes. The spectrum of Fig. 6¢ was obtained after the
introduction of an offset 6 = 5 mm. It is noted that the transmission peak depending on
the fundamental mode is practically unaffected, whereas the peaks related to the residual
HOMs are typically lowered by 30 dB. Therefore, from a practical point of view, the
only resonant mode which survives after the introduction of the offset is the fundamental.

Other transmission spectra were obtained after removing the probes and substituting
a pair of small parallel loops in order to monitor the occurrence of deflecting HOMs.
The results, not reported here, confirmed the suppression of all deflecting modes after
the insertion of the matched waveguides, with or without offset.

The above considerations were based on a structure having a threefold symmetry axis,
but, in principle, other symmetries could be considered. It is easy to see that a structure
with a twofold axis should necessarily trap all deflecting modes with the symmetry shown
in Fig. 7. On the other hand, structures having a fourfold or higher-order symmetry are
not convenient, because they are more complicated and because the increased number
of lateral waveguides decreases (or eliminates) the lateral clearance useful for rf power
input. Therefore threefold symmetry appears to be the best choice.

3. DEFINITIONS OF THE EFFECTIVE VOLTAGES AND OF THE BEAM COU-
PLING IMPEDANCES

The coupling impedances describing the interaction between a beam and an accelerating
structure are usually defined referring to axisymmetric resonant cavities (see Reference
8, for instance). This section aims at the generalization of these definitions to the case
of an STMR structure having an /N-fold rotational symmetry.

Let us consider the generic STMR structure shown in Fig. 1. The current density of
a beam harmonic is represented by

J = Lf(z,y)e 7" u, (e’ understood) (4)

where u, is the unit vector of the z axis; h is the wave number of the harmonic (h =
w/velocity of particles); I, is the current intensity of the harmonic at the z = 0 plane;
and f is a function of the transverse coordinates, describing the beam profile. Thus f
differs from zero only near the z axis, in the small region crossed by the particles, and
we have
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FIGURE 6 Measured transmission spectra of a model of STMR operating at S-band, having the dimensions
r =30 mm, a = L =35 mm. The plots reports the transmitted power between two centered probes in the 2-20
GHz band; the reference is the transmitted power at the fundamental frequency. a) Waveguides shorted at a
distance of 35 mm from the center. b) Matched waveguides, no offset. c) Matched waveguides, 5-mm offset.
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FIGURE 7 Magnetic field mode pattern of the first dipole mode trapped in a twofold-symmetric cavity
connected to waveguides.

/gfdacdy:l; /U:L’fda:dy:a_c; /nyda:dyzy (5)

where o is the cross section of the beam pipe and Z, y are the coordinates of the beam
center. It is assumed that z,y are small with respect to the transverse dimension of the
accelerating structure. Furthermore it is assumed that f is symmetric with respect to the
beam center.

The beam harmonic at the frequency w generates in the accelerating structure a time-
harmonic field at the same frequency. The electric and magnetic fields are represented
by complex vectors E = E(z,y, 2|Z,3), H = H(z, y, 2|Z, 7). For a given structure and
a given beam profile, the field depends on the position of the beam center. Moreover, it
is assumed that the field amplitude in the beam region is significant only in the interval
0 < z < L including the STMR structure (see Fig. 1).

The energy and the momentum gained by a unit point charge crossing the accelerating
structure result from the contribution due to the interaction of the charge with all the
harmonics. Consider a point charge moving parallel to the z axis at the coordinates z,y
and crossing the z = 0 plane at the time t,. The energy gained at the frequency w is
given by Re(v) exp(jwt,), where v is the ‘effective accelerating voltage’ defined as®

L
v = v (=, Y|z, 7) =/ E.(z,y,2|%,7)e’" dz.
0

The transverse momentum gained by the same charge is given by Re{v, exp(jwt,)},
where the vector v is the ‘effective deflecting voltage’ defined as®:

L
vy =vi(z,y|z,§) = —i/ V.1E,(z,y,2|Z,7) e’ dz,
Jw Jo
where V| = u,0; + uy0,.

The average values of the accelerating and deflecting voltages in the bunch are given
by

L
Vi = Vj(@.9) = / f oy dedy = / / f E. (2,y,2/2,5) € dedydz (6a)
o ocJO
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Vi=V.(z,9) = / fvi dzdy

L
= ——E- // fV.1E, (z,y,2|%,7) " dedydz . (6b)
W Jo Jo

Note that, due to the linearity of the field equations, E,, V| and V| are proportional
to I,. Since we consider small values of Z,y, in the evaluation of V) it is possible
to assume that the beam is centered. With this assumption V| is related to [, by the
‘longitudinal beam coupling impedance’, defined by

V(0,0 L .
Z)[9] = o) —Il //0 f E. (2,9,2(0,0) /"% dzdydz . (7)

I,

The symmetry of the structure and of the beam profile permits us to infer that, in the
case T = § = 0, F, must have a maximum on the z axis, i.e., that V E, = 0. Therefore
no deflecting voltage exists in the case of a centered beam. In fact a deflecting voltage
can arise only if the beam crosses the accelerating structure off-axis. Provided x and §
are small, the components of the deflecting voltage must be linear combinations of the
coordinates of the beam center, and we can write:

Ve = _j Io(wai' + nyg)

Vy = _j Io(Zy:v:E + Zyyg) )

where the coefficients Z,3, which depend on the accelerating structure, are the compo-
nents of the tensor relating the deflecting voltage to the beam displacement. This tensor
represents in general the transverse coupling impedance of the accelerating structure.

In an N-fold symmetric structure the tensor Z,g must be invariant with respect to a
rotation of the  and y axes by an angle of 27 /N. It is easily verified that for N > 3
this implies Z,, = Zy, and Z;, = —Z,,. Moreover, if the accelerating structure has
a reflection symmetry with respect to the zz plane (see Fig. 1), a beam displaced in
the z direction (§ = 0) generates a deflecting voltage in the same direction (V,, = 0).
Therefore we have Z,, = 0 and, consequently, Z,, = 0. In conclusion, if we define
Zyy = Zyy = Z 1, the symmetry of the structure implies that V, = Z, Z and V,, = Z, §,
so the transverse impedance becomes a scalar quantity and we can write

Vi =—-j Z,1,(Zug + Juy) . (8)

This expression shows that Z, can be calculated assuming a beam deflected in the
z-direction. Thus we have

Ve L ;
Z.[9)/m] = jﬁ:—w;j) / /O f 8:E, (z,0,2z,0) & dedydz . (9)

Note that Egs. (7-9) coincide with the standard definitions of the beam coupling
impedances for axisymmetric cavities. However, Egs. (8) and (9) hold only for structures
having a threefold (or higher-order) rotational symmetry, plus the symmetry planes.
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4. EVALUATION OF THE FIELD GENERATED BY THE BEAM

The longitudinal and transverse coupled bunch instabilities depend on the frequency
behavior of Re{Z} and Re{Z, } respectively, in the frequency range where the beam
harmonics are significant (roughly speaking, the maximum frequency of interest is of the
order of the velocity of the particles divided by the bunch length). In turn, the calculation
of Z and Z, requires the determination of E, in this frequency range.

The field will be studied in the volume V' bounded by the conducting walls, by the
ports S1,.S2, S3 and by the transverse sections of the beampipe placed at z =0and z = L
(see Fig. 1). Since the field is negligible in these sections, in the field calculation it is
possible to assume that the beam pipe is closed by electric walls there. Obviously, this
assumption is acceptable only at frequencies that are lower than the cutoff frequency of
the beampipe. Therefore the following analysis is meaningful only up to this frequency.

The field in the region V' is determined by the current density [ and by the tangential
electric field at the ports. According to waveguide theory, the transverse fields at the
mth port (m = 1,2, 3) are given by:

P

Eg‘m) = Zpr(m) ep (10a)
1
P

HY = Y, 1™, . (10b)

1

where e, h, denote the electric and magnetic modal vector of the pth mode and

I,(,m), Vp(m) represent the current and the voltage for this mode evaluated at the mth
port. We recall that:

/ h, - h,dS,, = / ep - €qdSy = bpq (11a)
Sm Sm

nxe,=h, (11d)

where n is the outward unit vector normal to the port and ,, is Kroneker’s symbol.
In Eq. (10), both the TE and the TM modes are involved; they are labeled using a
single index, and are numbered according to the non-decreasing order of their cutoff
frequencies. Though the summations should consist of an infinite number of terms, only
the first P terms are retained, corresponding to the modes which propagate or are only
a little below cutoff at the maximum frequency of interest. In fact, these are the only
modes that have a significant amplitude, assuming that the ports are placed far enough
from the central body. From Egs. (10) and (11) we have:

™ = / H™ - h, dS,, (12a)
Sm
Vi = / (n x EY™) - h, dS,, (12b)
Sm

Due to the absorbing terminations connected to the waveguides, the modal currents
and voltages must be related by
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W =Y, V™  (m=123p=1,.,P) (13)

where Y}, is the admittance of the termination for the pth mode. Equations (10-13)

together permit us to relate Eﬁfm) and ngm); for this reason they represent the boundary
condition imposed at the ports.

Assuming perfectly conducting walls, the field in the bounded region V' can be ex-
panded into irrotational and solenoidal eigenvectors, according to the ‘theory of cavity
resonators’ (see Ref. 9, for instance). Taking into account Eqgs. (10) and (11), we have:

_ cn e
E = —Ioj—w; Eif; —jI

3 P
Wy (m)
—e Y gt dm oV (142)
i ? 1 1

o Z wl?”fiwz ; m ;,,Vp(m)cf;’) (14b)
(2

n

where 1 = 377( is the characteristic impedance of vacuum; f; and g; are the electric and
magnetic irrotational eigenvectors; £; and ‘H; are the electric and the magnetic diver-
genceless eigenvectors corresponding to the electric and magnetic fields of the resonant
modes of the cavity obtained when the ports are shorted; and w; represent the resonant
frequencies of these modes. Moreover,

L
D; :// u, - & fe " dedydz (14c)
o JO
L .
= // u, - fif e7"* dzdydz (14d)
o JO
cim = /S H,; - h, dS,, (14e)
G = / gi-h,dS, . (14f)

m

The eigenvectors are normalized according to

/flfldVZI 5 /gi~gidV:1 3 /El&dV:l 3 /HZHZdV:I .
Vv Vv \4 14

It is assumed that the resonant modes are numbered in the non-decreasing order of their
frequencies.

In principle, by using Eq. (14b) to represent the magnetic field at the ports and
substituting into Eq. (12a), I,(,m) can be expressed in terms of I, and Vp(m). The
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boundary conditions of Eq. (13) can be used to eliminate I,(,m), thus obtaining a system
which yields the modal voltages as functions of the beam current. Once all voltages
V,,(m) are known, Eq. (14a) permits evaluation of the electric field in the beam region.
Unfortunately, the slow convergence of the series involving the index 7 in Eqs. (14a,b)
makes this approach almost unfeasible, since it would require the numeric evaluation of
a large number of irrotational and divergenceless eigenvectors. This drawback can be
overcome because, in representing the electric field on the axis and the magnetic field at
the ports (which are the only fields involved in the calculation), it is possible to accelerate
the convergence of the series as described below. Following the Kummer procedure, !0
we write:

D;
E = Eqs—]Ioncw3Z wz—w2)£ +
£ 3 P -
w2 . S (m) ~(m

D;
H = Hqs+Iow22m""+

. 3 P
_Jew Z 2(w Zmzpvp(m (m) (15b)
1 1

n %

where the extracted fields Eg; and Hg, are:

cn .
Es = —-I,— EFf, —j1
! on ZZ: ]

£ 3 P l Z
RO IO IED PR Aleliy (162)
i o 1

P
ch Z Z . Z pvp(m)ci(;") (16b)
i 1

After the extraction of the partial fields E,, and Hg,, the series appearing in Eq. (15)
converge much more rapidly than the original ones, because their terms go to zero as
fast as w;” 3 or w; 4. This feature, of course, can be exploited only if the partial fields
can be determined independently of the series in Eq. (16). Note that, for given values
of I, h, and Vp<m) and when w — 0, we have E — Eg5, H — Hg,. Thus E,, and Hy,
can be viewed as the quasi-static fields that would be excited inside the STMR if the
current density J and the modal voltages Vp(m) were acting at low frequency.

Since Hy, must be determined at the ports only, Eq. (16b) can be transformed into a
more useful one. In fact, a low-frequency excitation produces evanescent fields into the
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lateral waveguides. Therefore, in the evaluation of Hg, at the mth port, it is possible
to neglect the effect of both the beam current and the modal voltages at the other ports.
Thus we have

(m) A Am) | Jwe s~ Hi (m)

H(™ ~ Zp (M ZngiP 5 Z o cor . (17)
According to Eq. (17), the only sources of ’Hl(.;n ) are the modal voltages V™. On

the other hand, for any guided mode the current produced by Vp(m) towards the inside

of the structure (i.e.,—I,(,m) ) at low frequency is given by

_IZ(’m) =j Bp Vp(m) ,

where jB, represents the characteristic impedance of thepth mode, which is reactive
below cutoff. This relation can be written because the low-frequency field produced into
the structure is evanescent and consequently the length of the lateral waveguide sections
can be considered infinite. Therefore we can write:

H™ ~ —j Z vm . (18)

Comparing Eqgs. (17) and (18), we see that the term in brackets in the former equation
represents j Bph,, or, more specifically, its power expansion with respect to w, truncated
up to the first order. Considering the power expansion of the well-known expressions of
the characteristic impedance of the TE and TM modes, we find that:

B = (% + 5{%) (if the p*® mode is a TE mode) (19a)
I I (if the p'® mode is a TM mode) (19b)
°p

where w,, denotes the cutoff frequency of the pth mode. In conclusion, when evaluating
Eq. (15b) at the mth port, Hys can be represented in closed form by Eq. (18).

Following a similar argument, it is possible to simplify Eq. (16a). In fact, when
calculating E,, near the axis, it is possible to neglect the contribution of the modal
voltages V;(m) because, due to the cutoff properties of the waveguides, at low frequency
the ports are substantially decoupled from the central body. Therefore it is possible to
write:

-~ cn . 81'Di
Eq8~—<E;Fifi+JIownc; 2 )L, . (20)

As will become apparent below, with this approximation Eg, contributes to the cou-
pling impedances only through a non-resonant reactive term, not relevant to stability.
For this reason transforming Eq. (20) into a more rapidly converging one deserves no



192 P. ARCIONI AND G. CONCIAURO

attention. Substituting Eq. (15b) into Eq. (12a), taking into account Eqs. (11a) and (13),
we obtain the following system:

3 C(n Cl(n)

3
(Y + jB,) Z4™ +]c“’72nz Z z,g">:

1

=ew’ Z = (m=1,2,3p=12,...,P) (21)

(w? —wz)

where the quantities

zZim =vim/I, (22)

represent the transimpedances between I, and the mode voltages. Equation (21) yields
the 3 x P transimpedances, which permit us to express the variables V,,(m) as functions

of I,,. Therefore, on substitution into Eq. (15a), we are able to express the electric field
as a function of the beam current only.

5. CALCULATION OF THE LONGITUDINAL BEAM COUPLING IMPEDANCE

Substituting Eq. (15a) into Eq. (7), and taking into account the transimpedances of Eq.
(22), we have:

|D;|? n

M
Z“ = jquH +j7]Cu)3Zi _wz)

1
M
cwzzljzw @2 ——w2 Z ZPC(m Z(m (23a)

where the star denotes the conjugate and, moreover,

I

(2

Xosy = T // u, - Eg fe/* dwdydz———Z|F|2+wncZ| . (23b)

Note that Xy is a real quantity, so its contribution to the impedance is purely reactive.
Moreover, the series in Eq. (23a) were truncated, retaining only the first M terms. This
was possible due to the rapid convergence of the series: as a rule of thumb, retaining the
modes having resonant frequencies below 1.5 times the maximum frequency of interest
is sufficient for achieving good accuracy.

Let us consider the coefficients D;, which depend on the z-component of the eigen-
vectors of the first M modes. From now on, this component will be denoted by E;. It is
possible to assume that, in the beam region, the transverse variation of E; is slow enough
to permit the approximation

E; =~ (Ei)o + x(azEz)o + y(ayEi)o (24)
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where the subscript ‘o’ denotes quantities evaluated at * = y = 0. Using this approxi-
mation, and taking into account Eq. (5), it is easily shown that:

L L
/ / E.fe'"dzdydz ~ / (Ey)oe?"dz +
o JO 0
T / (82E;) o€ dz + / (8,E:)oedz . (25)
0 0

According to Eq. (7), when evaluating Z; we assume a centered beam (Z = § = 0).
Thus we have

L
Di:/ (Ei)o e’ hzdz . (26)
0

The considerations of in Section 2 regarding the classification and the general prop-
erties of the modes inside a threefold-symmetric structure hold in the case of a three-
dimensional structure as well. Thus, recalling that the only modes having (E;), # 0 are
the SE modes, we see that D; is zero except in these modes. Therefore only the SE
modes are important in the determination of Z),.

Until now the effect of wall losses has been neglected. It can be taken into account us-
ing the same approximation made in the study of forced oscillations of cavity resonators.
This approximation consists in making everywhere the following substitution:

1 1

> Wwy

—
2 _ 2 2
w; —w wi +J73%

— (27)

i

where Q); is the quality factor of the ith resonance.
In conclusion, the scheme for the calculation of Re{Z} is:

a) Determine the first M eigenvectors £;, H; and the corresponding frequencies and
@ factors.

b) Evaluate the coefficients Ci(;" ) using Eq. (14e), where the waveguide mode vectors
are assumed to be known.

Moreover, for any frequency w:

c) Evaluate the coefficients D; using Eq. (26).

d) Determine the transimpedances Z,(,m) solving the system:

(ypHBp)Z(m)H&?’ini g:i Ciy Cig Z(n) —
P n a1 W (WF A jwwi/Qi — w?) Y

M (m)
= cw2 Zi Cip Dz
— wi(w + juwi/Q; — w?)

.(m=1,2 3 p=1,2, ...,P) (28)
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e) Calculate:

|Di[?
Re{Z)} = Re {J"C”3Z 2(w? + jww;/Q; — w?) } +
M 3
1

P
D*
2 . 7 (m) 29
T Re{gzwi(wf +jwwi/Qi — w?) m;pc } =

If desired, only the SE modes can be considered in these calculations. The symmetry
of these modes permits some simplifications !! because all quantities become independent
of the index m. It is noted, however, that the numerical selection of SE modes may
overwhelm the advantage of exploiting the symmetry.

6. CALCULATION OF THE TRANSVERSE BEAM COUPLING IMPEDANCE

Introducing Eq. (15a) into Eq. (9), we obtain an expression containing the integrals

L
/ / f 85E; e’ dxdydz
g JO

From Egs. (24) and (5), we obtain

L L
/ / f 0:E;e?"*dadydr = / (0:E)o e?h*dz . (30)
o JO 0

These integrals differ from zero only for AE modes, which are the only modes having
O0.E; # 0 at the axis. Thus only these modes are important in the evaluation of Z, .
Since the electric field at the z-axis is zero for these modes according to Eq. (25), and
recalling that in this calculation we set § = 0, we have:

L L
D; = / / fEAEe=h2drdydz ~ :Y:/ (0.EAEY e Mdz = 2 d; (31a)
o JO 0

where

L
d; = / (0-ELE)ge™h2dz . (31b)
0

Since (9,E;)o differs from zero only for AE modes, the selection of these modes in the
calculation of Z; may be avoided. In fact, for all modes other than AE ones, Eq. (31b)
gives d; = 0. For this reason, the superscript AE will be dropped hereafter.

Equation (31a) implies that the unknowns Z,(,m) obtained from Eq. (21) are propor-

tional to Z. Therefore it is convenient to replace the variables Z,(,m) with these new
ones:

2™ =2z |z (32)
so that Eq. (21) becomes:
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ot 3 P M Cn)cn) o
Y, By) m - n i n) _
X RN 3 3 R L S

n
M (m)
Cip di
_ .2
T lelwlw +jwwl/Q2—w2) (

m=1, 2,3, p=1, 2’7P) (33)

Taking into account Egs. (9), (15a), (31a,b) and (32), we have:

d 2
Re{Zl} = Re {jncw Z w +]|‘U‘*‘)|2/Q1_w2)}+

M d*

3 P
2WR . ] m Y pCI2m L (34
+cw G{Z wi(w?+jwwi/Qi-w2) ; ;P ip ( )

1

Note also that, in evaluation of the real part of the transverse impedance, the contribution
of the quasi-static field does not appear, because it results into a reactive term.

In conclusion, the scheme for the calculation of Re{Z, } differs from that described
in the previous section only in steps c), d), and e). These are modified as follows:

c) Evaluate the coefficients d; using Eq. (31b).

d) Determine the quantities z™ solving Eq. (33).

e) Calculate Re{Z } using Eq. (34).

7. NUMERICAL EXPERIMENTS

The described algorithm was used to determine the beam coupling impedances of the
cylindrical structure considered in Fig. 2. In this case only the TM-fo-z resonant modes
are relevant in the calculation; more specifically, only the TMSE and TMAE modes
are important. Their frequencies, @)-factors, and fields depend on the eigenvalues x
and on the eigenfunctions i defined in Section 2, according to the expressions given
in Table 1 (where the superscript X stands for S or A). The quantity Ef,flE represents
the z component of the electric-mode vector, which is the only component involved
in the calculations. The quantity R, is the surface resistance of the conducting walls.
The eigenfunctions 1)’s are normalized as shown in the table. The same table reports the
functions hTE and hIM which represent the transverse-to-z component of the magnetic-
mode vectors for the TE and TM modes of the rectangular waveguide. In fact, only this
component is involved in Eq. (14e), since ’HX E is transverse to z. Functions hTE
and hIM are given with reference to the local coordmate & (see inset in the table). In
the calculations, eigenfunctions ¢ and eigenvalues x were obtained using an efficient
two-dimensional electromagnetic solver (PAGODA).12

The results of the first numerical experiment are reported in the plots of Figs. 8
and 9. They show the real part of the longitudinal and transverse impedances, in the
frequency band extending up to 15 GHz, which is about 4.5 times the fundamental
resonant frequency (3.35 GHz). Re{Z;} is normalized to the shunt impedance R of
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m’: = c‘\j(x"{:)2 +(qn/L)?

-1

mxn
Q): _cm L(1+8 ) * o XE)2J. IVWI aG
C,
XE

e - A ’ﬂa Xy V& cos T2
" YN g
xe A [2-80 1
!Cm = L ;xpg V\me cos

J(Vx:‘ )2 dS=1 (normalization)

H

TE _ L(2-8¢y) (2-8p,) . 1t mz
Ree = A+ ma/mp] "M a L L

™ _ ’a(2—60m) (2-8¢n) . l_'lﬂ nmz
hpy = ——_L[(mL /nP + a2 sin cosT- 0 " g;

TABLE 1  Expressions of the resonant frequencies, Q-factors and modal fields in the case of a cylindrical
cavity, as function of eigenfunctions 1’s and eigenvalues x’s defined in Section 2. The compact labelling
(subscript 7) is replaced by the extended labelling used in Section 2 (X represents S or A). The table gives
also the functions hLE and hT}  ie. the transverse-to-z component of the magnetic mode vectors for the
TE and TM modes in a rectangular waveguide.

an ‘equivalent pillbox,” i.e., a pillbox cavity with the same height L as our structure
and with its fundamental mode at the frequency of our TMSEY mode. In the same way,
Re{Z,} is normalized to the transverse impedance R, of the first deflecting mode of
the same pillbox. The values of the reference resistances can be determined analytically
and are given in the figure captions. Figs. 8a and 9a were obtained assuming matched
terminations for all the modes, i.e., admittances Y, in Eq. (13) were identified with
the characteristic admittance of the corresponding waveguide mode. For comparison,
Figs. 8b and 9b show Re{Z} and Re{Z} for the shorted structure (Y, — 00). As
anticipated by the qualitative considerations of Section 2, the only peaks surviving in the
loaded structure are those in the plot of Re{Z i }. They correspond to the fundamental
TMSE mode and to the higher-order TM modes trapped together with it. Apart
from these peaks, the frequency behavior of both impedances is flat, which confirms the
suppression of all HOMs other than the TM?E modes. Furthermore, the shunt impedance
at the accelerating frequency is only about 20% below the value of the shunt impedance
of the pillbox. Apart from the surviving peaks, the wideband impedances are typically
between —30 and —40 dB. The number of peaks in Figs. 8b and 9b helps one appreciate
the number of resonant modes occurring up to 15 GHz in the shorted structure. The total
number of resonant modes used in the calculation was indeed much higher, because all
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FIGURE 8  Real part of the longitudinal impedance, numerically evaluated for the cylindrical structure of
Fig. 2, in the case » = 30 mm, a = L = 35 mm, d = 73 mm. The impedance is normalized to R = 1745

M(, i.e., the shunt impedance of the ‘equivalent pillbox.” a) Matched loads connected to the ports. b) Shorted
ports.

the resonances up to 20 GHz were considered (58 TMSE modes and 90 TMAE modes
deriving from 16 ¥5F and from 26 ¢4 eigenfunctions, respectively). The number P
of waveguide modes considered in the calculations was 22, corresponding to the modes
which can propagate below 16 GHz.

A second experiment was performed in order to investigate the effect of a mismatch
in the absorbing terminations. In this case the loads were simulated by waveguides
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FIGURE 9 Real part of the transverse impedance, numerically evaluated for the cylindrical structure of
Fig. 2, in the case » = 30 mm, a = L = 35 mm, d = 73 mm. The impedance is normalized to R, = 47.5
KQ/mm, i.e., the transverse impedance of the first deflecting mode in the ‘equivalent pillbox.” a) Matched
loads connected to the ports. b) Shorted ports.
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FIGURE 10 Effect of a mismatch of the loads connected to the waveguides: a poorly matched termination
is simulated considering a lossy dielectric filling the waveguides. The dielectric characteristics are £, = 9 and
tan 6 = 0.1 at 3 GHz (tan § increases linearly with frequency in the simulation) and the dielectric interface
is placed 70 mm from the ports. a) Real part of the longitudinal impedance. b) Real part of the transverse
impedance.

filled with a lossy dielectric, beginning at 70 mm from the ports (see the inset in Fig.
10). With the value of permittivity given in the figure caption, the typical VSWR of
these terminations is rather high — on the order of 3 for all the propagating modes. The
resulting impedances are plotted in Figs. 10a and 10b which show that the mismatch
gives rise to a ripple, presumably harmless in most cases.
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FIGURE 11  Cross section of the cylindrical structure used in the simulations summarized in Fig. 12. The
circular central body is connected to the waveguides through longitudinal slots of width W.

In the structure considered so far the impairment of the shunt impedance of the ac-
celerating mode with respect to the pillbox depends on two factors: a) the lowering of
the ) of the accelerating mode due to the nonuniformities of the wall currents, and b)
the decrease of R/Q due to the spread of the mode field into the lateral waveguides.
Though the 20% decrease in the shunt impedance reported before seems to be acceptable
in most cases, an investigation was conducted to determine whether reducing the cou-
pling between the central body and the waveguide could increase the shunt impedance
without affecting the HOM suppression significantly. We considered inductive irises of
width W at the junction between the central body and the waveguides (see Fig. 11).
Many experiments ! were carried out with values of W/a ranging from 0.2 to 1 (the
latter corresponding to no iris). In these experiments the ratio a/r was 1. The results
are summarized in Fig. 12, which reports the shunt impedance (normalized to R)) ver-
sus W/a, together with the minimum monopole HOM damping. (For any HOM, the
damping is intended as the difference, in dB, between the peak value of Re{Z|} with
and without absorbers). All HOMs in a frequency band up to five times the fundamental
are considered, apart from trapped TM?E modes. If we assume that a 30-dB damping
of the HOMs’ resonant peaks is acceptable, an iris width W = 0.5a can be used, with
the advantage of limiting the shunt impedance reduction to only 7% with respect to the
pillbox. Note also that reducing the width to W = 0.2q, i.e., a coupling comparable to
that of conventional HOM dampers, results in very poor HOM damping — below 10 dB.
This confirms the importance of accurate coupling-region design.

The last numerical experiment concerned the damping of the residual higher order
trapped modes by offsetting the lateral waveguides, as discussed in Section 2 and shown
in Fig. 5b. The structure with the offset is no longer cylindrical, and the numerical
evaluation of the three-dimensional eigenvectors is now much more laborious. For this
reason the impedance calculation was limited to a frequency band much smaller than



HOM-FREE ACCELERATING RESONATORS 201

40 100 &
—_ 8
§ _,.-o-"‘!-'.""—'_’—-'_-ﬂ "_‘9
Y 9%5 =
=]
.a S
g 3
a 20 AN 90 s
= - — =
[}
: N :
=]
s 10 ] 85 £
or—t \ '_t
0 T 80 '3
0.0 0.2 0.4 0.6 0.8 1.0

W/a

FIGURE 12 Minimum monopole HOM damping (left scale) and reduction of the shunt impedance of the
accelerating mode (right scale) for the structure of Fig. 11, in the case a/r = 1, and for varying W/a. For any
HOM, the damping is intended as the difference in db between the peak value of Re{Z “} with and without

absorbers (trapped TquE modes are not considered). The reduction of the shunt impedance is referred to R).
(‘equivalent pillbox’).
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FIGURE 13  Real part of the longitudinal impedance of a quasi-cylindrical STMR operating at 500 MHz, in
the case of offset waveguides (Fig. 5b). The dimensions are: 7 = a = L = 200 mm, and 6 = 30 mm.

before, up to a frequency that would permit investigation of the damping of the first
higher-order trapped mode. The experiment was performed!! referring directly to a full-
scale structure operating at an accelerating frequency of about 500 MHz. The dimensions
of the structure were » = a = L = 200 mm, and an offset of 30 mm was considered.
The calculation of the eigenvectors was performed using a standard three-dimensional
electromagnetic solver (ARGUS). The resonant frequencies of the modes corresponding
to the TMPE and TMSPF modes in the structure without the offset were 527 and 919
MHz, respectively. Figure 13 shows a plot of Re{Z}/R) in the O - 1 GHz band;
note that the peak around 919 MHz is about 30 dB below the value at the accelerating
frequency, a result that compares well with the experimental results reported in Fig. 6c.

8. CONCLUSIONS

The experimental tests and the numerical simulations reported above have shown that
HOM-free accelerating structures are feasible. The basic concept underlying their design
consists in imbedding some absorbers in the structure, and in shaping it in such a way
as to confine a single high-Q) resonating mode far away from them. This mode is strong
enough in the interaction region to be used for acceleration. The decoupling between the
accelerating mode and the absorbers is achieved using waveguide sections, which operate
slightly below cutoff at the accelerating frequency and are connected to the interaction
region through large apertures. In contrast to conventional HOM dampers, the loaded
waveguides are integrated as a part of the structure from the very beginning of the design
rather than being added as a cure. This permits optimized results. Though the shunt
impedance of the accelerating mode is slightly lower than that of a conventional cavity, its
impairment seems to be an acceptable price in applications where stability requirements
are very stringent. In any case, it was shown that this impairment can be minimized by
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careful design of the coupling region between the central body and the loads. The use
of Computer-Aided Design tools is mandatory for obtaining optimized results. For this
reason an algorithm has been presented which permits calculation of the longitudinal and
transverse beam-coupling impedances. When considering three-dimensional structures
the computing time becomes very long due to the need of calculating many resonant
modes of the structure with good accuracy. The availability of three-dimensional solvers
more efficient than those available at present could make the described method easier to
use in the design of three-dimensional STMRs.
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