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The wake potentials of axi-symmetrical structures are expressed, to their leading multipole order, in terms
of the e.m.fields on the metallic boundary, with no contribution from the beam pipe. For the longitudinal
potential, the expression applies to any type of structure including re-entrant ones or with unequal in and out
beam-pipe radii. For the transverse case, however, the beam-pipe radii must be equal. These expressions
generalize the usual method of calculating the wake potentials over the cavity gap and extends its applicability
to more general structures like collimators, tapers or re-entrant cavities. It should in particular be useful for
computer calculations of the wake fields in the time domain.

1. INTRODUCTION

The beam dynamics of high-current circular and linear accelerators is dominated by the
effect of the impedances or wake potentials 1 of the metallic structures surrounding the
beam trajectory. The longitudinal and transverse wake potentials are defined by

def 1 j+oo
Wz(r, e, s) = - Q -00 dz EAr, e, z, t(z, s))

and
d f 1 j+oo

W..l(r, e, s) ~ Q -00 dz (E..l + V x B)(r, e, z, t(z, s)) (2)

where s is the distance behind a given origin zo == vt in the exciting bunch, of charge Q,
and t(z, s) == (z + s)/v. Throughout this paper, we will concentrate exclusively on the
ultra-relativistic case where v == c and ~ == 00 and on structures with circular symmetry
around the z-axis. Then, given ro == (ro,Oo == 0) the radial position of the exciting
bunch, the potentials obey the following multipole expansion 2

00

and

d
~(r, 0, s) == '" rmr[f cos(mO) -w(m)(s)

L..t ds
m=O

(3)

00

W--L(r, 0, s) == L m rm-1r[f(cos(mO) f - sin(mO) 0) w(m)(s) (4)
m=l

15
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Keeping only the leading tenns of this expansion, i.e. for particles close to the axis, and
with a convenient slight change of notations, the potentials reduce to

~(r, 0, s) == wo(s)

ro
W-L(r,O,s) == - Wl(S)

ro

(m == 0)

(m == 1)

(5)

(6)

The main consequence of Eqs.(5,6) is that, at the leading order in the multipole expansion,
the longitudinal and transverse potentials experienced by a test particle behind the bunch
does not depend on its transverse coordinates (r, B). This property is used in computer
codes solving Maxwell's equations in the time domain, like TBCI 3 or ABCI 4, to
compute the wake potentials of cavities with side tubes of radius a from the longitudinal
and azimuthal potentials evaluated at the tube radius r == a. Since the fields E z , Ee
and B r are zero oli the surface of the tube, supposed infinitely conducting, the integrals
giving W z and We in Eqs.(1,2) reduce to finite range integrals over the gap of the cavity.
This method improves the accuracy of the calculation for two reasons:

• it avoids evaluating the wake fields on or near the bunch axis where the fields Er

and Be are singular and where, therefore, the calculation of the regular components
of the fields suffers the most from numerical noise.

• as shown very clearl~ by the so-called 'field matching' techniques for solving
Maxwell's equations in simple geometries, the cavity is the cause of multiple­
scattering of the electromagnetic wave accompanying the charged particle bunch.
At any distance from the cavity, there are always scattered waves propagating
inside the beam tube and contributing to the wake potentials through the integrals
of Eqs.(1,2). Cutting these integrals to a finite range over the beam tubes, which
is mandatory in a computer calculation, is therefore an approximation unless one
integrates at r == a.

However there are cases for which this method cannot be employed, e.g. structures
with unequal side-tube radii, like tapers, or structures for which there is no clear line
of sight lying on the side tubes, like collimators or re-entrant cavities. In general, all
structures for which one cannot draw, within the vacuum or dielectric region, a straight
line at constant radius lying on both the external beam-tubes are not suitable for this
method.

In this paper, we derive expressions for the wake potentials which enables one to
extend this method to structures of arbitrary shape. The wake potentials are given as
integrals of e.m.fields over the boundary of the metallic structure such that side tubes
give no contribution· to the integrals. In fact, one can also chose, when convenient, to
integrate over the more general set of "contours" lying on the side tubes and following
partly the boundary partly a line at constant radius in the vacuum region. Such contours
are illustrated in Fig.2. The only restriction to applying these results is, in the case of
the transverse potential, that the side tubes have equal radii.

After introducing some definitions, the longitudinal potential is calculated in Section
2 and the transverse one in Section 3. In both cases, we begin by re-deriving the r­
independence of the wake potentials described by Eqs.(5,6) as an intennediate result.
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FIGURE 1 A simple cavity: notations.
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FIGURE 2 A multicell cavity with re-entrant shape. The contour ac(r) is composed of the three contours
aC l (r), aC2 (r) and aC3 (r) indicated in the figure.

2. CALCULATION OF THE LONGITUDINAL POTENTIAL (m == 0)

We consider an axi-symmetrical cavity of arbitrary shape with side tubes of radius ain

and aout as shown in Fig.l. We denote by if, z the coordinates of a point on the boundary,
and by ifmin and ifmax the minimum and maximum radius of the cavity, including the
tubes. We assume that the bunch which excites the wake fields in the cavity has velocity
v == C, total charge Q and is characterized by a longitudinal charge distribution A(s)
normalized to one, i.e.

]

+00
-00 >.(s) ds = 1 (7)

Concentrating on the longitudinal wake-fields in the mode m 0 for which the
azimuthal dependence drops out, it is convenient to decompose the electromagnetic fields
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as follows
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E == E(O) + E(r)

B == B(O) + B(r)
(8)

where (E(O), B(O)) are the e.m. fields which would be generated by the charge distribution
in a smooth pipe, given by

B(O)(r,s) == _Q- A(S)
e 21rCEor

E~O) (r, s) == c B~O) (r, s)

(9)

(10)

(11 )

the other components being zero. The wake potentials W z and W..l are entirely given by
the additional fields (E(r), B(r)), sometimes called 'radiated fields', which are solutions
of homogeneous Maxwell's equations and vanish at infinite distance z == ±oo in the
tubes.

In analogy with the definition of the longitudinal potential given by Eq.( l), we intro­
duce the two following quantities

Wz(r,Si zl,Z2) ~f - ~ 1:2

dz E~r)(r,z,t(z,s))

where Zl and Z2 are longitudinal coordinates such that the line element [(r, Zl), (r, Z2)]
lies inside of the cavity (see Fig.l), and

(12)

where Z1 (r) and Z2 (r) denote the longitudinal coordinates of the boundary at the radius
r and where the sum indicates that one eventually has to add up the contributions of N r

disconnected line elements as shown in Fig.2 for N r == 2. Notice that for small enough
r, zl(r) or z2(r) can be infinite. In fact, for r < rmin, both zl(r) and z2(r) are infinite
and it is a matter of definition to write

(13)

We now investigate the radial dependence of the generalized functions Wz and W z.

Using the fact that, for m == 0, the radiated fields reduce to (E~r), E~r), B~r)) and that, as
already mentionned, they satisfy homogeneous Maxwell's equations, it is easy to derive
the following equalities

== 8z Er (r, Z, t(z, s)) + 8t Be(r, z, t(z, s))

leading to

. ) _ 1 rZ2

d ((r) (r))( ())8rW z (r, S, Zl, Z2 - - Q lZl dz dz Er + cBo r, z, t Z,S (15)
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(22)

up to terms in 1/ ~2. Therefore, denoting by ~Zl ,Z2 the difference operator between Z2

and Zl, one can write in the limit v ~ c

8rWz (r, s; Zl, Z2) = - ~~Zl'Z2(E~r) + cB~r))(r, Z, t(z, s)) (16)

For r < rmin, this equation shows, by taking Zl == -00 and Z2 == +00 for which the
radiated fields vanish, that the longitudinal potential Wz (r, s) does not depend on r, as
expressed by Eq.(5).

Turning to W z, one gets

d - _ " [ ._ _ 1 ((r) _ d:Z2
drWzCr,s) - ~ 8rWzCr,s,zl(r),z2(r)) - Q Ez (r,z2(r),t) d,;(r)

-Eir)(r, Zl (r), t) dd; (r)) ] (17)

Using Eq.(16), this can be conveniently written as

1 2Nr

dWzCr,s) = Q LEi [(E~r) +cB~r))dr+Eir)dZ] (r,zi, t(Zi, s)) (18)
i=l

where i denotes the index of the boundary points at radius r, starting from Z == -00,

and Ei == (_I)i-l. Integrating Eq.(18) from r == 0, where Wz(r,s) == wo(s), to
r 2: sup(ain, aout) gives

Wz(r,s) -wo(s) == Ql ( [(E~r) +cB~r))dr+Eir)dZ] (19)
Jac(r)

where the contour of integration ac(r ), as illustrated in Fig.2, is in general composed
of several pieces following the boundary of the cavity. By relating, through Eq.(8), the
radiated fields to the fields (E, B) which satisfy the metallic boundary condition

E r dr + E z d:Z == 0 (20)

and the fields (E(O), B(O») given by Eqs.(9,10), this integral simplifies to

wo(s) == Wz(r, s) - QC ( Be(r, z, t(z, s)) dr + _I_In (aout ) '\(s) (21)
Jac(r) 1rEo ain

The important property of the above expression is that the parts of the contour such that
dr == 0, and in particular the side tubes, do not contribute to the integral. Eq.(21) can
also be written in terms of the radiated field B~r):

WO(s) == Wz(r,s) - QC ( B~r)(r,z,t(z,s)) dr+ _I_In (aout ) '\(s)JaC(r) 21rEo ain

Moving r to the maximum radius rmax of the cavity allows to express the wake
potential in terms of the fields Be on cavity boundary as follows

WO(s)==-QC ( Be(r,z,t(z,S))dr+_l-In(aout) '\(s) (23)
Jac 1rEo ain

where now ac denotes .the full contour of the cavity.
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3. CALCULATION OF THE TRANSVERSE POTENTIAL (m == 1)

The calculation of the transverse potential is parallel to the preceding one, although
slightly more complicated. First, some care has to be taken in the definition of the
fields (E(O), B(O)) since, unlike in the m == 0 case, the smooth-pipe solution depends on
the pipe radius. We assume that (E(O), B(O)) refers to the fields in the incoming tube
with radius ain in such a way that the radiated fields (E(r),B(r)) vanish for z ~ -00.
In the other limit z ~ +00, they tend to the difference between the outgoing and
incoming smooth-pipe solutions. Therefore, 'in both limits, their longitudinal components
E~r), B~r), as well as their tranverse combination (EY) + v x B(r)) vanish for v ~ c.

We introduce the generalized transverse wake functions

and

1 j
Z2

. ~ (r) (r)W-t(r,O,s,zl,Z2) - Q Zl dz (E-t +v x B )(r,O,z,t(z,s)) (24)

(25)

with the same notations as for Eqs.(11,12). Using the homogeneous Maxwell's equations,
one can derive, as was done in Eqs.(14,15) for the longitudinal case, the following
identities

(26)

(27)(~8r(rWe) - ~8eWr) (r,O,S;ZI, Z2) = - ~ b.z1 ,z2 Bir)(r,O,z,t(z,s))

neglecting tenns of order 1/12 as in Eq.(14). Expressing the azimuthal dependence of
the e.m. fields projected in the mode m == 1, as follows

one can write

E r == er cos () ,
B r == br sin () ,

Ee == ee sin () ,
Be == be cos () ,

E z == ez cos ()
B z == bz sin ()

(28)

Wr == W r cos ()
We == -We sin ()

The differential equations (25,26) then lead to

(1 1). _ C (r);:8r(rwe) - ;:wr (r, s, ZI, Z2) - Q b.Z1 ,z2 bz (r, z, t(z, s))

Introducing the sum and the difference of Wr and We

a == Wr + We
8 == Wr - We

(29)

(30)

(31)

(32)
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the differential system translates to

Bra-(r, S; Zl, Z2) = - ~ ~Zl,Z2 (e~r) - cb~r)) (r, z, t(z, s)) (33)

r12 Br (r2t5)(r, S; Zl, Z2) = - ~ ~Zl,Z2 (e~r) + cb~r)) (r, z, t(z, s)) (34)

For r < rmin, with ZI == -00 and Z2 == +00, these are equations for the sum and
difference of the actual radial and azimuthal wake potentials. In view of the discussion
beginning the section, their right-hand side vanish and the equations are easily solved to
yield

W r == we == WI independent of r (35)

(40)

reproducing Eq.(6).
Turning to the functions a == wr + we and "8 == wr - we derived from W -l defined

by Eq.(25), one can show, in the same way as in the longitudinal case, that

d;(j = ~ [(e~r) - cb~r))dr - (e~r) - cb~r) - e~r) - cb~r))dZ] (36)

d(r28) = ~r2 [(e~r) + cb~r))dr - (e~r) - cb~r) + e~r) + cb~r))dZ] (37)

Integrating these equations from r == 0 where a(r, s) == 2WI (s) and "8 == 0 to a radius r
larger than the tube radii, yields

a(r, s) - 2WI (s) == Q1 r [(e~r) - cb~r))df - (e~r) - cb~r) - e~r) - cb~r) )dZ] (38)
JacCr)

r2"8(r, s) == Q1 r 1'2 [(e~r) + cb~r))df - (e~r) - cb~r) + e~r) + cb~r))dZ] (39)
JacCr)

which simplifies again when Eq.(8) is used to translate it into the fields (E, B) satisfying
the boundary conditions

Ee == 0 and B r dE - B z dr == 0

and into the smooth-tube solutions (ECO), BCO)) such that

EiO) == BiO) == E~O) - cB~O) == E~O) + cB~O) == 0 (r == (0) (41)

everywhere. One therefore ends up with

2WI(S) == a(r, s) - Q1 r [ezdf - (er - cbo)dZ] (42)
JacCr)

r2"8(r, s) == Q1 r 1'2 [ezdf - (er - cbo)dZ] (43)
JacCr)

Unlike what happens in the longitudinal case, the integration over the beam tubes does
not drop out from Eq.(42) due to the presence of the term in dE. It can however be
eliminated between Eq.(42) and Eq.(43) but only when the tube have equal radii

(44)
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leading to
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(a2
- r2 )wr (r, s) + (a2 + r2 )We(r, s)

+Ql r (r2
- a2

) [ezcLr - (er - cbo)dZ]
Jac(r)

(45)

(46)

Moving r to r max , one gets the transverse potential as an integral over the contour BC
of the cavity with no contribution from th~ beam tubes

(47)

If the beam tubes have unequal radii, it is straightforward to eliminate the contribution
of either of the tubes leading to the same expressions as in Eqs.(45,46) with a replaced
by either ain or aout. For calculations where s == Iz - ct I is not too large, one should
presumably eliminate the contribution from the outgoing tube since the incoming one is
affected by the back-scattering of the incoming wave only over distances of the order of
s.

4. CONCLUSION

We have derived expressions of the longitudinal (m == 0) and transverse (m == 1)
wake potentials, for axi-symmetrical metallic structures, in terms of integrals of the
electromagnetic fields, at constant distance Iz - ctI behind the exciting bunch, which do
not involve the value of the fields in the incoming and exiting beam tubes. A family
of finite contours of integration can be used, namely the ones involving line elements
at constant but not necessarily equal radii, and elements of the metallic boundary of
the structure. In particular one can chose to integrate over the contour following the
boundary of the structure. In the case of the longitudinal potential, the integral over the
boundary involves only the magnetic field Be and is such that all boundary elements
parallel to the axis, including the beam tubes, drop out from the integral. This result
applies to structures of arbitrary shape.

These expressions should be especially useful when implemented in time-domain
wake-field computer programs since they generalize and extend the applicability of the
usual method which consists in integrating the wake fields, when possible, over the gap of
the cavity. In the case of re-entrant cavity shape, for instance, the use of the WAKCOR
post-processor of the TBCI program can be avoided by integrating directly the wake
fields along the cavity boundary.
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