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The purpose of this report is to discuss a new approach for doing magnetic optics calculations in the
presence of space charge. Our approach is based on the self-consistent calculation of the transfer map,
M, that describes the motion of individual particles. Since our approach is based on the computation of
A, it is the only method that provides for the direct calculation of aberrations in beam transport systems
with space charge. In this report, we will treat cylindrically symmetric beams in beam transport systems
consisting of drifts and solenoids. We will derive ordinary differential equations for a third order
representation of .#. We will show how this formalism can be used to predict rms beam size and emittance
growth caused by nonlinear optical effects and nonlinear space charge effects. Since our method does not
rely on “pushing particles,” it is much faster than particle simulation. (However, it is not as generally
applicable as particle simulation.) As a specific example, we will consider the focusing of a cold beam by
a solenoid. We will show that predictions of beam evolution based on our method are in good agreement
with particle simulation.

1 INTRODUCTION

The purpose of this report is to discuss a new method for doing magnetic optics
calculations in the presence of space charge. Our approach is based on the self-
consistent calculation of the transfer map, .# that describes the motion of individual
particles. To simplify the analysis, we will restrict our attention to systems with
cylindrical symmetry; however, this approach can be used to analyze other beam
transport systems. We will consider the propagation of beams with space charge in
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130 R. D. RYNE AND A. J. DRAGT

beam transport systems consisting of drifts and solenoids, subject to the following
approximations:

1) We will assume that a cylindrically symmetric beam is launched along the axis
of a perfectly aligned beam transport system.

2) We will perform a two-dimensional analysis. We will assume that the beam is
infinitely long, and we will only analyze the transverse beam dynamics.

3) We will neglect the longitudinal electric field, E,, associated with space charge.
4) We will assume that all particles have the same total energy.
5) We will neglect image charge effects.

Our analysis will include nonlinear effects through third order. We will derive
ordinary differential equations for a third-order representation of .Z We will show
how this formalism can be used to predict rms beam size and emittance growth
caused by nonlinear optical effects and nonlinear space charge effects. As a specific
example, we will consider the focusing of a cold beam by a solenoid. We will show
that predictions of beam evolution based on this method are in good agreement with
particle simulation. Since our method does not rely on “pushing particles”, it is much
faster than particle simulation. (However, it is not as generally applicable as particle
simulation.) Furthermore, it provides for the direct computation of optical quantities
such as aberration coefficients, since they are simply related to the coefficients of /.

2 STATEMENT OF THE PROBLEM

Consider a particle beam in a beam transport system consisting of drifts and
solenoids. In general, this is a three-dimensional problem. However, eventually we
will treat just the two-dimensional problem of calculating the transverse beam
dynamics as a function of the longitudinal coordinate z. We will show that the
transverse motion is governed by some Hamiltonian, H(x, p,, , p,; z). Let { denote
the collection of coordinates and momenta, { = (x, p,, , p,). Let z' denote some initial
position and let z/ denote some final position. We shall use the notation ' = {(z%)
and {f = {(z). We may regard the beam transport system as being governed by some
(generally nonlinear) mapping, .4 where .# has the property that

(=t (M

The transfer map .# depends on z' and z/, but to simplify the notation we shall
write ./ instead of /(Z', z/).

Now suppose that the particle beam is characterized by a distribution function,
f(, 2), with initial value

[,z = Q) @

and suppose that f satisfies the Vlasov equation,

d
5,/ &9=0 ©)
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where d/dz denotes the total derivative with respect to z. Then it is easy to show
that the z-dependent distribution function is given by

f@2) = foa™'0. @

(Note that the z dependence of the solution is contained in .# ') Since ./
determines the evolution of the particle beam, we will concentrate on calculating /.

3 SELF-CONSISTENT TRANSFER MAPS

Transfer map methods have been widely used in the design, optimization and
evaluation of beam transport systems without space charge. For example, the
codes TRANSPORT! and MAD? are used extensively in the United States and Europe,
respectively. These codes represent the trajectories of particles near some design
trajectory using a Taylor series,

4 4 4 o
=Y Muli+ Y Thlli+ Y U0l + 5)
b=1

1<b<c 1<b<c<d

(For a three-dimensional problem, the above summations would run from 1 to
6.) The matrix M determines the linear (or paraxial or “Gaussian™) behavior of the
system; the tensors T and U describe nonlinear effects of order 2 and 3, respectively.
Another popular approach is the use of Lie algebraic methods to represent transfer
maps. Instead of the tensors T, U, etc., this approach utilizes certain polynomials to
describe nonlinear effects. The widely used code MARYLIE 3.0 is based on Lie
algebraic methods.?

The quantities M, T, and U (and their Lie algebraic analogues) can be determined
analytically for “ideal” beamline elements: drifts, dipoles, quadrupoles (including
“hard edge” fringe fields), sextupoles and octupoles, for example. It is important to
note that these quantities can be computed numerically for non-ideal beamline
elements, such as dipoles and quadrupoles with “real” fringe fields. In other words,
there are standard tools available for the numerical computation of transfer maps of
z-dependent beamline elements.*5:67 All that is required is a knowledge of the
Hamiltonian (or, equivalently, the electromagnetic fields) for the beam transport
system in question.

So far, the discussion has been limited to beam transport systems without space
charge. Now consider beam transport systems with space charge. Our approach is
based on the fact that a beam with space charge, propagating in some beam transport
system, may be viewed as a “special” beam transport system with z-dependent fields.
It is special because the z-dependent fields are due (at least partly) to the beam
self-fields. Thus, the z-dependent fields in the problem are not known a priori. If we
could obtain an expression for the beam self-fields, we could use the standard tools
for obtaining transfer maps of z-dependent beamline elements.

The solution to our dilemma is to calculate the beam self-fields in terms of the
unknown mapping .# and the initial distribution function. Namely, the z-dependent
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charge density (which determines the self-fields in the electrostatic approximation) is
given by

p(x;2)=Q fdpf(C, z)=Q Jdpf"(//fli), (6)

where Q is the total charge of the distribution of particles. Alternatively, we can
write down a formal expression for the scalar potential directly. In two dimensions,

2 1. N i
Y(x, y;z) = 2 n)qzs Jd“C’ szkpe"‘“*""e"‘y‘y (M), ()
where 4, denotes the charge per unit length. There are two facts about this
equation worth noting:

1) This equation need not be solved exactly. Generally, the mapping 4 is
calculated through some given order. The evaluation of the above integral expression
should be consistent with that approximation. In particular, we will calculate s as
a power series in x and y. (We will arbitrarily set the constant term in the series
expansion of i equal to zero; the singularity in Eq. (7) at k = 0 presents no difficulty
in calculating the remaining terms.)

2) The evaluation of the above equation is very tedious. The reason is that the
quantity .# contains many coefficients. Thus, it is worthwhile to represent .# by a
method that utilizes the minimum number of coefficients. We shall use a Lie algebraic
representation, as will be described later.

Eq. (7) is a self-consistent formula for the scalar potential in terms of the unknown
mapping #. We shall use this formula in our expression for the Hamiltonian of the
system. Since the Hamiltonian includes the self-consistent scalar potential, we call
M a self-consistent transfer map. Finally, since .4 is a function of z, it follows that
self fields in our problem are generally z-dependent.

Now we can use the standard tools that have been developed for the numerical
computation of transfer maps corresponding to z-dependent beamline elements. To
perform such calculations, we need to compute the Hamiltonian for the beam
transport system, and we need to expand the Hamiltonian around the design orbit.
This is the subject of the next section.

4 CALCULATION OF THE HAMILTONIAN

We begin with the relativistic Hamiltonian in MKSA units for a particle of charge
q and mass m:

H = /m2c* + *[(py — g4, + (b, — 94, + (0. — 4A)*] + q¥i(x, y, 2, 1), (8)

where

B=V x A,

oA 9
E=-Vy-—. ©)
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Now we will make several transformations of this Hamiltonian: First we will
make z the independent variable; next we will scale the phase space variables to
obtain dimensionless quantities; lastly we will obtain new variables that are devia-
tions from the design trajectory. (Throughout this process, we will use the symbols
H and K to denote various Hamiltonians).

Following the usual procedure, we can make z the independent variable. First set
p, = —H and solve for p,. Then set K = —p,. The quantity K is the new Hamiltonian
with z as the independent variable:

K(x, Px, y, py; t9 pn Z) =

_\/(pt + qlp)z/c2 - m2C2 - (px - qAx)2 - (py - qu)2 - qu(X, Vs L Z)' (10)

Next, define dimensionless variables by the rules

xzx/l’ ﬁx=px/pa9

y=y/l  p,=py/r% (11)
- _ D:
t= —, =—,

lc b p’c

where | is any (scale) length and p° is any (scale) momentum. These dimensionless
variables are governed by the following Hamiltonian:

Iz()—c’ ﬁx’ .}_)’ ﬁys f; I_’t’ Z) =

i) () e a) (- ) -
= +22) —(Z) —(h-2La) —(5,-L4) - L4, a2
1/ <p' p°c P Px o D) T (12

where

A = A(lx, 1y, li/c; z), v = y(x, ly, lt/c; z). (13)
Lastly, go to the design trajectory by setting

X =X, P, =p,,
Y =3, P,=p, (14)
T:t_—fg’ Ptzﬁt_ﬁtgs

where the superscript g denotes the “given” or “design™ trajectory. We obtain a
new Hamiltonian given by

HX, P, Y, P, T P;z)=

1 - 2 me\2 2 2

ST RC Eoen E o)
pc 14 p 14

q ot? op?

—— A, ——P,+—T, (1
p°l 0z t+62 (13)
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where
l _
A=A<IX, lY,—(T+f");z>, l//=l/l<lX, lY,l(T+t9); z). (16)
c C

So far, we have been treating the full three-dimensional problem (in six-dimensional
phase space). Now we will restrict ourselves to the two-dimensional (transverse beam
dynamics) problem. To do this, we have to make certain assumptions about the
longitudinal variables. First assume that, as particles propagate along the beam
transport system, their total energy, —P,, is constant or approximately constant.
Since dP,/dz = —dH/dT, this assumption is equivalent to the statement that all the
fields (applied and self) are time-independent or weakly dependent on time. In fact,
we will assume that all particles have the design energy, so that

P, =0. 17)

Our calculation is greatly simplified if we neglect the longitudinal self-field, E,.
First, since we are using z as the independent variable, the transfer map has explicit
x- and y-dependence, while the z-dependence is contained implicitly in the coefficients
of /. 1t is straightforward (though tedious) to obtain an approximate expression for
the scalar potential in two dimensions (by solving Eq. (7) as a power series in x and
y). However, it would be difficult to solve the three-dimensional Poisson equation,
because the z-dependence of the charge density would be contained implicitly in
coeflicients of .#. Second, the presence of a longitudinal self-field would make p? and
unknown function of z, further complicating the problem. Thus, we will neglect the
longitudinal self-field, as is often done in two-dimensional treatments of space charge.
(An analysis that includes three-dimensional effects would be a worthwhile research
project.)

Now consider a particle traveling along the axis of the beam transport system.
Assuming there is no longitudinal electric field, no work can be done on the
particle, so its kinetic energy must be constant. Since its total energy is also constant,
it follows that the scalar potential on axis is a constant. We will arbitrarily set the
scalar potential on axis equal to zero. (In general, the kinetic energy of a particle
traveling along the axis and the potential on axis will vary with z as the beam size
varies; however, if the space charge potential depression is small compared with the
beam kinetic energy, then the potential on axis will be a small, z-dependent function.
Our assumption is that this small z-dependent quantity can be neglected.) Summariz-
ing, we will assume that a particle traveling along the axis has a constant kinetic
energy and a constant value of p, equal to the design value, p. Let the scale
momentum, p°, equal this design value,

P’ =y'mv’ = p;. (18)

For simplicity, we will take [ = 1 meter. Lastly, we will abuse notation and write
(x, Px»> ¥, p,) in place of (X, P,, Y, P).
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Based on the previous discussion, the Hamiltonian becomes

H(x, py, ¥, py; 2) =

2 2 2 2
S () (p-ta) ~(m-ta) L 09
pv pc p p p

where
A=Alx, y;2, Y=y y;2). (20)
Here we have used the relations
2
_ mec
@) — (-,,) =1 (21
14
and
_ 1
pijc = — i (22)

Now consider transport in a system consisting of drifts and solenoids. These
applied fields can be represented (through third order) by a vector potential of the
form shown below:

A = 1B( 0) r B’(z,0
= TS 16 > )}
A 1B( 0) r B'(z,0) (23
= —_— Z —
y =X ES 16 2V) )

4,=0,

where B(z, 0) is the longitudinal magnetic field at r = 0, and where a prime denotes
differentiation with respect to z. Suppose the potentials associated with the self fields
are given by

V= art +vart,
A, =A,=0, (24)
vo
A, ==
=5V

Note that we are neglecting the longitudinal self-magnetic field associated with
ve. (We are also neglecting the variation of v, with radius in the calculation of the
self vector potential, A,.) It follows that the Hamiltonian is given by

qv°
H(x, px, ¥, Py; 2) = —/ 1 + 55 + 54 — e W2r? + Yur?), (25)



136 R. D. RYNE AND A. J. DRAGT

where
2
s, = —p? —a%r? + 2uJ, — [f)l//oz 2,
p°v
” ” 2 2
54 = o4 r4 _ “_ er + qlpZ 2 _ ql//4 r4,
4 4 p°c p°°
and where

rr=x*+y%
p* =p: + b5,
J, = (r x p), = xp, — yp.
The quantity «(z) is proportional to the magnetic field on axis,
qB(z,0)
oz) = ———.
2p°

Expanding the Hamiltonian we obtain

H=H,+H,+ ",

where
2 2.2 2
R
2 2 pv(y”)
(pH)* o —oax 302 o? o — 4o o
H, = )2+ 22 T gy 4 2y _Zp2g
4= 8()4172(1)) g 5P

(26)

27)

(28)

(29)

(30)

1 2 2 1
(B ¢t 2 () (2 o2,
2\p°v%y pr(y?)* 2 \p°v 2\pv p°v

Next introduce the notation

Uy =

4n80

W o ¢4’

47zs0

(32)

where, as mentioned previously, 4, is the line charge density. Following tradition,

we will let K denote the generalized perveance®:

B 2q4,
e, ()

(33)
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Finally, we obtain

Hy=—+— —al,, 34
2= + 5 + 5 re—al, (34)
(P?)? ot —aa” 302 o’ o — do? o
H, = 2\2 T 2,2 T (. 2+ 2J _ - 2Jz
s=Tg T VA=) g "Ja3p
1 0 2 1 az 0)\2 2)2
+ §(7K¢2) +5K¢4+5(V)K¢2 (r%)
02K oZK
+ (V ) ¢2 r2p2 _ (X(')) ) ¢2 erz. (35)
4 2
For future reference, we shall write H, = H§ + H%, where
gy =L o Kot
2 2 2
HY = —oJ,. (36)

Note that HY governs the optical behavior of the map (in the paraxial approxima-
tion) and HX simply generates rotations about the optical axis. Finally, note that when
¢, = ¢, = 0, these results agree with the standard results for a solenoid.®"1%1!

5 OVERVIEW OF LIE ALGEBRAIC TOOLS

Consider an m-dimensional dynamical system governed by some Hamiltonian H((, t),
where { =(qy, P1>925P2>---»Yqm> Pm)- (For our two-dimensional problem, (=
(%, P+, ¥, p,), and the independent variable “t” is really the longitudinal coordinate
z.) The evolution of the system is governed by Hamilton’s equations,

dg; 0H

dt op;’

ap: = — oH 37
dt dq;

As mentioned earlier, we can associate a (generally nonlinear) mapping, .4 with
this system. Now, since ./ is related to the above equations, it cannot have just any
form; maps that are derived from Hamiltonian systems belong to a class of mappings
called symplectic mappings. Since our goal is to calculate a map for a Hamiltonian
system, it makes sense to choose a representation of ./ that is manifestly symplectic.
This is where Lie algebraic tools come into play.

We will not give a detailed exposition of Lie algebraic tools here. The application
of Lie algebraic tools to problems in accelerator physics is described in the litera-
ture.'®!3 Instead, we will provide a brief review of the results that are relevant to
this report.
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Before we can state the Lie algebraic representation of .# we need to define certain
quantities. First, let f denote any function of (g, p) and t. The Lie operator associated
with f, which we shall denote : f:, is defined by the rule

frg=101/4] (38)
where ¢ is also any function of (q, p) and ¢, and where [,] denotes the Poisson
bracket,

o 09 of 09)
=) |— = . 39
L/ 4] zi:<aqi op;  0p; 0g; )

The Lie transformation associated with f is the operator that is the exponential

of : f:,

eli=3 -

n=0 n!

(40)

As shown above, the Lie transformation is defined formally in terms of the power
series expansion of the exponential function. In the above expression, powers of : f':
are defined according to

fg9=y,
frg=1L1f4q] (41)
f2g=L1 1141

Now we are ready to define the Lie algebraic representation of .# The Lie
algebraic representation of ./Z is given by
M = e f3ip e (42)

That is, .# is represented as an infinite product of Lie transformations. The
quantities : f,: are homogeneous polynomials of degree n in q and p. (For example, in
one dimension the polynomial : f, : is of the form aq® + bgp + cp?). This representa-
tion has certain important features:

1) The quantity ¢'/2* is a linear mapping. That is, there exists a matrix M such that
e = ML, 43)

2) The polynomials f3, f,, . . . describe nonlinear effects. For example, f; is related
to second-order effects and f, is related to third-order effects.

3) The polynomials f3, f,, . . . utilize the minimum number of coefficients to specify
A to a given order.

A third order representation of ./ is given by the truncated product

M = eTre e “4)
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By expanding the exponentials associated with f; and f,, dropping terms beyond
third order (in {), we obtain

M=l L+ fy4+ G f32+:f0)] (45)
In particular, we are interested in the action of .# on each component of {:
My = €750, + eyl + T [y 4 L (46)

It is easy to show that the terms in the above Lie series are related to corresponding
terms in the usual Taylor series representation. The relationship between the two
series (for an m-dimensional system) is shown below:

2m 2m 2m
C({ = Z Mabaz + Z T;zbcCiC: + Z Uabch;)C:‘C:i + -
b=1

1<b<c 1<b<c=<d

¢ ¢ i (47)
=l yelfy v e/ fy2 +  f )+

Although, due to our expanding the exponentials in equation (44), the transforma-
tion (46) is not symplectic, it still uses fewer parameters than the conventional Taylor
series approach because we started out using a Lie algebraic representation.

A further advantage of the Lie algebraic approach is that the equations of motion
for .4 can be expressed as a simple standard set of differential equations.'* In this
case, let ./ be represented in the following form:

M =09 93 02 (48)

where, as before, each g, is a homogeneous polynomial of degree n in {. Suppose
the Hamiltonian is expanded in a power series around the design orbit:

H=H,+H;+H, . (49)

It can be shown that the linear transfer matrix, M (corresponding to e'%*') obeys
the differential equation

M’ = JSM, (50)

where S is a symmetric matrix defined in terms of the quadratic part of the
Hamiltonian,

1 2m
H2=5 Z SabCaCm (51)

a,b=1

and where the matrix elements of J are given by

Jao = [Las C]- (52)

Here a prime denotes differentiation with respect to the independent variable
(which is the longitudinal coordinate, z, in our case). Also, it can be shown that g,
and g, obey the equations

int
3>

g
g

/
3
’
4

—H' +3: f3:(—HYY), (53)
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where the interaction Hamiltonian is defined according to
H," = H,(M{). (54)

That is, H™ is obtained from H, by transforming its arguments with the matrix
M. (Note that, since M is z-dependent, H™ will also be z-dependent even though H,
may be independent of z).

To close this section, we wish to clarify our reasons for using a Lie algebraic
representation of .#. First it is worth pointing out that, though maintaining the
symplectic condition is crucial for calculating long term behavior in periodic beam
transport systems, it is not crucial to the present calculation; our results are valid
for short, one-pass systems that can be represented by a single mapping. (See the
discussion in section 10.) Besides, the transformation (46) is not symplectic anyway.
Why, then, did we use a Lie algebraic approach? We did so because the purpose of
the present calculation is to obtain a mapping, and it makes sense to use whatever
tools make this as easy as possible. As mentioned earlier, the Lie algebraic representa-
tion utilizes the minimum number of parameters to specify a map to a given order;
this greatly simplifies the calculation of the self-consistent scalar potential given in
Appendix A. Furthermore, the equations of motion for .# are given by the simple
set of ordinary differential equations shown above. This calculation could of course
have been done using a Taylor series representation, but it would have made the
calculation far more tedious.

In the next section we will derive the equations for M and g, corresponding to an
axisymmetric beam with space charge propagating through drifts and magnetic
solenoids.

6 THE EQUATIONS OF MOTION FOR .#

Since the Hamiltonian (29) contains no third-order terms, a third-order representa-
tion of .Z is given by

M = e e, (55)
Since the operators : HS :and : HY : commute with each other (that is, their Poisson

bracket is zero), the mapping .#, can be written as a product of commuting maps
of the form

My = MEMT. (56)
It follows that the matrix representation of .#4,, which we shall denote M, is given
by
M = MPOR, (57)
where

MO = , (58)

SO 6 Q
S O a8
o Q OO
S e Ne]
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where R is a rotation matrix,

cos 0 0 sin 6 0

0 cos 0 0 sin 0
R=1_sno 0 cos0 0 | (59)
0 —sin 0 0 cos 0
and where
2
0= j o(z) dz. (60)

Since we are dealing with systems having cylindrical symmetry, R will play no
role in the calculation of the scalar potential. By analogy with the results of the
previous section, it is possible to show that M satisfies the following equation:

dMm°
= JSMP°, (61)
dz
where
w*+ K¢, O 0 0
0 1 0 0
= 62
S 0 0 o>+ K¢, 0 62)
0 0 0 1
It follows that the matrix elements of M9satisfy the following differential equations,
a=c,
b =d,

¢ = —(a* + Ko,)a, 63)

d = —(o* + K¢,)b,

where a prime denotes d/dz, and with the initial condition M°(z’) = I (the identity
matrix). These equations can be expressed as two second order equations,

a’ + (2?2 + K¢,)a =0,

(64)
b” + (2* + K¢p,)b = 0.
Next, it follows from symmetry that g, is of the form
ga = €1(p?)* + e2p%(r- p) + e3p*(r X p). + eq(r-p)* + es(r-p)r x p);
+ egr?p? + e;r*(r-p) + egr?(r x p), + eg(r?)”. (65)

Using Eq. (53) (with HY" = 0), we obtain the following differential equations for
the coefficients e, through ey:

d b* 1
% =g (@ +0) =2 (b)Y + b*&)’, (66a)
de, ab?

1
—= = — (o + 8) — = ((b")* + b%>)a'b’ + abd?), (66b)
dz 2 2
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a//bZ

de; o
3 Z((B)? + b2 — , 66
2= () + b7 — = (66c)
de4 1 2 212 " N A2\2
=5 0+ @b + 8) — (ab + abé®)?}, (66d)
z
d " b
L5 _ a@b’ + abs?) — 22, (66e)
dz 4
d 2b? 21
B = @+ @YY + ), (660)
d 3 1
E1 92 a4 8) — - (@) + a2@d)@b' + abd?), (66g)
dz 2 2
de8 o ) . a//al
des _ % u 42) — 66h
iz @ T ed) = (66h)
d 4 1
de9 _ a2~ (aa” + 6) — = ((@')* + a?4>)>. (661)
dz 8 8

In the above equations, the quantities 4> and 6 are given by
8 = o + (Kb,
0 = (0")P°Kd,)* — 4K, (67)

Summarizing, we have derived equations for the 13 quantities a, b, ¢, d and e,
through ey that characterize .# through third order. Now all that remains is to
calculate the quantities ¢, and ¢,, which are themselves functions of a, b, ¢, d and
e, through e,. This is the subject of the next section.

7 CALCULATION OF THE SCALAR POTENTIAL

Consider a beam characterized by an initial distribution function of the form

1
T 2mA?

Ji[dx dyp® = 1. (69)

The z-dependent distribution function is given by

G2 = fou™"), (70)

where . is the map between z' and z/.

Q) T WTIIREpx? 4 y2), (68)

where
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Now, formally, the scalar potential is given by

1 . o ,
‘//(x, y; Z) _ )‘q Jd4c/ jdzk Petk‘(x—x )e:ky(y—.v )fo(ﬂ_ ICI). (71)

- (2m)%e,

After a very tedious calculation (performed with the help of MATHEMATICA'®), we
obtain

A
l//=4 1 (¢2r2+¢4r4+"'), (72)
&y

where

22b?
—2a’¢p, = [a® + 8A*(a®e, — 2a*b(e, + e¢) + 3ab%e, — 4b3e9)]R< 5 )

A%b?
+42*b[ —4a*e, + 5a*be, — 6a*b* (e, + eg) + Tab3e; — 8b4e9]R'< 5 )

A2b?
+425b3[ —a*e, + a’be, — a*b*(e, + eg) + abde; — b4e9]R”< > ), (73)

2%b?
—32a%¢, = 16(ae; — 4be9)R< 5 )

22b?
+ [a® + 16A%(a’e, — 3a’b(e, + eg) + 6ab*e, — 10b3e9)]R’< 3 )

+2)4b[ —8a*e, + 13a®be, — 18a*b¥(e, + eg)

A2b?
+23ab’e, — 28b4e9]R”< 5 >

22b?
+4A%b3[ —a*e, + a*be, — a*b*(e, + e¢) + ab3e, — b4e9]R"’<T>.

(74)

(The details of this calculation are given in an appendix.) In the above equations,
the quantity R(u) is a quantity that depends on the initial density and is given by

R(u) = 27 J‘ dk ke ™ “¥* f drrJ o(akr)p°(r) = r f dr rp°(r)e = @r’l4u, (75)
u

0 0 0
Note that for an initially uniform beam,

1 {1 ifr<go

) 76
0 elsewhere (76)

or -
p°(r) 3

and R(u) is given by

R(u) = — 2(1 —e—"zf'z/‘*"). (77)
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The above formulas for ¢, and ¢, depend on the quantity R(4%b?/2); for an
initially uniform beam,

2 242 2h2.
R(ZD/2) = = (1 — e ), (78)

Substitution of Egs. (73) and (74) into Eqs. (64) and (66) yields a closed set of
differential equations for a third-order representation of 4.

8 THE COMPUTER PROGRAM SOLMAP

The equations (64) for the evolution of M? and (66) for the evolution of g,, (along
with Egs. (73) and (74) for the self-consistent scalar potential) constitute a set of 13
coupled ordinary differential equations for the self-consistent transfer map. These
have been coded into a FORTRAN77 program called soLmAp. The program
computes the solenoid map with space charge through 3rd order, assuming the initial
distribution function is given by

SoQ) = 55 TR 4 32, (19)

2nA?
That is, the initial distribution function is assumed to be the product of a Gaussian
in momentum space times a function of r. Depending on the choice of p°, the user
must specify R(u) (see Eq. (75)) and its first three derivatives in statement functions.

The result of running SOLMAP is a transfer map in the form (55). (That is, SOLMAP
computes the matrix elements of M? and the 9 coefficients of the polynomial g,.)
This map can be used by a Lie algebraic beam transport code, such as MARYLIE 3.0,
to propagate particles. (We will show an example of this in the next section.)
Alternatively, the map can be converted to the form of Eq. (5) and used by other
transfer map codes, such as TRANSPORT and MAD.

We have written SOLMAP so that it can be easily incorporated as a subroutine in
MARYLIE. This makes it possible to utilize the powerful fitting and optimization
routines of MARYLIE to design magnetic optics systems in the presence of space charge.
We hope to perform this work in the future.

The next section contains a comparison of SOLMAP with particle simulation for a
simple magnetic optics system.

9 NONLINEAR EFFECTS ASSOCIATED WITH FOCUSING BY A
SOLENOID LENS

The example we will consider is based on a beam transport experiment performed
by P. Loschialpo'®. In this experiment, an electron beam is produced by a Pierce-type
gun with a shielded cathode. The particles pass through a fine mesh in the gun anode
and travel downstream where they are focused by a solenoid. The density profile of
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e beam: r(0) = 5mm
=78 ma
E =5keV

Solenoid lens
B=0->103G

Phosphor screen

Electron
gun

13.4cm 10cm

FIGURE 1 Configuration of an experiment to study nonlinear optical effects and nonlinear space charge
effects associated with the focusing of an electron beam by a solenoid.

the electron beam is measured downstream of the solenoid for several values of (peak)
magnetic field. See Figure 1. The parameters of the experiment are chosen so that
both lens aberrations and space charge effects are important. The axial magnetic
field is given approximately by
[’noe~zz/2b2
B(0, z) Lt 2 (80)
where a = 440 cm and b = 2.29 cm.

In our example the magnet center is located at z = 0. The beam is launched
13.4 cm upstream of the magnet center. The beam emitted from the gun is assumed
to be a cold, uniform beam (though our analysis can include beams with thermal
velocity distributions). The initial beam radius is 5 mm, the beam current is 78 mA,
and the beam energy is 5 keV.

In our example, a numerical distribution of particles (cylindrical shells) was
propagated through the solenoid in two ways:

1) The map .# was calculated using SOLMAP. (A cold beam is obtained from our
formulas by taking the limit as A tends to zero. To avoid numerical difficulties, we
simply ran soLMAP with A =1 x 1078) Then the map was applied to the initial
distribution of particles using MARYLIE to produce the final distribution.

2) The final distribution was produced by running a particle simulation. The

simulation is based on numerical integration of Hamilton’s equations in cylindrical
coordinates, and is discussed in an appendix.
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The results of these two procedures were compared in several ways, as discussed
below.

First we compared the beam current density as a function of r. This was done by
first calculating a quantity F(r) equal to the number of particles inside a cylinder of
radius r:

F(r,) = % ZS 1. (81)
The charge density can be obtained by numerically differentiating F(r), since
A F(r) =2n f Fo(r) dr', (82)
0
from which we obtain
p(r) = ;—:r %. (83)

Neglecting the variation of v, with radius, it follows that the longitudinal current
density is given by
I dF

Jr)=——.
") 2nr dr

(84)

We numerically differentiated F(r) using S-point Lagrange interpolation for the
derivative of a function'”. Our results are shown in Figures 2 through 5. Figure 2

I [ 1 | H [ {
(x1/4) B3 =103G
B;=88G —
NA b
£
2
(1
E
S —
20 By=73G ]
10 — Bg=0 -
. | | 1 | ! 1
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75
r (cm)

FIGURE 2 Current density profiles at z = 10 cm with B, =0, B, = 73 G, B, = 88 G, and B, =103
G. The results are based on final particle coordinates obtained using SOLMAP and MARYLIE.
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shows plots of the current density at z = 10 cm for B, =0, B, = 73 G, B, = 88 G,
and B, = 103 G. For each value of B, the density was calculated using the final
distribution from SOLMAP/MARYLIE. Note that the beam becomes quite hollow for
increasing values of B,. Next we computed the current density using the final
distribution of particles from particle simulation, and we compared the results with
the profiles obtained from soLMAP/MARYLIE. Figures 3, 4 and 5 show the results for
B, =173 G, 88 G and 103 G, respectively. (For B, = 0, the transfer map results and
the simulation results are indistinguishable; in these simulations the initial distribu-
tion is cold and uniform, so there are no nonlinear forces in the problem when B, = 0.)
It is clear that the results obtained using self-consistent transfer maps are in excellent
agreement with simulation. Also, the results are in good agreement with the
experimentally measured profiles obtained by P. Loschialpo.!® Figure 6 is a plot of
J(r) at z = 10 cm for B, = 88 G, but with the space charge forces omitted from the
calculation. Comparing with Figure 4, it is clear that space charge forces are
significant in this example.

Next we used our method to predict rms beam size and emittance growth, and we
compared our results with simulation. Using transfer map methods, it is possible to
compute the moments directly from the map, without using particles to perform rms
sums. All that is required is the transfer map and some moments of the initial
distribution function. For example, in one dimension, the expectation value of the
quantity x’pk is given by

(Iph(z) = jdx dp. f(x, p)AMx)(Mp.). (85)

25— | | | | | | 1 —

20 H

NA 15 — -
£
Q
]
E

T o H

5 |

0 | 1 | | Lk
0 0.2 0.4 0.6 0.8 10.0
r(cm)

FIGURE 3 Current density profile at z = 10 cm with By = 73 G. The solid curve was obtained using
SOLMAP and MARYLIE. The dashed curve was obtained using a particle simulation.
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FIGURE 4 Current density profile at z = 10 cm with B, = 88 G. The solid curve was obtained using
SOLMAP and MARYLIE. The dashed curve was obtained using a particle simulation.
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FIGURE 5 Current density profile at z = 10 cm with B, = 103 G. The solid curve was obtained using
SOLMAP and MARYLIE. The dashed curve was obtained using a particle simulation.
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FIGURE 6 Current density profile at z =10 cm with B, = 88 G. Space charge forces have been
neglected. The solid curve was obtained using SOLMAP and MARYLIE. The dashed curve was obtained using
a particle simulation.

By expanding .# inside the above integral, one obtains an equation for the final
moment as a power series in the initial moments. For our problem it is easy to show
that the final mean squared beam radius is related to the initial mean squared radius
(through third order) according to:

D = a*{r?) + 2a(4beg — ae){r*> + (4beg — ae,)*{r®y + -+, (86)

where a, b, e; and ey are coefficients of .#. (Note that the series contains no
terms involving moments of p because the beam particles are all assumed to
have p, = p, = 0.) Similar equations can be obtained for the quantities {r-p) =

{xp, + yp,» and (p*> = (p? + p}>:

PP = 2r?)t + 2c(ddey — ce,)r*D + (ddeg — ceq)*(réd + -+, (87)
(repd = acr?)' + [a(d4dey — ce;) + c(4beg — ae,)]{r*)’
+ (4bey — ae,)(ddeg — ce,){r®>  + ---. (88)
Lastly, these can be combined to produce a quantity &, where
g2 = (r2yp?> — (r-p))*. (89)

This is related to the mean square emittance, and it is highly sensitive to nonlinear
effects.!® Substituting the above formulas, we obtain

& = (4eg)2[(r*) o)t — (rHirH T + . (90)

Thus, in this case the coefficient e, governs the lowest-order emittance growth.
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These moments can be calculated using particle simulation by performing the
appropriate rms sums over the macroparticles, and compared with results obtained
using SOLMAP along with the above formulas. Figure 7 is a plot of the root mean
squared radius, {r?)!/2, as a function of distance using these two methods. (In this
example, B, = 103 G and the calculation is carried out to z = 16 cm.) In this case
the curves are so similar that they are nearly indistinguishable. The figure also shows
the transfer map result with the nonlinear corrections omitted. It is clear that the
nonlinear corrections are necessary in order to accurately compute the beam radius
at the waist. Plots of (p?>>¥? and (r-p) also show excellent agreement with
simulation. For example, Figure 8 is a plot of {p?»'/? as a function of z. Figure 9 is
a plot of (r?»!/? as a function of z with the space charge forces omitted. (In this
figure, (r*»/? has a minimum value of 17 um at z ~ 7 cm.) Comparing with Figure
7, it is clear that space charge plays an important role in these simulations.

Lastly, Figure 10 is a plot of ¢ as a function of z. The curves are less similar than
the curves for <r*»!/? and {(p?>'/2, but there is still good agreement between the
transfer map results and the simulation results.2°

Summarizing, our method based on self-consistent transfer maps gives results that
are in good agreement with particle simulation. However, the particle simulation
required integration of several thousand trajectories (we used 2500 macroparticles in
these examples), whereas our method required the integration of just 4 +9 = 13
equations. If we had compared our method with particle simulation at larger distances

ir?) em)

-10 -5 0 5 10 1%

z (cm)

FIGURE 7 Plots of \/{r) as a function of z with B, = 103 G. The solid curve was obtained using
SOLMAP. The dashed curve (which is hard to see because it is nearly identical to the solid curve) was
obtained using a particle simulation. The light gray curve was obtained using SOLMAP but with the
nonlinear part of the mapping omitted.
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FIGURE 8 Plots of ./{p?) as a function of z with B, = 103 G. The solid curve was obtained using
sOLMAP. The dashed curve was obtained using a particle simulation.
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FIGURE 9 Plots of \/<r*) as a function of z with B, = 103 G. Space charge forces have been neglected.
(The transfer map results and the particle simulation results are indistinguishable.)
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FIGURE 10 Plots of ¢ as function of z with B, = 103 G. The solid curve was obtained using SOLMAP.
The dashed curve was obtained using a particle simulation.

from the solenoid, we would have found progressively worse agreement. This is
because the map .# and the approximations used to obtain it become invalid under
certain circumstances. The limitations of our approach are discussed below.

10 DISCUSSION

Our approach is subject to certain limitations. This is due to the fact that our method
is a perturbative method; it is based on the analysis of trajectories near a design
trajectory through some fixed order. These limitations are not exclusive to our
approach. In fact, all the usual transfer map codes (TRANSPORT, MARYLIE, etc.) suffer
from this limitation. However, in the absence of space charge this is often of little
concern since the standard beamline elements have fields that can be accurately
described by a few terms in a power series.

In contrast, the halo of a charged particle beam has fields that are poorly described
by a power series. Thus, our approach is less applicable to the analysis of a beam
with a substantial halo, though one could still analyze the core of the beam.

Another limitation suffered by soLMAP (as well as other transfer map codes) is that
a third order representation of .# will not provide a valid description of the beam
dynamics indefinitely, even if the forces are linear and cubic. This is because a
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z-dependent low order nonlinearity will produce indefinitely high order terms in the
transfer map. Eventually, these terms cannot be neglected. Conventional transfer map
codes that are used to analyze circular machines and periodic focusing systems deal
with this problem by using tracking: the map .# for one period of the system is
applied many times to obtain the state of particles after many periods. For our
situation we cannot do this in general, because even though the external fields might
be periodic, the self-fields (particularly the nonlinear term ¢,) might not be.

By construction, our method will be most useful for studying beams that have a
density of the form

p(r, z) = a(z) + b(z)r?. (91)

Neglecting the z-dependence in calculating the scalar potential (as is customary in
two-dimensional codes), the potential of such a beam contains terms proportional
to r? and r*, as originally postulated. If Eq. (91) is valid over a large fraction of the
beam, then .# will likely provide an accurate description of the beam dynamics over
a large fraction of the beam. If Eq. (91) is only valid in the core, then .# will only
be valid in the beam core.

The major advantage of self-consistent transfer maps is that this approach provides
for the direct calculation of optical quantities such as aberration coefficients. (Most
optical quantities of interest are simply related to the coefficients of .#.) In contrast,
aberration coefficients are extremely difficult to obtain using particle simulation: To
do this, one would “extract” the aberration coefficients by examining the initial and
final conditions of particles near the beam core. If the trajectories are too near the
optic axis, then the motion will be dominated by linear behavior and the nonlinear
effects will be “lost in the noise.” If the trajectories are too far from the axis, then
nonlinear effects from several orders will affect the particle dynamics making it
difficult to extract the aberrations order-by-order. Lastly, one would require a very
large number of simulation particles to accurately calculate the self fields and
trajectories in the beam core.

Finally, our approach is orders of magnitude faster than particle simulation, since
it is based on the numerical integration of a small number of ordinary differential
equations. However, due to the restrictions mentioned above, it is not as widely
applicable as particle simulation methods.

11  CONCLUSION

We have discussed a new approach for doing magnetic optics calculations in the
presence of space charge. Our approach is based on the computation of a self-
consistent transfer map, .#. We have analyzed cylindrically symmetric beams with
space charge propagating in beam transport systems consisting of drifts and sole-
noids. We have derived ordinary differential equations for a third order representa-
tion of .#. These equations form the basis of a new computer program called SOLMAP.
We have used this program to study the focusing of an electron beam by a solenoid,
where both nonlinear solenoid fields and nonlinear space charge fields are important.
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In this example, we calculated the density profile, the mean squared radius, and the
mean squared emittance growth of the electron beam. We obtained good agreement
with numerical simulation. Since our approach is based on the calculation of a map
(rather than individual trajectories), it is much faster than particle simulation.
Furthermore, it provides for the direct computation of optical quantities such as
aberration coefficients (since they are simply related to the coefficients of .#). Finally,
because our approach is based on transfer maps, it may improve our understanding
of the transport of intense beams.
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20. The calculation of ¢ is not as accurate as {r>>'/2 and (p?)!/? because, in view of (90), we have only
computed the first term of a series expansion of ¢. Our calculation of ¢ differs from the correct value
just as the linearized (that is, one-term) calculation of {r?)!/2 differs from the correct value (see Figure
7). We have verified that this occurs in the absence of space charge also.

APPENDIX A CALCULATION OF THE SCALAR POTENTIAL
COEFFICIENTS ¢, AND ¢,

The purpose of this appendix is to give the details of the calculation of the coefficients
¢, and ¢, that are shown in Egs. (73) and (74).

Consider a beam characterized by an initial distribution function

SRy, y), A

S, pes ¥, By) = e

21 A2

where
J j dx dy p°(x, y) = 1. (A.2)

Let { denote the collection (x, p, y, p,). The z-dependent distribution function is
given by

fQ = fouy, (A.3)
where . is the transfer map between z' and z/,
=t (A4)
Let ./ be given by
M = e, (A.5)
where e'%2° has the matrix representation
a b 00
e ~ MR =| ¢ g 2 g R, (A6)
0 0 c¢c d

and where the polynomial g, is given by

ga = €,(p°)* + e,p?(r - p) + e3p%(r x p), + eq(r- p)* + es(r - p)r x p),
+ esr?p® + e;r7(r - p) + egr’(r x P). + eo(r?). (A7)

In the above expression, R is a rotation matrix and will play no role in the
calculation of the scalar potential due to cylindrical symmetry.

As stated previously, the scalar potential is given formally by the following
expression:

/1‘1
(2m)%e,

1 . " ,
l//(X, y; Z) — Jdatcljdzkpelk‘(x—x)elk_v(y—y ?f‘ﬂ(%—lcl)- (A8)
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Since .# is a symplectic mapping, its Jacobian determinant equals 1. It follows that

J &y dek ki xRN, (A9)

j"l
Vi, y; 2) = 2n)ey

Thus we need to calculate .#x' and .#y. Neglecting the rotation matrix, it follows
that

Mx = ax + bp, + [g4, ax + bp,],
(A.10)
My = ay + bp, + [g4, ay + bp,],

where [,] denotes the Poisson bracket and where we have neglected terms beyond
third order. Expanding the exponential function in Eq. (A.9), we obtain

Yx, y;z) = 2 )2 Jd4C j d*k — <_2 /12>e—<11;2+p3)/2/12p0(xf, y)eitkex+k)

X @~ ikx(@x"+bps )e"""“y TP — ik, [g4, ax’ + bp,] — ik [g4, ay’ + bp}]}.
(A.11)

First we will perform the integrations over the variables p;, and p). The expression
— ik,[g4, ax + bp,] — ik,[g4, ay + bp,] is a polynomial containing terms of the

form pypy, with m 4+ n < 3 Thus, the integrals over p, and p; are simply Gaussian

integrals. The resulting expressions will all contain a factor of 2mA2e ~#**tk)2 We

obtain

de l(k‘x+k,y)e—).2bz(k2+k2)/2

Y(x, ;2 dx' dy

X p°(x', y)e @kxthyIP (%' y), (A.12)

where P;(x, y) is a polynomial containing terms of the form x™y", with m + n < 3.
Equivalently, we can collect the terms containing x’ and y’ and write

/1 S i 2H2(k2
U(x, y; z) = (27:)‘1280 szk P pitkex +kyy) o= 4% (k\_+k_3)/2’ (A.13)
where
S= Y Cm dex dy’ e~ ialeX k) po(5! )Xy (A.19)
m+n<3

and where all the c,, are independent of x’ and y. Now define the quantities
W,., according to

Wom = dex' dy' e kX HR) po(x’ -y X"y (A.15)
Since p° has cylindrical symmetry, it follows that W, is given

Woo = 21 f dr rJ o(akr)p°(r). (A.16)
0
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Thus, W, is a function of k = \/kZ + k7 only (and not of k, and k, separately). Let

hk) = Woo. (A.17)
Then a straightforward calculation leads to the following relations:
Woo = h(k),
0
W, = i cos .
isin 6
01 = K,
sin? 6 cos? 6
W —_ h’ — h//,
20 azk a2
hl h!/
W;, = cos 0 sin 0<ﬁ—;>, (A.18)
cos® 0 sin? 0
W = — h’ _ h”,
02 g 2
- : h h icos®0
Wjo = (3i cos 0 sin? 6)<a3k2 - ﬁ) - W,
;i3 ;o W h" icos?0sinf
W, = (3i sin® 6 — 2i sin 0) pETERTS ____;3_;, i

C 3 ; n h" icosfsin?0
W, = (3i cos® 6 — 2i cos 6) Wﬁﬁ _Th ’
. . K h isin®@
Wos = (3i cos® 8 sin ())<a3k2 — a3k> -3 i
where
k. =k cos 0,
(A.19)
k, =k sin 0,

and where a prime denotes differentiation with respect to k.

Now apply the above substitutions to Eq. (A14) for S. Because of cylindrical
symmetry, the W,, combine in such a way that the resulting expression for S does
not involve cos 0 or sin 6. That is, S is a function of k only, and S is given by

a*kS(k) = a’kh + 44*a>b(4ae, — be,)k>h — A%a’b3(4ae; — be,)k’h — (ae; — 4beg)h’
+ A%a[b%e, + 2ab(e, + eq) — 4a’e, k*H
+ A*a’b*[3ae, — 2b(e, + eg)]k*H + (ae; — 4beg)kh”
+ 22ab[3be, — 2a(e, + e)]kPH" + (ae, — dbeg)k2h". (A20)
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Rewriting Eq. (A.13), we obtain

‘//(x V; Z) — j’ do dk == S(k) lk(xCOSO+ysin0)e—(lzb2k2/2)' (A21)
7 (2m)%e, k
Now we can perform the integral over 6. The resulting expression is given by
Aq S(k 2
Wy 9 =5 fdk Ik 3 e, (A2
where we have set
izbz
Also, it follows that
6 y) X
E= lﬁ —2L | dk Jo(kr)S(k)e ¥, (A.24)
"o " 2me,
6 A 2
p=—¢ N _ 4 dk kJ o(kr)S(k)e ™. (A.25)
r 6r 6r 21:

At this point, we can expand J,(kr) as a power series in r since we are only
interested in obtaining a series expansion for . We obtain

1 2
¢, = — 3 Jdk e "kS(k), (A.26)
1 2
O, = ) jdk e "k3S(k), (A.27)
where
Y= + ¢+ ) (A.28)
47t 0

and where we have dropped the constant term ¢,. It is clear that, if we treat ¢,
and ¢, as functions of u, then

1 0¢5(u)
16 ou

¢a= (A.29)

u=A2b?/2

Thus, all that is really needed is to calculate ¢,(u); we can calculate ¢, by
differentiating the resulting formula.
Considering Egs. (A.20) and (A.26), it is clear that ¢, is of the form

=) ch fdk e "KM k). (A.30)
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Let the quantities R}, be defined according to

R" = J dk e~ “*kmh)(k). (A.31)

0

Note that R, which we shall denote R(u), is given by

Rw=R)=" J dr rp°(r)e™@ri4n, (A32)
u

(0]
where we have used the relation

® 1 R
f dk kJ o(akr)e ™" = — e~ @r¥/4w, (A.33)
0 2u
By taking derivatives with respect to u, and by appropriate integrations by parts,
it is possible to show that all of the R}, can be expressed in terms of R(u) and
derivatives of R. In particular, the following relations hold:

R} =R,

RY= —R,

Ry=TR’,

RY=2uR — 1,

Rl = —2R — 2uR,, (A.34)

RL = 4R’ + 2uR",

R? = —6uR — 4R’ + 1,

R3 = 6R + 14uR’ + 4u’R’,

R3 = 24uR + 36u’R’ + 8u*R" — 2,

where a prime denotes differentiation with respect to u. Substituting (A.20) and
(A.34) into (A.26) we obtain the following for ¢,:

—2a’¢,(u) = {a*® + 8al*(a’e, — 2ab(e, + eg) + 2b%e,) + 16u(ae; — 4bey)} R(u)
+ 8{a*bA*(2a(be, — ae,) — b*(e, + eg)) + 4u*(ae, — 4be,)
+ A*au(a’e, — 4ab(e, + eg) + Sh%e,)}R'(u)
+ {a*b*15(be, — 4ae,) + 2a*b*1*u(3ae, — 2b(e, + eg))
+ 4abA*u*(3be, — 2ale, + eg)) + 8u(ae, — 4bey)} R"(u) (A.35)

Evaluating this expression with u = 1%b%/2 yields Eq. (73) for ¢,. Making use of
Eq. (A.29), we obtain Eq. (74) for ¢,.
Lastly, we note that for an initially uniform beam given by

o) 1 {1 ifr<o A36
F)=— )
p no? |0 elsewhere’ ( )



160 R. D. RYNE AND A. J. DRAGT

the quantity h(k) is given by

J,(ak
(k) = 2 229k (A.37)
ako
and R(u) is given by
R) = —— (1 — e~ @04m), (A.38)

a’c?

APPENDIX B DETAILS OF A PARTICLE SIMULATION PROGRAM

We have developed a particle simulation program to check our calculations based
on self-consistent transfer maps. The simulation is based on a Hamiltonian formula-
tion in cylindrical coordinates.

The relativistic Hamiltonian in cylindrical coordinates is given by

H = /m*c* + c*(p, — g4, + A(polr — qAg) + *(p, — qA)* + g,  (B.1)

where
p, = ymr + qA,,
o = ymr30 + qA,, (B.2)
p. = ymi + qA,,

and where a dot denotes d/dt. As in the text, we will now perform several transforma-
tions of this Hamiltonian (and we will use the symbols H and K to denote
various Hamiltonians during this process). Following the standard procedure we can
make z the independent variable. First set p, = —H and solve for p,. Then set
K = —p,. The quantity K is the new Hamiltonian with z as the independent
variable:

K= —/(p, + q)*/c? — m*c® — (p, — gA,)* — (po/r — 4Ag)* — qA,.  (B3)

Next define dimensionless variables according to the rules

F=r/l, P, = p/P’,
6= 0, Po = po/(P°D), (B.4)
t= t/(l/c), b= p/(p°c),

where [ is any scale length and p° is any scale momentum. Lastly go to the design
trajectory by setting

R=f’ Przﬁn
6=0, Py = Py, (B.5)
T=t-10, Ptzpt_p_tg7
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where ¥ and p? denote quantities on a (generally z-dependent) “given” reference
trajectory, r = 0. The Hamiltonian governing (R, P,, 0, P,, T, P,) is given by

1 2 2 2 2
el 2 GG
! p’c P p p

or? op?
_ 4, _Zp g (B.6)
p°l 0z 0z
where
A = A(IR, 0, (T + t)l/c; z), Y =yY(R, 6, (T + t9)l/c; z). (B.7)

Now suppose that all the fields are time-independent. Then the total energy, —p;,,
is a constant, as is —p,:

_oyme? qy oy gy
b= 0 0 = 0o 0
p°’c  p°c B p’c

= constant. (B.8)

We will suppose that all particles have the design energy, so that we can set
P, =0. (B.9)
It follows that

1 2 2 2 2
e N E R D R R
l p’c 2 p p p’l

(B.10)

Next, suppose that the scalar potential on axis equals zero:
Y(r=0)=y?=0. (B.11)

Then the kinetic energy also has a constant value on axis, (y* — 1)mc®. Let p° be
given by

p° = yImr’. (B.12)
This leads to the result
pl=—1/p° (B.13)

Lastly, we will choose [ =1 meter (and we will abuse notation by writing r in
place of R). It follows that

2 2 2
H=—\/1—2qo‘pa+<qf> —<P,-%A,> —<P9/r—quo> ~ 44, B.14)
pv pc 14 14 p

Now we will restrict ourselves to systems with cylindrical symmetry, and assume
that all the electromagnetic potentials are independent of 6. Also, suppose that 4, = 0.

PA F
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Then Hamilton’s equations for 6 and P, yield

P, = constant,

<P9 rA‘(,>/r2
2

6=06+ J dz = . (B.15)
[ -5
p°v° P ¢ D
Further, Hamilton’s equations for r and P, are given by
/o Pr
- 2 N2’
\/ |V <1‘/i> . (P,,/r - %A9>
pov° pc p
0A 0 2
(P o)+ ) G Vo v
r v r
P = r P pe + 1% (B16)

r 2 p° or
Jrrge G (=)
p°r° p’c p°
where a prime denote d/dz.

All that remains is to specify the potentials. Let the external vector potential be
given by

B B, "
gAg=£<‘7r—*—0r3>=ocr—%r3. (B.17)

Now consider the calculation of the self-fields in the particle simulation. Let N
denote the number of macroparticles (cylindrical shells) in the simulation, and let

1
F, = N x (the number of particles with r < r,) k=1,...,N). (B.1§)

By Gauss’ law, the radial electric field at the kth particle is given by

E(r) = —2F,, (B.19)
where 4, is the charge per unit length, and the scalar potential is given by

Yir) = — frE-(r’)dr’. (B.20)

In our particle simulation program, we calculate the scalar potential from the
electric field values at r, using the trapezoidal rule:

Y(ry) = —%E(’l)rl’

(B.21)
Y(ry) = Y(re— 1) — S[EM) + E(re- )10 — re-1) k=2,...,N
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To calculate the self vector potential, we will neglect the variation of v, with radius
and write

A, = K . (B.22)
c
Lastly, define E(r)) and y(r,) according to

Ay o~
E0) =5 EO),

(]

Ay~
Yir) =5 ), (B.23)
e,
and note that
2
(%) L= (VK (B.24)
p°c) 2ne,
where K is the generalized perveance. Putting it all together, we obtain
, P,
V= ’

/ 1= 20°VKJ + (0" F°KY)* — P} — (Pe/r —ar + 8)
P, = —(f°y)’KE (525

(Po/r —or + % r3><Pe/r2 +o— 3% r2> + 0°VKE — (") BK)ED
+ — )
/ L= 20°PKY + (°VFKI? — P} — (Ps/r —or+ %r)

where
E(rk) = F,/r, (k=1,...,N),
Y(r) = —3E0)ry, (B.26)
Ur) = Y(re—y) — AEG) + E¢i- )]0 —ri-))  (k=2,...,N).

Equations (B.25) and (B.26) are the basic equations used by our particle simulation
program. The equations of motion were integrated numerically using an 11th-order
Adams predictor-corrector algorithm that was started with a 7th-order Runge-Kutta
algorithm. (Such high order algorithms were not really necessary for this study.
However, the routines were available and known to be reliable because they had
been used previously in careful Lie algebraic numerical studies.)

Lastly, for comparing particle simulation results with our transfer map results, it
is necessary to convert between the two coordinate systems (x, p,, y, p,) and (r, P,).
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Our starting point is the relations

x =r cos 6,
y =rsin 6,
v
pe=t+d 4, (B.27)
v 14
v, q
=244
py Uo pa y

(Recall that, following our notation in the text, p, and p, are the canonical
momenta divided by the scale momentum p°.) It is clear that to compute the right
hand sides of the above expressions we need to calculate v,/v° and v,/v°. To
accomplish this, note that

, _dx dxdt X v, o0

X == == . (B.28)
dz dtdz z v, ov1°
and similarly for y". But v,/v° is given by
v, 0 0 0
= = VO — 00 — @) (B.29)
It follows that
’ Ux/vo
X' = =
SO = (0/0°) = (v,/)
(B.30)
, v,/v°
VO = @) — (0,07
Inverting these equations, we obtain
x'(v/v°)
01" = —/———,
Yl (B.31)

o fof = 20
g 14+ x2+y?

We are almost finished. From the above, it is clear that we need to compute
x" and y’ in terms of r and P,. This is easily accomplished, since
x" =171 cos 0 —rb sin 0,
. (B.32)
y =1 sin 6 + rf cos 0,
and since ' and 0" are known in terms of r and P, through Hamilton’s equations.
Lastly, to utilize Eq. (B.30) we need to calculate (v/v°). Note that, from Egs.
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(B.8), (B.9) and (B.13),
1 ym

¢ 0)2 0K~
B + ()P Ky

It follows that

/v’ =

Bl — (By°)*KY)

o _ U= EYPKIP — 1677

165

(B.33)

(B.34)

Putting it all together, we can calculate (x, p,,y, p,) in terms of (r, P,, 6, Py). In
fact, to reduce computer memory requirements our simulation only integrates the
equations for r and P,. This is all that is required to compute x* + y?, pZ + p? and
xp, + yp, for each particle using the simulation results, since these quantities are all

rotationally invariant.





