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The understanding of the strongly synchrotron frequency modulated collective betatron oscillation
signal is achieved by both an analytical result and computer simulations. Those theoretical results
agree well with the measurement data. One of the applications is the measurement of the value of the
chromaticity times energy spread.

1. INTRODUCTION

It is observed in many accelerators and storage rings that after a horizontal kicker
is fired to excite a single-bunch beam, the envelope of the betatron oscillation
from a horizontal pickup is strongly modulated by the synchrotron frequency; see
[Fig. l(a), (b)]. This can be understood qualitatively as being due to the
combined effects of the synchrotron motion and the machine chromaticity. 1

The phenomenon of decoherence and later recoherence of collective oscilla­
tions also occurs in plasma waves,2 where it is called an echo. If we apply an
external disturbance to the plasma, the macroscopic field produced will decay
through Landau damping (decoherence), but the disturbance in the microscopic
motions remains. If we apply a second disturbance, the microscopic motions may
later recohere, and a macroscopic field (the echo) may reappear in t4e plasma
many Landau-damping periods after the application· of the second disturbance. In
the case of synchrobetatron oscillations in an accelerator, the phase adjustments
that cause recoherence are due not to a second external disturbance, but to the
effects of synchrotron oscillations on the betatron frequencies.

We study this phenomenon by pulsing an injection kicker magnet to a 400-MeV
single-bunch stored beam in Aladdin, which is a I-GeV electron storage ring
serving as a light source. After the kicker pulse dies out, the beam will execute a
coherent free betatron oscillation. A beam position monitor electrode which can
sense the average position of the bunch is used to pick up the beam signal at each
turn. After the detailed study of the phenomenon, we will find that the value of
the product of the chromaticity and the energy spread can be measured from
these signals. This provides a new method for the measurement of the
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(3)

chromaticity or the energy spread, as soon as we get one of the two values by
traditional methods.3

,4

2. THEORY

To study the theory of this phenomenon, we assume that every electron executes
a free betatron oscillation with tune Vi. Due to the original synchrotron
oscillation, each electron has an energy difference ~Ei' with respect to the
synchronous electron. If the horizontal chromaticity; is not zero, then electrons
with different energies will execute free betatron oscillations with different Vi:

(~P)i (~P)i
Vi = Vo +;-p = Vo +;-p cos (Vswt + 1/Ji), (1)

where P is the momentum of the synchronous electron, (~P)i is the momentum
oscillation amplitude of the electron i, Vs is the synchrotron oscillation tune, w is
the angular revolution frequency, and 1/Ji is the phase of the momentum
oscillation of the electron i.

After some number of betatron oscillation periods, the signal from the pickup
becomes smaller because electrons are no longer in phase and the displacement of
the center of charge, D, becomes smaller:

D(t) =~~ A cos ([ v;(t')w dt' + 4>), (2)

where N is the total number of electrons. Notice here that the initial phase 4> is
the same for all electrons since they are given the same transverse impulse at the
same time.

After one-half of a synchrotron oscillation period, the betatron oscillations
appear very incoherent. But, if nonlinear effects are negligible, after one
synchrotron period all the electrons will be in phase again and the displacement
of the center of charge will be almost the same as just after the kicker was fired
(except for a very small damping).

To show this, we substitute Eq. (1) into Eq. (2) and expand it. We get:

- A ~{ [;(~P)i ]D(t) =N ~ cos (vowt + 4» cos --(sin (vswt + 1/Ji) - sin 1/Ji)
1=1 vsP

. ( ~) . [;(~P)i(. ( ). )]}- sIn vowt + 'Y sIn ---;;p- sIn vswt + 1/Ji - sIn 1/Ji ·

In an electron storage ring, due to the quantum excitation effect, (~P)i is
Gaussian-distributed with mean value 0, and 1/Ji is independently uniformly
distributed between -1r and 1r. Because the sine function is an odd function, we
can drop the last term in the above equation. It then becomes:

- A ~{ [;(~P)i ]}D(t) =- L.J cos (vowt + 4» cos --(sin (vswt + 1/Ji) - sin 1/Ji)
N i=1 vsP

=A cos (vowt + 4»~(t), (4)
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Fig. l(b)

FIGURE 1 The measurement result for the case of non-zero chromaticity: (a) turn-by-turn signal;
(b) the FFf of (a).
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1 ~ [1;(~P)i. . ]lC(t) = - L.J cos p (sin (vswt + VJi) - sin VJi)
N i=1 Vs

(5)

is the "envelope function", which is a slow modulation of the betatron oscillation
A cos (vowt + 4J).

Now we look at Eq. (5); whenever vswt = 2nn, 'iE reaches its maximum value,
and whenever vswt = (2n + 1)n, lC reaches its minimum value. This is exactly the
reason for the synchrotron frequency modulation we see in Fig. 1. The values of
'iEmax and 'iEmin are

1 ~ [1;(~P)i. ]'iEmax = -N~ cos --p- (sIn (2nn + VJi) - sin VJi) = 1
1=1 Vs

1 ~ [1;(~P)i. . ]
~min = N L,., cos --(sin «2n + 1)n + VJi) - sin VJi)

i=1 vsP

1 N [1;(~P)i . ]
=N L cos --(-2 sin VJi) ·

i=1 vsP

By replacing summation with integration and (~P)i/P with (~E)i/E, we get:

1 fn foo (1; a€ ) 1 2/2'iEmin =-2 dVJ dxcos -2--xsinVJ ... f;Ce- x

n -n -00 Vs E v2n

(6)

(7)

(8)

(9)=F(1 a€).
Vs E

From the above discussion we can also see the disappearance of the
decoherence phenomenon when the chromaticity is set to zero. That is the case in
Fig. 2. The universal function F is only dependent on the value of (1;/vs ) (a€ /E)
and the distribution of the charged particles. Therefore if we are dealing with a
proton beam, we should replace the Gaussian distribution in Eq. (8) by the
parabolic distribution usually assumed for a proton beam. Fig. 5 is a plot of the
universal function F for the electron beam case.

The ratio of Dmax and Dmio is:

where

and

Dmin A cos (vowtmin + 4J) 'iEmin

Dmax = A cos (vowtmax + 4J) lCmax

= cos (",owtmin + 4J) F(1 a€)
cos (vowtmax + ep) Vs E '

(2n + 1)n
tmin=----

VsW

(10)

If we look at only the envelope of the oscillation signal, we can drop the fast
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FIGURE 2 The measurement result for the case of zero chromaticity: (a) turn-by-turn signal; (b)

the FFT of (a).
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betatron oscillation part. Therefore we get

D mio (E a€)
-;:r-- = F -- .
Dmax Vs E

(11)

In the above equation Dmeans we only look at the envelope of the oscillation
signal. In this case, we can measure the energy spread, a€, by another method3

first, and by measuring the value of D mio/ D max we can get the value of
chromaticity or vice versa. One remark before ending this section is that if there
exists some non-negligible tune spread due to nonlinear fields, then after the
decoherence the echo amplitude will be reduced and will affect the accuracy of
D mio/ D max . This can be easily checked by observing that the second maximum
oscillation amplitude is as large as the first.

3. SIMULATION RESULT

Figure 3 and Fig. 4 are the results of computer simulations using Eq. (1) and Eq.
(2) and the fast Fourier analysis spectrum of the results with both the cases of
; = 0 and; =1= O. In those simulations (~P)i/P is Gaussian distributed with mean
value 0 and standard deviation a€/E, and 1/Ji is uniformly distributed between -Jr

and Jr. As we described in the previous section, the Gaussian distribution is only
valid for the high-energy electron case and is due to the quantum excitation
effect.

In Table I, we compare {;(a€/E)}theory, which we got by measuring Dmio/Dmax

from the simulation result, with the product value of ; and aE / E (which we put
into the simulation) for several different values of chromaticity and energy
spread. The last column is the percentage error which is calculated as

{; a€} _ (;) x (a€)
E theory E

(;) X (~)

In the above example, since D mio/ D max is measured from the simulation result,
the accuracy can be very high. Therefore, the major error is due to the fact that
we only use a finite number of particles to simulate the Gaussian distribution. For
the results in Table I, we used 10,000 particles in the simulation. If we use, for
example, 5000 particles, the 1.0% error in the third row will go up to 3.9%. In a
real measurement using the proposed method, the major error will be due to the
inaccuracy of the measurement of D mio/ D max . This has been discussed in a paper
reporting measurements of energy spread by the proposed method. 5 In that paper
the authors compare the energy spread measured by the bunch length measure­
ment method and the proposed method. Since the beam current in that
measurement was well below the microwave instability, the energy spread should
be a constant for different chromaticities and for different currents. The authors
compare the constancy of the energy spread for different current and different
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FIGURE 3 The simulation result for the case of zero chromaticity: (a) turn-by-turn signal; (b) the
FFf of (a).
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FIGURE 4 The simulation result for the case of non-zero chromaticity: (a) turn-by-turn signal; (b)
the FFf of (a).
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TABLE I

Comparison with Simulation

aE x 10-4
~ m(i) x 10-4 Drnio {SO<'} X 10-4 % error

E Drnax E theory

9.0 21.60 0.263 21.86 1.2
2.4 6.0 14.40 0.442 14.72 2.2

3.0 7.20 0.764 7.27 1.0

9.0 64.80 0.083 65.60 1.2
7.2 6.0 43.20 0.129 42.44 -1.8

3.0 21.60 0.274 21.0 -2.5

chromaticities. The result from the proposed method is about a factor of three
better than that from the bunch length measurement method.

4. CONCLUSION

After analyzing the decoherence and the recoherence of the coherent transverse
betatron oscillation, we have concluded with a method for the measurement of
;(aE/E). The advantages of this method are:

1. It is machine-independent. Even for a proton machine, we need only change
the particle distribution function in Eq. (8) to the parabolic distribution
usually assumed.
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FIGURE 5 The universal function F as function of ;aE/vsE.
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2. It is current-independent. The result depends on Dmio/ Dmax in which current
cancels out.

3. It is independent of the kicker strength, provided we do not kick so hard as to
get into the nonlinear region.

4. It can be used even at very small currents, in which case the bunch length
measurement method for measuring energy spread is difficult.

However, the disadvantage of this method is that the measured value is the
product of two unknowns. If we want to get one of the unknowns by this method,
the result will depend on the accuracy of the other value which must be obtained
by another method. The linearity of the signal pickup system is important. It is
also clear from Fig. 5 that, for (;aE/vsE) > 2.0, a small measurement error in
Dmio/ Dmax will produce a large error in ;aE/ vsE.
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