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STABLE SOLITARY PROPAGATION OF OPTICAL BEAMS

T. KURKI-SUONIO, T. TAJIMA, and P.J. MORRISON
Department of Physics and Institute for Fusion Studies, The University
of Texas at Austin, Austin, Texas 78712

Abstract The behavior of a short laser pulse with periodically peaked
tranlverse intensity profile is important for the study of laser acceler
ation of particles. For a specific relation between the amplitudes and
the separation of the peaks, this profile should remain undistorted while
propagating in plasma. Carrying out numerical particle simulation runs
in which a deviation from this relation is present, we have observed the
system to exhibit a kind of bistability.

INTRODUCTION

Motivated by the need of laser beam transport with minimal loss in intensity

over considerable distances, for such new concepts as laser-plasma particle

accelerators and laser ignited fusion, the asymptotic form of an optical beam

travelling in a plasma is of great interest. In the case of a short intense laser

pulse, when the ions can be taken to be immobile and the dominant forces on

the electrons are the laser ponderomotive force and the electrostatic force,

Kurki-Suonio, Morrison, and Tajimal found that the asymptotic solutions

come in two kinds: one kind has a solitary-type transverse profile, and

the other has a periodically peaked profile. Also an analytic solution for

the solitary-type profile was obtained and tested with a recently developed

particle simulation code2 appropriate for transport of optical beams in plas

mas. No further analysis of the multi-peaked profile was carried out. Here

we present some preliminary numerical results on the multi-peaked profiles

using the above mentioned particle simulation code.

ASYMPTOTIC SOLUTIONS

Expressing the electromagnetic fields in terms of the potentials, the follow

ing wave equation has been derived. l
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where 1/; and a are real normalized phase and amplitude functions respec

tively, ko and Wo are the laser wavenumber and frequency respectively, and

~c = c/w'P' The quantity Ne is the electron density including the pondero

motive perturbation,

_ one 2 .[ 1 (J 8 . 82
] ~Ne = 1+ - =1+ ~c - ~ r 'ii"'""' + ';"2 V 1+ aM •
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We look for an asymptotic intensity profile, independent of z, for the laser

beam. Equation (1) is separable under the following ansatz:

a(r, z) =a(r) ,

1/;(r, z) = fez) +g(r)

where we have allowed for phase modulation in z.

If ~e further assume a slab approximation (r --. z) we obtain an eqU8r

tion that was analyzed in detail in Ref. 1. There it was concluded that

the bound physical solutions come in two kinds: one is a solitary solution,

and the other is a multi-beamlet type. An exact analytical solution was

obtained for the solitary solution, and the asymptotic nature of this solu

tion was confirmed by a numerical particle simulation. Multi-peaked profiles

were analyzed by exploiting the analogy of a particle in a classical potential.

The energy-like integral is given by

e=~ g(a) (~:) 2 +V(a) , (2)

where g(a) = 1;a2 is the metric ofthe system, and V(a) = !~-ir~
t Ct a2 is the potential. An approximate form of a multi-peaked profile can

be obtained by integrating Eq. (2) with respect to the amplitude a in the

neighborhood of the minimum of the potential yea):

-\. = 1~3 ..;e ~aV(a) . (3)

Here al and a2 correspond to the same total energy, e = -ir VI + al 
! Ct a1, i =1, 2. The solitary profile has E = Jt thus fixing at at the ori

gin. Equation (3) gives an approximate wavelength A, between the peaks

in the profile corresponding to the specific amplitudes al and a2 (see Fig. 1).
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x
FIGURE 1: A periodically peaked amplitude profile

DYNAMICS OF A PERIODICALLY-PEAKED AMPLITUDE PROFILE

The code used is a time-averaged particle simulation code developed recently

for modeling transport of optical beams in plasmas.2 It uses periodic bound

ary conditions, the width of the simulation box is chosen to be 25.6 ~c, and

there are 100 electrons per grid cell. The number of grid points for the simu

lations discussed below is 256 and the time step was chosen at cIt = 0.1 w;e1 .

We ran several computed simulation runs with various parameter values

for the multi-peaked amplitude profile. Since the exact form of the multi

peaked solution is not known, none of the runs corresponded to the exact

solution for the asymptotic equation, and the profiles were not expected to

remain undistorted. The locations of the peaks and troughs of the profile

were seen to alternate so that for half of the time the peak would be located

at the point where the trough was originally, and vice versa. Furthermore,

the phase shift Q was observed to exhibit similar behavior but with a 1
phase shift. In Fig. 2 this behavior of the field quantities is illustrated for a
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run with ~ .. = 5.12 ~c, al = 0.02, a2 = 0.05.
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FIGURE 2: The flip-flopping of the states observed for field quan
tities. Zero corresponds to the original location of a peak, and 1r

corresponds to the switched location

To gain insight on the observed process - an-d to make sure that what

was seen was not a numerical artifact - we studied the relevant field equa

tions at very early times when the process can be taken to be linear. Rewrit

ing Eq. (1) in terms of I = a2 and linearizing around an initial state given

by 1 = Io(x), 1/J =0, we get

81/Jl 1 { 1 (810 ) 2 1 ( 1 1) 8
2
10 }

8z = 2ko 416 7h -"2 10 - 1 + "2 10 8z2 I (4)

where we have assumed 11 <: 10 < 1, and we have neglected all the terms

involving 11 compared to terms containing 10 only on the right-hand side.
2

Also, the dispersion relation w5 = J:+io + c2 kg was used. According to

Eq. (4) the phase shift tP should be driven by the gradients of the initial

amplitude profile. In the simulation code the initial profile is given as

ao(x) =Q - pcos(k.. x) , (5)

where a =! (al +a2) and P=! (a2 - al). Therefore, at the locations where

the amplitude peaks (cos(k.. x) =-1), the phase shift should start according

to

81/Jl 1 k~ P
--~---8z 2ko a2 •

(6)
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Accordingly, at the trough locations (cos(k. z) = +1), the phase shift should

be given by

81/Jl 1 k~ 13
8z ~ -2ko~.

We ran a few cases varying the separation parameter k. = i; for the

amplitude profile but keeping the amplitude values fixed at at = 0.02 and

a2 = 0.05. The simulation results together with the theoretical predictions

are summarized in Fig. 3.

-~ !It-

O.lft I 0.10

(a) 0.06 I (b) 0.06

1 I I
0.02 0.02

S.I 6A 8.S )../).c
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FIGURE 3: Simulation Results. The observed growth rate of the
phase shift (dot) together with the theoretical value (cross). (a) At
the location of a trough, and (b) at the location of a peak of the
initial amplitude profile.

Figure 3(a) shows the behavior of the phase shift at the minimum ampli

tude location, and Fig. 3(b) shows corresponding result for the maximum

amplitude location. The scaling in the simulation results is observed to fol

low that of the theory, and even the numerical values are surprisingly close

considering the crudeness of the model.

Phenomenologically, what is taking place here seems to be the follow

ing: The optical beam has initially a flat phase front and a multi-humped
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amplitude profile as indicated in Fig. 4.
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FIGURE 4: The interplay of the amplitude and phase. A multi
humped amplitude profile distorts an originally flat phase front. The
curved phase front acts back on the amplitude causing periodical
structure of self-focusing and defocusing regions.

The spatial gradients of the amplitude profile drive a deformation of the

phase front in such a way that the phase front curvature will be reminiscent

of the amplitude profile, i.e., a maximum on the phase front will form where

the amplitude peaks etc. (see Fig. 4(b». The curvature of the phase front

will ,now drive the dynamics of the amplitude profile (as indicated by the

arrows in Fig. 4(b» so that the profile flattens out and eventually new peaks

are formed at the locations of the former minima. The new amplitude peaks

act back on the phase, and the cycle continues. The system thus flip-flops

between two states exhibiting a kind of bistability or breathing.

As mentioned, these results are very preliminary and simplistic. The

flip-flop behavior between two states that the amplitude exhibits could be

of enormous importance to optical switching: the bistability could lead to

an optical analog of an electronic transistor. Therefore, this phenomenon

deserves a careful and detailed theoretical analysis.

One of the authors (T.T.) would like to thank Prof. T. Nishikawa for

helpful discussions. The work was supported by the U.S. Department of

Energy and HARC.
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