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Abstract A new mechanism is presented for high­
energy electron acceleration by an electromagnetic
(EM) wave with a static magnetic(B) field. Numerical
analyses and simulations show that this mechanism
works well for high-energy-electron acceleration.

INTRODUCTION

A number of mechanisms have been proposed for high-energy

particle acceleration1 - 3 • In this paper we present a new

mechanism for a high-energy electron acceleration by an EM

wave. An EM wave traveling across a static magnetic field

accelerates high-energy electrons. The magnitude of the

static magnetic field is surprisingly small compared with

the amplitude of the EM wave. The optimal magnitude of

this static magnetic field is also discussed. In

addition, a pulse EM wave whose profile is Gaussian, is

also disscussed for a realistic acceleration.

ACCELERATION MECHANISM

Figure 1 presents this mechanism for high-energy electron

acceleration by an EM wave with a static magnetic field.

A plane EM wave propagates at the speed of light in the +x

direction. The magnetic component of the wave is in the
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x-z plane and the electric one is in the x-y plane.

y

FIGURE 1 A mechanism of high-energy electron

acceleration by a plane EM wave with a

weak static magnetic field in free space.

In the acceleration region indicated in

the figure, electrons can be accelerated

in -y direction by an electric component.

If the system has no static magnetic field, an

oscillating electron motion may be expected and the

electron cannot absorb the EM-wave energy. This comes

from the symmetry of the EM wave in space. Our idea is to

remove this symmetry by applying a static magnetic field

Bapp . The electron equation of motion and the energy

equation are as follows:

dPx/dt=-evy(Bz+Bapp)/c,

dPy/dt=Fy=-e[(1-vx/c)Bz-vxBapp/c]

d(mC 2Y)/dt=-eEy vy

( 1 )

(2 )

(3 )

Here Ey=Bz=Asin[k(x-ct)] and A is the amplitude of the EM

wave. The speed of vy in Eq. (3) is determined by Eq.

(2). The force in the y direction is proportional to the

factor of (1-vx/c)Bz-vx/cBapp. We can choose an

estimation value of Bapp so that in the region of n<k(x­

ct)<O this factor becomes quite small, that is,



ELECTRON ACCELERATION BY AN EM WAVE [1673]1231

and the electron trajectory is not influenced

significantly, although Bz changes in the above sin

function. In the remaining half-wave of 2 n (k(x-ct)(TI,

that is, the acceleration phase, the force Fy enhanced to

be -e[(1-vx/c)IBzl+vxIBappl /c] and the electron is

accelerated in the -y direction. In addition, the

electron feels the force of -evy(Bz+Bapp)/c= +e

IVy(Bz+Bapp)l/c in the +x direction, so the relative

velocity between the EM wave and the electron becomes

small in the acceleration phase. Thus the electron stays

longer in the acceleration phase. Consequently the

electron can be accelerated efficiently by the EM wave.

NUMERICAL ANALYSES

First, a single particle analysis is performed in the

fixed fields in order to demonstrate this mechanism. In

this case, the linearly polarized EM wave is infinitely

continuous in the x direction. Figure 2 shows electron

energy versus the x coordinate. In this case, the initial

electron velocity is 0.95c in the x direction and the

electron has no vy initially. In this example, the

amplitude of the EM wave is 0.1xEO' EO=1.02x10 7 /L volt/cm,

L is the wavelength in cm, the space x coordinate is

normalized by L/20 and -Bapp /A=0.018 which is the optimal

value of Bapp for this specified parameter set. The

numerical integral of the relativistic equation of motion

shows that the averaged Vx becomes about 0.98c in the

acceleration phase in this case. By using this value of

Vx and Eq. (4), we can estimate that Bapp is about -0.02A,

which corresponds well to the optimal value employed in

this numerical integral.

We also perform the 1 .5-dimensional(x,vx and vy )

particle-in-cell(PIC) simulation1 ,2. The relativistic

equation of motion and the Maxwell equations are solved in

the program self-consistently. In the simulation, the

model employed is nearly the same as that used in the
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above analysis, however there is a difference in the

finitude of the EM wave in the x space. At the start of

t=O, the incoming EM wave exists infinitely only when x<O.

The EM wave then propagates in the +x region and catches

up with electrons traveling with the velocity of

vx(t=0)=+0.95c. The wavelength 1 covers 20 space meshes.

The x coordinate is normalized by 1/20. The total mesh

number is 1024. The initial number density of the

electron beam is nO=2.18x108 /12 cm-3 . The electrons are

distributed uniformly 0<x<20 and follow the Maxwell

distribution with the temperature of 1.0keV at t=O. The

optimal Bapp is slightly different from the value employed

in the above analysis because of the finitude of the EM

wave, and -0.025xA in this case. As the boundary

condition, the perfect conductors are set at x=O and 1024.
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FIGURE 2 Electron energy versus x. After passing

through one wavelength of an EM wave, the

electron absorbs the wave energy.

Figure 3 represents the relativistic factor versus

the real space x. Figure 3 clearly shows the acceleration

and scattering of electrons in our system. Some of the

electrons absorb energy up to 6.82xmc 2 . This maximum

energy is less than that obtained in the former

analysis(see Fig.2). This difference comes from the

finitude of the EM wave.
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FIGURE 3 Particle simulation results for a

high-energy electron acceleration by an EM

wave with a weak static field(Bapp )'

shows the relativistic factor versus x.

ELECTRON ACCELERATION BY GAUSSIAN PULSE

In order to apply this mechanism to a realistic

acceleration of electron, 1 .5-dimensional numerical

single-particle analyses are performed for the electron

acceleration by the Gaussian pulse as shown in Fig. 4(a).

The Gaussian pulse employed is

Figure 4(b) presents the relativistic factor versus wave

coordinate. This result shows that our mechanism is

applicable for a realistic acceleration. In this example

M=L/2, A=1 .64x106/L volt/em, L is the wavelength in em, x

coordinate is normalized by L/32. Figure 4(b) shows that

electron can be accelerated well by a realistic Gaussian

pulse.
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FIGURE 4 (a) Gaussian pulse, (b) The relativistic

fuctor versus x in the wave coordinate.

Vx=0.9454C & Vy =0.2939C at time=O.

CONCLUSIONS

In this paper, we proposed a new mechanism for high-energy

electron acceleration by an EM wave traveling across a

weak static magnetic field, and demonstrated its viability

and effectiveness by numerical analyses and particle

simulations.
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