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Abstract The Application of plasmas to high-energy accelerators has become an
exciting' new area of plasma and accelerator research. Plasmas can support
ultrahigh electric fields without breaking down and so offer the potential to
accelerate particles in a compact device which is meters rather than kilometers
long. Besides providing high-gradient acceleration, new roles for plasmas are
emerging that are likely to impact accelerator technology in the near future. These
include concepts for providing ultra-strong focusing and short scale length bunch
ing of panicle beams.

INTRODUCfION

In the decade since T. Tajima and J. M. Dawson first proposed using laser-driven plasma

waves to accelerate particles1, substantial progress has been made on this and other plasma

accelerator schemes. Equally as interesting as this plasma accelerator research are the spinoff

applications for plasmas in accelerators that it is spawning. While plasma accelerators retain

their long-term appeal of providing ultra-high gradient acceleration, new roles for plasmas in

accelerators are emerging that are likely to impact accelerators much sooner. These include

the use of the ultra-high strength fields available in plasmas for focusing or for longitudinally

bunching particle beams. Plasmas have also been proposed as a means of reducing beam

strahlung2 and as a material for high-current photocathodes. Thus, possible roles for plasmas

span the stages of an accelerator from the source to the interaction point. In this paper we

review the progress on plasma accelerators and on some of the new roles that plasmas may

soon play.

PLASMA ACCELERATORS3

What makes plasmas attractive for accelerating particles are the large longitudinal electric

fields (E 1/ k) they can support. By accelerator standards, these fields are tremendous-103 to

104 times those in existing linacs. A simple argument based on Gauss' law gives the order of

magnitude of the plasma fields: EMAX :::: me Olp/ e :: ~~ [cm-3] V / em. Thus, for plasma

densities of order 1016 _1018 cm-3, accelerating fields of order 10-100 GV/m are possible. The

advent of drivers capable of exciting fields near the EMAX value has recently prompted a more
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careful examination of the maximum field obtainable in a plasma.5 Their results indicate that

waves can reach amplitudes typically a few times the value given above (before trapping of the

background plasma leads to wave collapse).

The Beat Wave Accelerator

The original beat wave accelerator conceptI is still the most vigorously pursued plasma

accelerator scheme in the world today. Experiments are ongoing or recently completed in the

U.S., Japan, U.K., Italy, and France. Theoretical and numerical models6-8 now include the

effects of plasma drifts, harmonics, pump rise time, damping, plasma inhomogeneities and

self-focusing.

laser
f-- A--{

Briefly, the beat wave scheme employs two co-propagating lasers of frequencies roo

and ro1 such that their beat frequency (roo-COl) is rope The ponderomotive force (or radiation

pressure) associated with the laser envelope then resonantly excites a plasma wave of phase

. ro roo - rol Am
velOCIty k = ko-k

1
= Ak ::: vg, where vg is the group velocity of laser light in plasma

[vg == c( 1 - roi I ro; )YJ.].

---- Ap -----
FIGURE 1. Beat wave excitation.

The most recent beat wave experiments have demonstrated wave accelerating fields of

order GeV1m over a centimeter length9 at UCLA and 300 MeV1m at RAL/Imperial College. 10

Both experiments showed evidence of plasma instabilities predicted to compete with the beat

wave process for weak laser pumps (laser amplitudes eEo/ mrooc were each less than .03 in

these experiments). Experiments are now proceeding toward the demonstration of controlled

acceleration of injected particles in the beat-driven plasma waves.

sideband

ioniser
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The Laser Wakefield Accelerator

One of the exciting developments in the plasma accelerator field this year is the development

(at LLNL and Osaka) of laser technology capable of generating large amplitude plasma wakes

with a single short laser pulse.4 This idea of a laser wakefield accelerator1,13.14 is similar to the

beat excitation in Fig. 1 but with a single beat packet. This retains many of the advantages of

the BWA without the need for a finely tuned resonant density.
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FIGURE 3. Non-linear laser wakefield solutions showing (a) laser pulse intensity
(eEo /mrooc)1, (b) plasma wakefield (eE/mropc) and (c) wake potential (e,/mc2 +1) vs.
rop(t-zlc). Parameters are similar to a proposed experiment with the LLNL 10 TW
laser.

Numerical solutions of the cold I-D plasma fluid equations are shown above for a

Gaussian laser pulse of fullwidth at half maximum ::.: x/ rop and amplitude

vose/ c == eEo/ moooc =2. From the numerical solutions we have found that the wake amplitude

scales as15

1
eE/mropc - "2 (vose/c).

The particle acceleration length is the shorter of the particle dephasing length, the laser diffrac

tion length, and the laser pump depletion length. For relativistic pumps (vose / c > 1) the laser

group velocity and hence the wake phase velocity are very close to c, so particle dephasing is

not a limiting factor. IS The laser diffraction length (-1t02 / "'lasep 0 is spot size) can be over

come in principal by optical guiding (caused by the refractive index change in the laser chan

nel due to relativistic mass increase of electrons oscillating in the laser field) for powers

00 2

exceeding - 20 --%- GW. The pump depletion length scales as (00;/ oot) c/ oop. Applying
oop

these scaling laws to the parameters of the planned 10 TW lasers gives the preliminary

accelerator parameters below.

The 10 TW laser will enable the demonstration of high-gradient wakefield acceleration

(e.g.,7 MeV over.5 mm) and laser self-focusing in separate experiments. The development
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TABLE I Laser Wakefield Design Examples

10TW PetaWatt

pulse length .25 ps 1 ps

vosc Ie 2 11

plasma density 6xl016 cm-3 4xl016 cm-3

Gradient (eE) 15 GeV/m 20-80 GeV/m

Max. energy gain 7 MeVt 150 GeVtt

t laser diffraction limited tt pump depletion limited

of a petawatt laser suggests the potential for combining the two effects in a laser wakefield

accelerator exceeding 100 GeV in 5 meters. These results are based on 1-D scaling laws. A

great deal more work is required before the ramifications of non-linear effects are understood

in 2-D, but the incentives are clearly great for pursuing this research.

Particle-Driven Wakefield Accelerator

The particle-beam driven wakefield accelerator uses the space charge of a particle beam rather

than the ponderomotive force of a laser to create a wake of plasma oscillation.16-18 The appeal

of this scheme is the potential to boost the energy of an accelerator a factor of ten or more by

adding a short section of plasma at the end.

Recent progress on wakefield accelerators has been sparked by two phases of success

ful experiments at ANL in Illinois (see J. Simpson, these proceedings). The first experiments

verified linear theory. In the second experiments last year the density of the driving beam w~s

increased and non-linear wakes were excited. A plasma wake amplitude of 5 MeV/m was

inferred from the energy gain of test particles. This is close to the linear theory prediction

(after taking into account the beam's self-pinching). However, the measured waveform was

significantly steepened suggestive of a wave amplitude nearly an order of magnitude larger.

To understand the experimental results, we performed a 2-D PIC simulation with the

parameters19 of one of the operating points of the ANL experiment (below). In the simulation,

the driving beam self-pinched in the plasma by a factor of 3 in radius, in agreement with the

predictions of the ANL group. This produced a peak beam density on axis of about 50% of the

background plasma density, large enough to account for the non-linear steepening of the wake.

However, the electric field of the plasma wave responds in some sense to the average charge

density over a radius equal to the plasma skin depth c I rope This average density is only about

5% of 110 as was the normalized wake amplitude ( - 7 MeV/m), in reasonable agreement with

the test particle results of the experiment.
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FIGURE 4. Simulation of plasma wake field (left) and plasma density response in the
ANL experiment on axis and at R = .2 drop = .4mm.

The successes of the ANL experiments are encouraging for a next stage of wakefield

accelerator demonstration. With high-current and possibly shaped beams from photocathode

technology it is now possible to design a 20-100 MeV acceleration experiment that could

address a number of important questions for an eventual high-energy device. 19

PLASMA LENSES

Although the present concepts for using plasma lenses at the final focus of colliders evolved

fairly recently20 from work on the plasma wakefield accelerator, the use of plasmas for focus

ing particles dates as far back as 1947 and the Gabor lens. In the Gabor lens, a magnetic mir

ror traps an electron cloud. The space charge of the cloud then provides the focusing for posi

tively charged beams. A second plasma lens concept dating back to the mid 1960's employs

the azimuthal magnetic field of a current-carrying plasma to focus beams.21 This type of lens is

of interest for focusing or collecting low-current beams such as beams of anti-protons en rou~

to the anti-proton accumulator. The remainder of this section is devoted, however, to the con

cept of a self-pinch plasma lens, appropriate for the final focus of a collider.

The basic mechanism of self-pinching in a plasma has been experimentally verified in

both the overdense (Do> nb) and underdense (Do < fib) plasma regimes- the overdense regime

in the ANL wakefield experiments and the underdense regime in so-called IFR (ion focused

regime) experiments.22 The mechanism is as follows. When an electron beam enters a plasma,

the plasma electrons respond to the excess charge by shifting away from the beam particles.

The remaining plasma ions partiaIly (underdense) or completely (overdense lens) neutralize

the space-charge force within the beam. For positron beams the charge neutralization is simi

lar but is due to the plasma electrons shifting in the opposite direction. While the plasma is

very effective at shielding the beam's space charge, it is less effective at shielding its current

(if the beam radius is small compared to c / cop). Thus the beam experiences almost the full

effect of its self-generated azimuthal magnetic field. From Ampere's law this is Be = 21tnber
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for a uniform beam density nb, where ~ = vIc =:; 1. This gives a net radial force

Pr :: 21tne2r or P/r =:; 3xlO-9nb Gauss/cm

where n is in cm-3 and is the beam density in the overdense regime and the plasma density in

the underdense regime. For beam parameters similar to those required for future TeV colliders

(Pr / r can be of order 108 G/cm) and exceed by four orders of magnitude the equivalent focus

ing strength of conventional quadrupole magnets.

The simple physical argument given above based on plasma shielding of space

charges neglects some important effects such as electron inertia, return currents, and the radial

dependence of n. All of these are included quantitatively by a plasma wakefield analysis. The

physical model is in good quantitative agreement with the wakefield analysis under the follow

ing conditions on the beam's scale length and radius:

Ib » c/rop » rb

where c/rop is the plasma skin depth (- 5xI05 ~~ [em]), and rb is the beam radius. The first

inequality assures that the beam density rises slowly enough that the plasma electrons respond

essentially adiabatically to maintain charge neutrality (Le., without overshooting and oscillat

ing). The second inequality assures that the plasma return current (which flows in a cylinder a

few skin depths in radius) flows mainly outside of the beam and so does not reduce the focus

ing force within the beam.

Wakefield Description and Simulations

A formal wakefield analysis has been used to fully characterize the focusing strength20 and

spherical and longitudinal aberrations23,24 in the overdense plasma regime. Sample results for

the focusing force Fr vs. r, the spherical aberrations ~K / K (K == Pr / rymc2) vs.Gaussian beam

width or and focusing force vs. axial position z (illustrating longitudinal aberrations) are

shown in Pig. 5. Clearly, Gaussian beams in overdense plasma lenses have large aberrations-

2 3 4 5 6
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FIGURE 5. Analytic results characterizing overdense plasma lenses.
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typically 25% unless steps are taken to make beam density more uniform in r. Spherical aber

rations limit the spot size reduction (00 10*) to a factor (L\K I K)-l:::: 4, so overdense lenses

must be placed very near to the final focus of the conventional optics.

In designing a plasma lens one must consider the limitation on spot size reduction due

to beam emittance as well as aberrations. To lowest order this is24

where EN = 'Ye is the normalized emittance in cm-rad, kp == cop I c, n is nb (overdense) or 110

(underdense regime) and all lengths are in cm in the last expression.

The aberrations can be reduced by an order of magnitude or more for electrons without

beam shaping simply by passing to the underdense plasma regime (Do < nb).25 In this case

nearly all the plasma electrons are blown out of the beam path leaving a net focusing force due

to the remaining ions. Since the ions are homogeneous, the focusing force is very linear in r.

From the spot size reduction observed in self-consistent PIC simulations using the code ISIS,

we infer that the aberrations in the underdense lens are less than 3%.

In the figure below we show a simulation of identical electron (right) and positron

beams focused by identical underdense plasma lenses and finally colliding at the center. The

focusing of the positron beam in the underdense regime is not as aberration-free as that of the

electron beam; however, the net luminosity enhancement is still large (- 44) due to the strong

pinching disruption of the e+ beam by the magnetic field of the more tightly focused e- beam.
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FIGURE 6. 2-D PIC simulation of e+ e- focusing by plasma lenses and disruption.

Disruption

The plasma lenses in the above simulation enhanced the luminosity of the collision in two

ways. First, by pinching the beams, the lenses increased the "bare" luminosity of the collision

by a factor of 23 (for detailed parameters see Ref. 24). Second, by pinching the beams, the
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lenses increased the beams' disruption parameters D (=N2e2oz/ymc2o*2) from .4 to about 4.

This brought the beams from a regime of negligible disruption enhancement (HD - 1.2) to a

regime where significant disruption occurred (Ho - 2) giving an overall luminosity enhance

ment of 44.

The disruption of colliding beams is increasingly important in collider designs beyond

SLC, with or without plasma lenses. The collective interaction of these charged particles is an

interesting and challenging area of plasma physics research (see W. B. Morl et al., in these

proceedings). Thus, the roles for plasma physicists in accelerator research are likely to grow

even faster than are the roles for plasmas in accelerators.

In contrast to the long-term view of research on plasma accelerators, plasma lenses

could impact accelerator technology in the very near future. Although detailled experiments

are needed to fully characterize plasma lenses, it is clear that some enhancement of the SLC's

luminosity could be obtained by inserting thin (- 1 cm) plasma slabs near the IP (see Ref. 24

for a design example). Presently, there is concern that scattering of synchrotron photons (from

the final quads) by the plasma electrons m.ay swamp detectors;26 however, the effort and risk

associated with masking the photons and installing the lenses may be worth taking once the

immediate round of Zo experiments concludes.

OTHER ROLES

Plasma Bunchers

Many designs for next generation linear colliders specify fewer particles and much shorter

bunches (e.g., 15-50J..L 27) than the present generation SLC collider. Furthermore, many FEL

applications require short bunches to generate sub-picosecond light pulses. Plasma waves are

naturally suited to producing kylstron-type bunching of a longer bunch into bunches on the

scale of tens of microns. This is illustrated in the self-consistent particle simulation below.
8 r------r-----,.----.,.------,
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FIGURE 7. Electron beam send into a plasma slab supporting a plasma wave (a) real
space of beam and plasma, (b) x-distribution of particles.
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The scale of the bunching can be detennined by choosing the plasma density. For densities in

the range of 1016_1018 cm-3, the plasma wavelength is 300-30 Jl and the scale of the bunches

is 80Jl-8 Jl.

Plasma Compensation2

As collider parameters evolve toward shorter narrower bunches and higher energies, the prob

lem of beamstrahlung radiation losses of the colliding beams increases. D. Whitham, A.

Sessler and S. Yu of LBL have proposed a means of reducing the beamstrahlung loss by col

liding the beams in a dense plasma background. In the regime opposite to that of a plasma

lens (Le., 0* » c / Olp), the plasma provides a return current that reduces the azimuthal mag

netic field and hence the synchrotron losses. We have perfonned a PIC simulation of this pro

cess and observe a reduction in the magnetic field as predicted by the LBL group. However,

this concept would require extremely dense plasmas ( > 1020 cm-3
) and creative detector

designs to discriminate against background noise contributed by beam-plasma events.

Plasma Cathode/Injector

Intense lasers impinging on solid targets produce high-density plasmas (1019- 21 cm-3). The

number of electrons available from a (10Jl)3 volume is more than 1010 and could make a

cathode of minute dimensions. While a small cathode is desirable for generating a low emit

tance beam, it needs to be seen whether or not the huge thennal energy of such a plasma would

defeat the scheme.

CONCLUSION

Significant progress has been made on plasma-based accelerator concepts in the last decade

and the last year. Wakefield experiments have demonstrated test particle acceleration and beat

wave experiments have demonstrated the highest accelerating fields of any novel accelerator

technique to date. With the recent developments in short-pulse high-power lasers, the pros

pects are good for more exciting results in the coming year. The progress on plasma accelera

tors and the development of new ideas such as plasma lenses make it likely that plasmas will

play an increasing role in future accelerator technology.
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