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I. INTRODUCTION

In recent work2
, a method has been developed to calculate the longitudinal

impedance for an azimuthally symmetric obstacle in a beam pipe of circular

cross section. The method has been applied to a small obstacle3
, to an

obstacle of general shape at high frequency2, and to several obstacles, 1n

clcding a periodic structure4,s at high frequency.

Coupling impedances are difficult to measure directly. Instead, the

reflection and transmission coefficients for a pulse carried through the

obstacle on a thin coaxial wire are measured and the results apprOXimate the

longitudinal coupling impedance. 6

In the present paper, an analysis is carried out including the coaxial

wire and new boundary conditions for the fields at the surface of the wire.

We then estimate the validity of the coaxial wire measurement for a variety

of frequencies and geometries. Finally, several numerical calculations are

carried out for both the bea~ and the wire pUlse. The results confirm the

predictions of the analysis.

II. ANALYSIS FOR A BEAM

Let us consider a beam pipe of radius a which enters and leaves an azi

muthally symmetric cavity of general shape. The longitudinal impedance can

be obtained by field matching at r = a. The source fields in the ultrarela

tivistic limit are

Z I
o 0 -Jkz

- -- e2nr (2.1)

Adding the pipe fields, we find

Jo(Kr)

JOl) -jqz _
Ez = dq A(q) e J (Ka) ,

-00 0
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(2.2)
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(2.3)

Here k = ~/c, the suppressed time dependence is exp(j~t), Zo = 120n ohms, and

1
0

is the driving current. We have defined K = Jk2 - q2 and take the contour

in the q plane below the poles on the negative real axis and above the poles

on the positive real axis so that we have only outgoing waves for the pipe

fields as z ~ tm. Defining Ez(a,z) =fez), we have

fez) = Jm dq A(q) e-j qz • A(q) = 2: J:dZ fez) e
j qz •

-m 0

(2.4)

where fez) vanishes for z < 0, z > g.

The fields in the annular cavity region for r ~ a are expanded into an

orthonormal set of cavity modes3 which satisfy metallic boundary conditions

on the outer wall of the cavity as well 'as at r = a. Matching the magnetic

field in the pipe and cavity regions leads to

where the pipe and cavity kernels are

-jkzj e , (2.5)

(2.6)

Here ht(Z) is the normalized magnetic field in mode t at r = a,

fez) = F(z) Z I /ka2, and J(q) is defined in Eq. (2.7). The sum in Eq. (2.6)
o 0

is over all azimuthally symmetric modes in the annular cavity.

We can obtain a more explicit form for K (u) in Eq. (2.6) by using the
p

identity

J'(Ka)
1A 0 00

J(q) - Ka J (Ka) - 2 r 2 2 2 ·
(2.7)

0 s=l q a bs

where Js are the zeroes of Jo(x), and where b~ k2a2 _. J~ = -~~. For posi

tive u, the contour in Eq. (2.6) can be closed in the lower half plane, en-
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closing the poles at qa = bs and qa = -j~s.

encloses the poles at qa = -bs and qa = j~s.

For negative u, the contour

The result for K (u) is then
p

2nj
K (u)

p a L
s=l b s

(2.8)

where bs 7 -J~s when J s > ka.

The longitudinal impedance of the cavity can be written as

Z(k) 1 fex»·k 2n: Af k) 1 l lk---- = ---- dz e J z E (0 z) = Z I = ---2 dz F(z) e J Z .
Zo ZoI o -CX) z' 0 0 ka 0

(2.9)

The solution of Eq. (2.5) for F(z') can then be used to obtain the impedance

by means of Eq. (2.9).

III. ANALYSIS FOR ~ COAXIAL WIRE

We now start with a TEM mode in the beam pipe including a coaxial wire of

radius r o' described by

Z I
o 0 -jkz
-- e -E

2n:r r
(3.1)

wh~re ~ stands for the coaxial wire case and where we have normalized to make

Eq. (3.1) identical to Eq. (2.1). Adding the pipe fields, we find

F (Kr)

f
ex» ~ -jqz 0Ez = dq A(q)e F (Ka) ,
-ex» 0

Z I Ft(Kr)
_0 0 e-jkz + jk fex» dq A(q) e- j qz -------

2n:r K F (Ka) ,
-00 0

(3.2)

(3.3)

where the linear combinations

F (x )
o

(3.4)

with ~ = Yo(Kro)/Jo(Kro)' are chosen to satisfy the boundary condition on the

surface of the wire. The contour in the q plane is as before in order that

we only have outgoing waves for the pipe fields.
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The analysis continues as in Section II. The only difference is that

J(q) in Eq. (2.7) is now

(3.5)

The function J(q) is analytic in q or K. except for a second order pole at

K=O (first order poles at q=±k). and first order poles at the zeros of the

denominator of Eq. (3.5). We can then write J(q) as a sum over these poles

by finding the appropriate residues. obtaining finally

<X
co S

- 2 L 2 2 -2'
s=O q a - bs

1

(3.6)

(3.7)

Here is is the value of Ka at the zeroes of Fo(Ka). with i o - o. The pipe

kernel is therefore

The expression for the magnetic field in the cavity region is identical

to that for the case of a beam on axis. since the boundary conditions are not

affected by the presence of the wire. The integral equation for the axial

electric field at the beam pipe is therefore

-jkz
j e • (3.9)

with K being given by Eq. (3.8) and K by Eq. (2.6).
P c

In order to obtain the transmission and reflection coefficients. it is

simplest to examine Eq. (3.3) for large positive and negative z. The TEM
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(coaxial) modes correspond to the poles at q = ±k. Specifically one obtains

Z lITEM
o </>

Z I
o 0

2nr
+

2n a A(±k) e+ j kz
o

r
(3.10)

where the ± 1s for the pipe region with z ~ O. Using Eq. (2.4), we obtain

for the reflection and transmission coefficients

2na

1 - T(k) = ---i !:dZ F(z) e
j kz

•
ka 0

2na

R(k) = ---i !:dZ F(z) e-
j kz

•
ka 0

(3.11 )

where we have again used fez) F(z) Z I /ka2.
o 0

Comparison of Eq. (3.11) with Eq. (2.9) shows why the impedance corres-

ponds more closely to the transmission coefficient rather than the reflection

coefficient, particularly at frequencies for which kg ~ 1. In fact the cor

respondence is

n
1 - T(k) ~ In(a/r )

o

Z(k)

Zo
(3.12)

(4.1)

IV. COMPARISON OF I-T(k) AND 2naoZ(k)/Zo

The difference between the coupling impedance and 1 - T(k) for the pulse on

the wire is totally contained in the modified pipe kernel in Eq. (3.8).

Specifically we have an additional term proportional to [In(a/r )]-1, a shift
o

of the zeroes from J s to is ' and the modified coefficients as' For

ro/a « 1, it is easy to show that

is ~ js + R/2Ls ' s ~ 1 , Ls = in(2a/rojs) - 7 ,

-1 2where 7 = .577 is Euler's constant. Also a ~ 1 - n/2J L for s ~ 1. Thus-r s s
all changes are proportional to lin{a/ro)] or smaller, suggesting that

there may be differences of order 20%, even for ro/a as small as .01.

The result for a small obstacle of cross sectional area a may be taken

directly from earlier work. 3 Specifically we can write

-jb g/a
2n

sa
J

a e
ztn2]0

2nka [-
CX) s

1 - T(k)
k

211
+ E + J -n- (4.2)

s=O b
s
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We therefore expect that the primary difference for a small obstacle will be

a shift in the frequency at which the singular behavior occurs from ka = js

to is' This is confirmed in Figs. la and Ib where we pl9t the real and

imaginary parts of Y(k) and 2n«o[1 - T(k)]-1/2
o

for a pill box of length

g = .0Sa and width b-a = .1a for ro/a = .01. The corresponding results for

ro/a = .1 are shown in Figs. 2a and 2b. The numerical results are obtained

with programs which expand the fields in the pipe region and the cavity plus

pipe region into traveling axial waves. The figures clearly show that the

details of the two results differ, but that the average over the sawtooth

behavior is essentially unmodified. 7

The result at high frequency is similarly easy to predict. In earlier

work, we showed2 that the average behavior of the impedance at high frequency

is obtained by converting the sum over s in the pipe kernel to an integral
2 1/2over s, and that the main contributions come from s of order (ka /g) .

Since the spacing of the zeroes is essentially unmodified, we expect no sig

nificant difference in the average behavior at high frequency. This is con

firmed in Figs. 3a and 3b for the real and imaginary parts of Z(k) and

2
0

[1 - T(k»)/2n«o for g/a = n/4, b/a = 1.5, ro/a = .1. What is remarkable

is that the complicated oscillatory behavior is duplicated as well.

V. SUMMARY

We have derived the integral equation for the transmission coefficient of the

coaxial mode for a pulse along a wire on the axis of a beam pipe and cavity.

The only difference between this equation and the one for the longitudinal
-1

coupling impedance is in the pipe kernel and is of order linea/roll or

less. Specific predictions are made for the comparison between Z(k)/Zo and

[1 - T(k)]/2n«o for both a small obstacle, and for a larger obstacle at high

frequency, and these are confirmed by numerical calculations. Our conclusion

is that measurement of 2
0

[1 - T(k)]/2n«o corresponds remarkably well to the

actual longitudinal coupling impedance.
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Figure 1a. Real part of admittanc~ for a beam (solid (urv~) Figure 1b. Imaginary part of admittance for a beam (solid curv~)
and a coalial wir~ of radius,o =.O'a (dashed curve). and a coaxial wire of radius ro :: .01a (dashed curve).
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Figure 2a. Real part of admittance fOf a beam (solid curve) Figure 2b. Imaginary part of admittance for a beam (solid curve)
and a coaxial wire of radius'o •.1a (dashed curve). and a coaxial wire of radius '0 c .1a (dashed curve).
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Figure 3b. Imaginary part of impedanc~ for a beam (sohdcurve)
and coaxial wire of radius '0 •. 1a (dashed curve).
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Figure 3a. Rea' part of impedance for a beam (solid cutve)
and coali., wire of radius ro. ,. (dashed curve)
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